TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Finn, Monika A1 - Künecke, Georgia A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Leistner, C. A1 - Petrushin, N. A1 - Svetlov, I. T1 - Investigation of Elastic Properties of the Single-Crystal Nickel-Base Superalloy CMSX-4 in the Temperature Interval between Room Temperature and 1300 °C N2 - The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade material in gas turbines were investigated by the sonic resonance method in the temperature interval between room temperature and 1300 °C. Elastic constants at such high temperatures are needed to model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as well as during technical accidents which may happen in service (overheating). High reliability of the results was achieved using specimens of different crystallographic orientations, exciting various vibration modes as well as precise measurement of the material density and thermal Expansion required for modeling the resonance frequencies by finite element method. Combining the results measured in this work and literature data the elastic constants of the gamma and gamma' phases were predicted. This prediction was supported by measurement of the temperature dependence of the gamma'fraction. All data obtained in this work are given in numerical or analytical forms and can be easily used for different scientific and engineering calculations. KW - Nickel-base superalloys KW - Single-crystals KW - Characterization KW - Elastic constants PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520972 DO - https://doi.org/10.3390/cryst11020152 VL - 11 IS - 2 SP - 152 PB - MDPI AN - OPUS4-52097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Bauer, Felix A1 - Uhlemann, Patrick A1 - Thärig, Steffen A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Mechanical testing dataset of cast copper alloys for the purpose of digitalization N2 - This data article presents a set of primary, analyzed, and digitalized mechanical testing datasets for nine copper alloys. The mechanical testing methods including the Brinell and Vickers hardness, tensile, stress relaxation, and low-cycle fatigue (LCF) testing were performed according to the DIN/ISO standards. The obtained primary testing data (84 files) mainly contain the raw measured data along with the testing metadata of the processes, materials, and testing machines. Five secondary datasets were also provided for each testing method by collecting the main meta- and measurement data from the primary data and the outputs of data analyses. These datasets give materials scientists beneficial data for comparative material selection analyses by clarifying the wide range of mechanical properties of copper alloys, including Brinell and Vickers hardness, yield and tensile strengths, elongation, reduction of area, relaxed and residual stresses, and LCF fatigue life. Furthermore, both the primary and secondary datasets were digitalized by the approach introduced in the research article entitled “Toward a digital materials mechanical testing lab” [1]. The resulting open-linked data are the machine-processable semantic descriptions of data and their generation processes and can be easily queried by semantic searches to enable advanced data-driven materials research. KW - FAIR principles KW - Hardness KW - Low-Cycle Fatigue (LCF) KW - Tensile testing KW - Stress relaxation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605005 DO - https://doi.org/10.1016/j.dib.2024.110687 SN - 2352-3409 SP - 1 EP - 15 PB - Elsevier BV AN - OPUS4-60500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L N2 - This article reports temperature-dependent elastic properties (Young’s modulus, shear modulus) of three alloys measured by the dynamic resonance method. The alloys Ti-6Al-4V, Inconel IN718, and AISI 316 L were each investigated in a variant produced by an additive manufacturing processing route and by a conventional manufacturing processing route. The datasets include information on processing routes and parameters, heat treatments, grain size, specimen dimensions, and weight, as well as Young’s and shear modulus along with their measurement uncertainty. The process routes and methods are described in detail. The datasets were generated in an accredited testing lab, audited as BAM reference data, and are hosted in the open data repository Zenodo. Possible data usages include the verification of the correctness of the test setup via Young’s modulus comparison in low-cycle fatigue (LCF) or thermo-mechanical fatigue (TMF) testing campaigns, the design auf VHCF specimens and the use as input data for simulation purposes. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L KW - IN 718 KW - Ti-6Al-4V KW - Reference data KW - Temperature dependence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579716 DO - https://doi.org/10.1038/s41597-023-02387-6 VL - 10 IS - 1 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-57971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Jokisch, T. ED - Zimmermann, M. T1 - Rissfortschrittsuntersuchungen an gefügten Nickelbasiswerkstoffen bei hoher Temperatur N2 - In nickelbasierten Superlegierungen, die für Gasturbinenschaufeln verwendet werden, sind bei hohen Betriebstemperaturen und -belastungen Kriechschäden, Ermüdung, Korrosion und Oxi-dation zu beobachten. Die betroffenen Turbinenschaufeln müssen ersetzt oder repariert werden, um Effizienzverluste und ein eventuelles Bauteilversagen zu vermeiden. In letzter Zeit wurden additive Fertigungs- und Lötverfahren für die Reparatur und das Fügen von Nickelbasiswerk-stoffen entwickelt, um die Einschränkungen der traditionellen Reparaturverfahren zu überwinden. Für eine auslegungsrelevante Bewertung des Risswachstumsverhaltens in den Fügezonen, die durch diese neuen Technologien erzeugt werden, sind Rissfortschrittsuntersuchungen erfor-derlich. Entsprechende Untersuchungen an gefügten Proben werden in diesem Beitrag vorge-stellt. Die Rissfortschrittsversuche werden an gefügten SEN-Proben (Single Edge Notch) bei einem Spannungsverhältnis von 0,1 und einer Temperatur von 950 °C durchgeführt. Das Riss-wachstum wird mit der DCPD-Methode (Direct Current Potential Drop) überwacht, und die ge-messenen Potenzialsignale werden anhand der optisch vermessenen Risslänge und einer Finite-Elemente-Analyse kalibriert. Der Spannungsintensitätsfaktor (SIF) für die gefügte SEN-Geometrie wird mit Hilfe von Finite-Elemente-Analysen berechnet. Auf diese Weise können Rissfortschrittskurven aus den experimentellen Daten abgeleitet werden. T2 - Tagung „Werkstoffprüfung 2022“ CY - Dresden, Germany DA - 27.10.2022 KW - Lötverbindung KW - Rissfortschritt KW - SEN-Probe KW - Gefügte Nickelbasislegierungen PY - 2022 SN - 978-3-88355-430-3 VL - 2022 SP - 67 EP - 72 AN - OPUS4-57090 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Gesell, Stephan A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Uhlemann, Patrick A1 - Skrotzki, Birgit A1 - Ganesh, R. A1 - Dude, D. P. A1 - Kuna, M. A1 - Kiefer, B. T1 - TMF-Rissverlaufsberechnung für ATL-Heißteile N2 - Die Steigerung der Leistung und des thermodynamischen Wirkungsgrades von Verbrennungsmotoren führt zu erhöhten Anforderungen an die Festigkeit abgasführender Komponenten wie z. Bsp. Abgasturbolader. Als Folge erhöhter thermomechanischer Wechselbeanspruchungen (TMF) im Betrieb kommt es an den mechanisch und/oder thermisch höchst beanspruchten Stellen der Bauteile zur Bildung von Rissen, wodurch die Lebensdauer der Komponenten begrenzt wird. Derzeit werden bei Turboladern heißgehende Bauteile mit detektierten Rissen zumeist prophylaktisch ersetzt, da die weitere Ausbreitung der Risse während des Betriebs nicht vorhergesagt werden kann. Um diese aufwändige und un- ökonomische Praxis zu vermeiden, wurde im vorliegenden Forschungsvorhaben eine rechnerische Bewertungsmethode auf Basis der experimentellen und numerischen Bruchmechanik erarbeitet, mit deren Hilfe bereits in der Auslegungsphase oder während des Betriebs die (restliche) Lebensdauer der abgasführenden Komponenten vorhergesagt werden kann. Damit wird erstmalig die quantitative Vorhersage der Rissentwicklung bei TMF-Beanspruchungsbedingungen unter Berücksichtigung großer zyklischer viskoplastischer Verformungen ermöglicht. Zentrales Ergebnis des Vorhabens ist eine automatisierte Berechnungsprozedur auf der Basis spezieller Finite-Elemente-Techniken (FEM), womit sowohl der Pfad als auch die Größe eines Risses als Funktion der Anzahl der Lastwechsel in Bauteilen unter TMF-Bedingungen berechnet werden kann. Als geeigneter Beanspruchungsparameter zur Bewertung des Rissfortschritts unter TMF wurde die zyklische Rissöffnungsverschiebung ΔCTOD verwendet. Das Werkstoffverhalten des betrachteten austenitischen Gusseisens Ni-Resist D-5S wurde mit einem validierten viskoplastischen, temperaturabhängigen Materialmodell modelliert, das zur Berücksichtigung große Verzerrungen und Rotationen am Riss erweitert wurde. Für die genaue Berechnung des ΔCTOD bei TMF wurden effiziente FEM-Techniken erarbeitet. Zur Simulation der Rissausbreitung wurde ein automatischer FEM-Algorithmus mit inkrementeller adaptiver Neuvernetzung entwickelt, bei dem die Verformungen und inelastischen Zustandsvariablen jeweils vom alten auf das neue Netz übertragen werden. Dieser Algorithmus wurde im Software-Paket ProCrackPlast implementiert, das in Verbindung mit dem kommerziellen FEM-Code Abaqus zur Lösung dreidimensionaler Rissprobleme zur Verfügung steht. Ziel der umfangreichen experimentellen Arbeiten war es, an isothermen LCF und anisothermen TMF-Versuchen mit gekerbten Flachzugproben (SENT) das Risswachstum im Temperaturbereich von 20 °C bis 700 °C zu ermitteln. Mit Hilfe begleitender 2D FEM Simulationen wurden anhand dieser Datenbasis die Rissfortschrittskurven des Werkstoffs unter Anwendung des ΔCTOD-Konzepts bestimmt und in geeigneter, parametrisierter Form den Nutzern zur Verfügung gestellt. Die Versuche an SENT-Proben wurden mit der entwickelten Software ProCrackPlast als 3D Modell simuliert. Der Vergleich der 2D und 3D Simulationen ergab einen systematischen Unterschied im CTOD und CTOD, der mit Hilfe eines Übertragungsfaktors korrigiert wurde. Der Vergleich der 3D Berechnungen mit den Experimenten zeigte eine zufriedenstellende Übereinstimmung der er- reichten Risslänge mit der Zahl der Lastzyklen im gesamten Temperaturbereich, wobei die numerische Prognose meist auf der konservativen / sicheren Seite lag. Die Übertragbarkeit der Ergebnisse der 2D Parameteridentifikation auf 3D Risskonfigurationen mit Mixed-Mode Beanspruchung ist mit zusätzlichen Versagenshypothesen verbunden, die aufgrund fehlender Versuchsdaten im Vorhaben nicht endgültig geklärt werden konnten. Zur Validierung des Gesamtkonzeptes wurden LCF-Proben mit einem bauteil- typischen Oberflächenriss experimentell und numerisch untersucht. In der Simulation konnte die komplexe Form und Größe der Rissentwicklung zufriedenstellend (richtig) vorhergesagt werden. Die Leis- tungsfähigkeit der erarbeiteten rechnerische Bewertungsmethode wurde an weiteren TMF-Beispielen vorgestellt und diskutiert. Die Software ProCrackPlast und die viskoplastische Materialroutine wurden dem Anwenderkreis des Vorhabens zusammen mit einem Nutzer-Handbuch und Verifikationsbeispielen zur Verfügung gestellt. Das Ziel des Forschungsvorhabens ist erreicht worden. KW - Abgasturbolader Heißteile KW - Numerische Simulation KW - Rissverlauf PY - 2023 VL - 1320 SP - 1 EP - 137 PB - Forschungsvereinigung Verbrennungskraftmaschinen (FVV) CY - Frankfurt am Main AN - OPUS4-56960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ti-6Al-4V N2 - The elastic properties (Young's modulus, shear modulus) of titanium alloy Ti-6Al-4V were investigated between room temperature and 400 °C in an additively manufactured variant (laser-based directed energy deposition with powder as feedstock, DED-LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, microstructure, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - Ti-6Al-4V PY - 2023 DO - https://doi.org/10.5281/zenodo.7813732 PB - Zenodo CY - Geneva AN - OPUS4-57286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Jokisch, T. A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Fatigue and fracture in dual-material specimens of nickel-based alloys fabricated by hybrid additive manufacturing N2 - The integration of additive manufacturing with traditional processes, termed hybrid additive manufacturing, has expanded its application domain, particularly in the repair of gas turbine blade tips. However, process-related defects in additively manufactured materials, interface formation, and material property mismatches in dual-material structures can significantly impact the fatigue performance of components. This investigation examines the low cycle fatigue and fatigue crack growth behaviors in dual-material specimens of nickel-based alloys, specifically the additively manufactured STAL15 and the cast alloy 247DS, at elevated temperatures. Low cycle fatigue experiments were conducted at temperatures of 950 °C and 1000 °C under a range of strain levels (0.3%–0.8%) and fatigue crack growth tests were conducted at 950 °C with stress ratios of 0.1 and −1. Fractographic and microscopic analyses were performed to comprehend fatigue crack initiation and crack growth mechanisms in the dual-material structure. The results consistently indicated crack initiation and fatigue fracture in the additively manufactured STAL15 material. Notably, fatigue crack growth retardation was observed near the interface when the crack extended from the additively manufactured STAL15 material to the perpendicularly positioned interface. This study highlights the importance of considering yield strength mismatch, as well as the potential effects of residual stresses and grain structure differences, in the interpretation of fatigue crack growth behavior at the interface. KW - Hybrid additive manufacturing KW - Dual-material nickel-based alloys KW - High-temperature fatigue crack growth KW - Low cycle fatigue PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609340 DO - https://doi.org/10.1016/j.jmrt.2024.08.211 SN - 2238-7854 VL - 32 SP - 3737 EP - 3749 PB - Elsevier B.V. AN - OPUS4-60934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Piesker, Benjamin A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Tensile and Low‐Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature N2 - This study investigates the room‐ and high‐temperature (650 °C) tensile and low‐cycle‐fatigue behavior of Inconel 718 produced by laser powder bed fusion (PBF‐LB/M) with a four‐step heat treatment and compares the results to the conventional wrought material. The microstructure after heat treatment is characterized on different length scales. Compared to the wrought variant, the elastic and yield properties are comparable at both test temperatures while tensile strength, ductility, and strain hardening capacity are lower. The fatigue life of the PBF‐LB/M variant at room temperature is slightly lower than that of the wrought material, while at 650 °C, it is vice versa. The cyclic stress response for both material variants is characterized by cyclic softening, which is more pronounced at the higher test temperature. High strain amplitudes (≥0.7%) at room temperature and especially a high testing temperature result in the formation of multiple secondary cracks at the transitions of regions comprising predominantly elongated grain morphology and columns of stacked grains with ripple patterns in the PBF‐LB/M material. This observation and pronounced crack branching and deflection indicate that the cracks are controlled by sharp micromechanical gradients and local crystallite clusters. KW - Additive manufacturing KW - Fatigue damage KW - Heat treatment KW - Inconel 718 KW - Laser powder bed fusion KW - Low-cycle fatigue KW - Tensile strength PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599316 DO - https://doi.org/10.1002/adem.202302122 SN - 1527-2648 SP - 1 EP - 17 PB - Wiley AN - OPUS4-59931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Jokisch, T. A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Fatigue crack growth behavior of Alloy 247DS brazed joints at high temperatures N2 - Gas turbine components made of nickel-based alloys can be repaired through diffusion brazing. However, process-induced imperfections, defects within the brazing zone, and material property mismatches between the braze alloy and base material may facilitate crack initiation and propagation, ultimately leading to early component failure. To gain insight into the crack growth mechanism and quantitatively characterize fatigue crack growth behavior within brazing zones, fatigue crack growth (FCG) experiments were conducted on brazed joint specimens of nickel-based alloy Alloy 247DS at a temperature of 950 ◦C and a stress ratio R = 0.1. The FCG tests were complemented by fractographic and microstructural analyses, to elucidate the relationship between crack growth mechanisms and the microstructure of the brazed joint. The results demonstrate stable crack propagation within the brazing zone and the nickel-based braze alloy. The latter contains brittle eutectic boride phases and intermetallic phases that reduce the resistance to crack propagation compared to the parent material. This study demonstrates the applicability of standard FCG experimental procedures to fusion zones, thereby enabling a preliminary understanding of crack growth behavior in brazing zones. KW - Diffusion brazing KW - High-temperature fatigue crack growth KW - Nickel-based alloys KW - Alloy 247DS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615250 DO - https://doi.org/10.1016/j.msea.2024.147488 SN - 0921-5093 VL - 918 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-61525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, Shobhit Pratap A1 - Löwe, Peter A1 - Schriever, Sina A1 - Olbricht, Jürgen A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Skrotzki, Birgit T1 - High-throughput creep evaluation of IN738LC in bending using digital image correlation at 850 °C N2 - High-temperature alloys, when used in structural applications, undergo slow time-dependent deformation known as creep. Assessing creep behavior is critical for estimating the in-service life of these alloys. Conventionally, uniaxial creep tests are widely conducted at elevated temperatures to determine creep rates. In recent years, bending creep of cantilevers, when combined with digital image correlation (DIC), has emerged as a promising high-throughput technique for rapidly estimating creep life. However, the applicability of bending creep above 700 ◦C for high-temperature alloys using DIC has not been fully established. In this work, we compare uniaxial creep rates of the nickel-based superalloy IN738LC with bending creep rates measured at 850 ◦C using high-temperature DIC. The bending creep data show excellent agreement with uniaxial creep results in the stress range of 240–360 MPa. The measured creep xponent, a critical rate-determining parameter, is found to be ~8 for both uniaxial and bending creep, with the rate data scattered within a factor of two. An in-house experimental setup was developed to perform bending creep tests at high temperatures, with strain monitored through DIC. Our results demonstrate that bending creep, combined with DIC, provides a reliable and efficient method for creep testing of high-temperature alloys. Compared to conventional uniaxial creep experiments, this approach requires significantly less time and material, thereby reducing effort, energy, and cost. We anticipate that this technique will serve as a foundation for testing precious high-temperature materials. For instance, in ongoing rapid discoveries of advanced alloys, in-service creep life can be evaluated much faster with reduced material requirements. Moreover, this method holds strong potential for application to high-entropy alloys and additively manufactured alloys designed for demanding high-temperature environments. KW - Digital image correlation KW - Bending creep KW - Nickel-based superalloys KW - High throughput testing KW - High-temperature materials PY - 2025 UR - https://www.sciencedirect.com/science/article/pii/S0921509325017034?via%3Dihub DO - https://doi.org/10.1016/j.msea.2025.149479 VL - 950 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-64814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718 N2 - The elastic properties (Young's modulus, shear modulus) of Ni-based alloy Inconel IN718 were investigated between room temperature and 800 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - IN718 PY - 2023 DO - https://doi.org/10.5281/zenodo.7813824 PB - Zenodo CY - Geneva AN - OPUS4-57287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This study presents a thorough characterization of the creep properties of austenitic stainless steel 316L produced by laser powder bed fusion (LPBF 316L) contributing to the sparse available data to date. Experimental results (mechanical tests, microscopy, X-ray computed tomography) concerning the creep deformation and damage mechanisms are presented and discussed. The tested LPBF material exhibits a low defect population, which allows for the isolation and improved understanding of the effect of other typical aspects of an LPBF microstructure on the creep behavior. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant of 316L was also tested. To characterize the creep properties, hot tensile tests and constant force creep tests at 600 °C and 650 °C are performed. The creep stress exponents of the LPBF material are smaller than that of the conventional variant. The primary and secondary creep stages and the times to rupture of the LPBF material are shorter than the hot rolled 316L. Overall the creep damage is more extensive in the LPBF material. The creep damage of the LPBF material is overall mainly intergranular. It is presumably caused and accelerated by both the appearance of precipitates at the grain boundaries and the unfavorable orientation of the grain boundaries. Neither the melt pool boundaries nor entrapped gas pores show a significant influence on the creep damage mechanism. KW - 316L KW - Laser Powder Bed Fusion (LPBF) KW - Creep behavior KW - Additive Manufacturing KW - AGIL PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539373 DO - https://doi.org/10.1016/j.msea.2021.142223 SN - 0921-5093 VL - 830 SP - 142223 PB - Elsevier B.V. AN - OPUS4-53937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Haubrich, J. A1 - Ávila Calderón, Luis A1 - Schoenstein, F. A1 - Serrano-Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature N2 - Manufacturing defects, high residual stress (RS), and microstructures affect the structural integrity of laser powder bed fusion (LPBF) Ti-6Al-4V. In this study, the individual effect of these factors on fatigue performance at elevated temperature (300 °C) was evaluated. Material in as-built condition and subjected to post-processing, including two heat treatments and hot isostatic pressing, was investigated. It was found that in the absence of tensile RS, the fatigue life at elevated temperature is primary controlled by the defects; and densification has a much stronger effect than the considered heat treatments on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance KW - Computed tomography PY - 2021 DO - https://doi.org/10.1016/j.ijfatigue.2021.106239 SN - 0142-1123 VL - 148 SP - 106239 PB - Elsevier Ltd. AN - OPUS4-52369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Jokisch, Torsten A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High Temperature Fatigue Crack Growth in Nickel-Based Alloys Refurbished by Additive Manufacturing N2 - Hybrid additive manufacturing plays a crucial role in the restoration of gas turbine blades, where, e.g., the damaged blade tip is reconstructed by the additive manufacturing process on the existing blade made of a parent nickel-based alloy. However, inherent process-related defects in additively manufactured material, along with the interface created between the additively manufactured and the cast base material, impact the fatigue crack growth behavior in bi-material components. This study investigates the fatigue crack growth behavior in bi-material specimens of nickel-based alloys, specifically, additively manufactured STAL15 and cast alloy 247DS. The tests were conducted at 950 °C with stress ratios of 0.1 and −1. Metallographic and fractographic investigations were carried out to understand crack growth mechanisms. The results revealed significant retardation in crack growth at the interface. This study highlights the potential contributions of residual stresses and microstructural differences to the observed crack growth retardation phenomenon, along with the conclusion from an earlier study on the effect of yield strength mismatch on crack growth behavior at a perpendicular interface in bi-material specimens. T2 - Superalloys 2024 Conference CY - Champion, Pennsylvania, USA DA - 08.09.2024 KW - Fatigue crack growth KW - Bi-material structure KW - Additive manufacturing KW - Nickel-based alloys PY - 2024 SN - 978-3-031-63937-1 DO - https://doi.org/10.1007/978-3-031-63937-1_92 SN - 2367-1181 SN - 2367-1696 VL - 15th SP - 994 EP - 1001 PB - Springer CY - Cham AN - OPUS4-60907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocaño, Patricia A1 - Ávila Calderón, Luis A1 - Agudo Jácome, Leonardo A1 - Rehmer, Birgit A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Effect of 700–900 °C heat treatments and room and high temperature tensile deformation on the microstructure of laser powder bed fused 316L stainless steel N2 - The effect of post-processing heat treatments on the hierarchical microstructure evolution and mechanical strength of the austenitic stainless steel 316L produced by laser powder bed fusion has been investigated. Heat treatments between 700 and 900 ◦C and 0.5 to 3 h, were applied to samples treated at 450 ◦C for 4 h. The results showed a stable microstructure at all studied temperatures and times in terms of grain size, morphology, aspect ratio, density of low-angle grain boundaries, and texture. However, temperature and time promoted the diffusion of segregated elements together with a reduction in dislocation density and disappearance of the cellular structure. This was associated with a reduction in hardness and tensile proof strength at both room and high temperature. In addition, microstructural characterization coupled with thermodynamic CALPHAD-based equilibrium calculations showed that the formation of carbides and intermetallic phases was already visible after annealing at 800 ◦C for 3 hours, although these intermetallics did not affect the tensile properties at this level. Analysis of the microstructure evolution after tensile deformation showed differences in the deformation mechanisms at room and high temperature, with twinning and martensitic transformation occurring at room temperature, the latter not widely reported for additively manufactured 316L. Finally, comparisons with similar materials produced under comparable conditions showed differences in the tensile properties, attributed to differences in chemical composition and the associated presence of stacking faults in the undeformed state. KW - Additive manufacturing KW - 316L stainless steel KW - Heat treatments KW - Tensile properties KW - Microstructure PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632471 DO - https://doi.org/10.1016/j.msea.2025.148469 SN - 0921-5093 VL - 939 SP - 1 EP - 24 PB - Elsevier CY - Amsterdam AN - OPUS4-63247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Bauer, Felix A1 - Uhlemann, Patrick A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - KupferDigital mechanical testing datasets: Stress relaxation and low-cycle fatigue (LCF) tests N2 - The KupferDigital project deals with the development of a data ecosystem for digital materials research on the basis of ontology-based digital representations of copper and copper alloys. This document provides exemplary mechanical testing datasets for training the developed KupferDigital infrastructures. Different types of cast copper alloys were provided for this research and their mechanical testing (stress relaxation and low-cycle fatigue) was performed in the accredited materials testing laboratory, while the test results were reported according to the DIN/ISO standards and attached with the maximum possible metadata about the sample history, equipment, and calibration. The attached content file consisted of the obtained primary raw testing data as well as the secondary datasets of these tests containing the detailed metadata of mechanical testing methods. Such test data files are processed by the KupferDigital digital tools to be converted to standardized machine-readable data files. KW - Copper alloys KW - Dataset KW - Stress relaxation KW - Mechanical testing KW - Low-cycle fatigue. PY - 2024 DO - https://doi.org/10.5281/zenodo.10820437 PB - Zenodo CY - Geneva AN - OPUS4-59665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Bauer, Felix A1 - Tikana, Ladji A1 - Uhlemann, Patrick A1 - Thärig, Steffen A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - KupferDigital mechanical testing datasets N2 - The KupferDigital project aims to develop digital methods, tools, and data space infrastructures for digitalizing the entire life cycle of copper materials. The mechanical testing process is one of the main chains of such life cycles which generates lots of important testing data about the mechanical properties of the materials and their related materials and testing metadata. To train the digitalization of the mechanical testing process, different kinds of copper alloys were provided for this project, and their mechanical properties were measured by typical methods like Brinell and Vickers hardness and tensile testing. The primary raw testing data as well as the secondary datasets of these tests are provided. The detailed materials specifications, the utilized mechanical testing methods, and provided datasets are described in the content file. The test data files of heterogeneous structures are processed by the KupferDigital digital tools to be converted to standardized machine-readable data files. KW - Copper alloys KW - Dataset KW - Tensile testing KW - Mechanical testing KW - Hardness test PY - 2023 DO - https://doi.org/10.5281/zenodo.7670582 PB - Zenodo CY - Geneva AN - OPUS4-57038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Jokisch, Torsten A1 - Olbricht, Jürgen A1 - Fedelich, Bernard T1 - Fatigue crack growth in nickel-based alloy 247DS with side-brazed pre-sintered preform N2 - Pre-sintered preform (PSP) brazing is employed in the repair of gas turbine components made of nickel-based alloys, including restoring the surface and dimensions of turbine blades and vanes. This study investigates the fatigue crack growth (FCG) behavior of Alloy 247DS specimens with side-brazed PSP material, mimicking a typical sandwich structure formed during such repairs. FCG tests were conducted at an elevated temperature of 950 °C and a stress ratio (R) of 0.1 on specimens with PSP layer thicknesses of 1.5 mm, 2 mm, 3 mm, and 4.5 mm to assess the influence of PSP thickness on fatigue crack growth behavior. Fractographic and metallographic analyses were performed to elucidate the underlying crack growth mechanisms and the microstructural characteristics of both materials. The results revealed that a crack consistently initiated in the PSP material, originating from the starter notch, particularly at the specimen corner during the pre-cracking phase. Additionally, crack propagation in the PSP material consistently advanced ahead of the crack in the Alloy 247DS. This crack growth behavior is attributed to the difference in elastic properties and microstructural differences between the PSP and base material. Metallographic analysis revealed the presence of porosity and brittle precipitates within the PSP material, which led to faster intergranular crack growth. Conversely, Alloy 247DS exhibited transgranular crack growth, contributing to the observed crack propagation behavior. This study demonstrates the applicability of standard FCG testing methods and an approach to characterize the FCG behavior in sandwich specimens, where crack growth occurs simultaneously in both materials, providing a preliminary understanding of crack growth behavior in Alloy 247DS with side-brazed PSP. KW - High-temperature fatigue crack growth (FCG) KW - Nickel-based alloys KW - Alloy 247DS KW - Pre-Sintered Preform (PSP) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629783 DO - https://doi.org/10.1016/j.ijfatigue.2025.108961 VL - 197 SP - 1 EP - 13 PB - Elsevier BV AN - OPUS4-62978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of austenitic stainless steel AISI 316L N2 - The elastic properties (Young's modulus, shear modulus) of austenitic stainless steel AISI 316L were investigated between room temperature and 900 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled sheet). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L PY - 2023 DO - https://doi.org/10.5281/zenodo.7813835 PB - Zenodo CY - Geneva AN - OPUS4-57288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -