TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Schmidt, J. A1 - Günster, Jens A1 - Colombo, P. A1 - Bernardo, E. T1 - Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fi ne glass powders JF - Journal Materials Research N2 - Wollastonite (CaSiO 3 ) – diopside (CaMgSi 2 O 6 ) glass-ceramic scaffolds have been successfully fabricated using two different additive manufacturing techniques: powder-based 3D printing (3DP) and digital light processing (DLP), coupled with the sinter-crystallization of glass powders with two different compositions. The adopted manufacturing process depended on the balance between viscous flow sintering and crystallization of the glass particles, in turn in fluenced by the powder size and the sensitivity of CaO – MgO – SiO 2 glasses to surface nucleation. 3DP used coarser glass powders and was more appropriate for low temperature firing (800 – 900 °C), leading to samples with limited crystallization. On the contrary, DLP used finer glass powders, leading to highly crystallized glass-ceramic samples. Despite the differences in manufacturing technology and crystallization, all samples featured very good strength-to-density ratios, which bene fit theiruse for bone tissue engineering applications. The bioactivity of 3D-printed glass-ceramics after immersion in simulated body fluid and the similarities, in terms of ionic releases and hydroxyapatite formation with already validated bioactive glass-ceramics, were preliminarily assessed. KW - 3D-Printing KW - Bio Ceramic KW - Additive manufacturing PY - 2018 DO - https://doi.org/10.1557/jmr.2018.120 SN - 2044-5326 SN - 0884-2914 VL - 33 IS - 14 SP - 1960 EP - 1971 PB - Cambridge University Press AN - OPUS4-45718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, Juan Carlos A1 - Fateri, Miranda A1 - Kalhöfer, Eckhard A1 - Schubert, Tim A1 - Meyer, Lena A1 - Kolsch, Nico A1 - Brandic Lipinska, Monica A1 - Davenport, Robert A1 - Imhof, Barbara A1 - Waclavicek, René A1 - Sperl, Matthias A1 - Makaya, Advenit A1 - Günster, Jens T1 - Laser melting manufacturing of large elements of lunar regolith simulant for paving on the Moon JF - nature scientific reports N2 - The next steps for the expansion of the human presence in the solar system will be taken on the Moon. However, due to the low lunar gravity, the suspended dust generated when lunar rovers move across the lunar soil is a significant risk for lunar missions as it can affect the systems of the exploration vehicles. One solution to mitigate this problem is the construction of roads and landing pads on the Moon. In addition, to increase the sustainability of future lunar missions, in-situ resource utilization (ISRU) techniques must be developed. In this paper, the use of concentrated light for paving on the Moon by melting the lunar regolith is investigated. As a substitute of the concentrated sunlight, a high-power CO2 laser is used in the experiments. With this set-up, a maximum laser spot diameter of 100 mm can be achieved, which translates in high thicknesses of the consolidated layers. Furthermore, the lunar regolith simulant EAC-1A is used as a substitute of the actual lunar soil. At the end of the study, large samples (approximately 250 × 250 mm) with interlocking capabilities were fabricated by melting the lunar simulant with the laser directly on the powder bed. Large areas of lunar soil can be covered with these samples and serve as roads and landing pads, decreasing the propagation of lunar dust. These manufactured samples were analysed regarding their ineralogical composition, internal structure and mechanical properties. KW - Regolith KW - ISRU KW - Moon KW - Laser KW - Additive manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585985 DO - https://doi.org/10.1038/s41598-023-42008-1 SN - 2045-2322 VL - 13 SP - 1 EP - 10 PB - Springer AN - OPUS4-58598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Duminy, T. A1 - Lima, P. A1 - Kamutzki, F. A1 - Gili, A. A1 - Zocca, Andrea A1 - Günster, Jens A1 - Gurlo, A. T1 - Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies JF - Acta Astronautica N2 - The wet processing of regolith simulant for clay in situ resource utilization (ISRU) on Mars is presented. The two raw materials from the Mars global simulant family, one without clay (MGS-1) and one with clay - sodium montmorillonite smectite - (MGS-1C) were milled and mixed to produce a simulant with small particle size and reduced clay content (MGS-1C/8). All three simulants and the pure clay raw material were extensively characterized using XRF, synchrotron XRD, gas adsorption and gas pycnometry methods. In a straightforward processing approach, MGS-1C/8 was mixed with water and different dispersant approaches were investigated, all of which gave stable slurries. Particle size distribution, rheology, ion concentration, pH and electrical conductivity of these slurries were characterized. The slurry systems can easily be adapted to fit all typical ceramic shaping routes and here parts of varying complexity from slip casting, throwing on a potter's wheel and additive manufacturing, including material extrusion (robocasting) and binder jetting (powder bed 3D printing) were produced. The unique properties of the sodium montmorillonite clay, which is readily accessible in conjunction with magnesium sulfate on the Martian surface, acted as a natural nanosized binder and produced high strength green bodies (unfired ceramic body) with compressive strength from 3.3 to 7.5 MPa. The most elaborate additive manufacturing technique layerwise slurry deposition (LSD) produced water-resistant green bodies with a compressive strength of 30.8 ± 2.5 MPa by employing a polymeric binder, which is similar or higher than the strength of standard concrete. The unfired green bodies show sufficient strength to be used for remote Habitat building on Mars using additive manufacturing without humans being present. KW - Mars KW - Smectite KW - Clay ISRU KW - MGS-1 regolith simulant KW - 3D printing KW - Additive manufacturing PY - 2020 DO - https://doi.org/10.1016/j.actaastro.2020.04.064 VL - 174 SP - 241 EP - 253 PB - Elsevier Ltd. AN - OPUS4-50870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity JF - Advanced Materials Technologies N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -