TY - CONF A1 - Skrotzki, Birgit A1 - Han, Ying A1 - Kruse, Julius A1 - Radners, Jan A1 - Madia, Mauro A1 - von Hartrott, Philipp T1 - Fatigue Behavior at Elevated Temperature of Alloy EN AW-2618A N2 - The influence of test temperature and frequency on the fatigue life of the alloy EN AW-2618A (2618A) was characterized. The overaged condition (T61 followed by 1000 h/230 °C) was investigated in load-controlled tests with a stress ratio of R = -1 and two test frequencies (0.2 Hz, 20 Hz) at room temperature and at 230°C, respectively. An increase in the test temperature reduces fatigue life, whereby this effect is more pronounced at lower stress amplitudes. Decreasing the test frequency in tests at high temperatures further reduces the service life. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Aluminium alloy KW - EN AW 2618A KW - Fatigue KW - Overaging KW - Damage behavior PY - 2024 AN - OPUS4-60426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Prewitz, M. A1 - Bardenhagen, A. T1 - H2 permeability of soda-lime, borosilicate and vitreous silica glasses for potential high pressure H2 storage applications N2 - Modern high-pressure H2 tanks consist of fiber-reinforced composite materials and a plastic lining on the inside. The use of glass would drastically increase the H2 barrier effect. This could be achieved with glass liners or fiber-reinforced polymer-bonded glass capillary storage tanks and would enable lower wall thicknesses, higher gravimetric storage densities and variable designs and thus a much more effective use of space. However, the decisive material parameters for the development of these technologies, such as the hydrogen permeation, are unknown. This study focuses on H2 diffusion in glasses of different chemical compositions. H2 permeation is measured by mass spectrometry. For this purpose, the mass spectrometer (MS), which is located in a high vacuum, is separated from the pressure side by the test specimen. Pure H2 gas is present on the pressure side, so that the mass flow is recorded qualitatively and quantitatively in the MS. The permeation coefficients are calculated from the sample geometry and the mass flow rates. The very low H2 permeation of glass is measured on bundles of thin-walled commercially available glass capillaries and compared with the hydrogen permeation data of the glass powder method. T2 - Jahrestagung der Deutschen Glastechnischen Gesellschaft 2024 CY - Aachen, Germany DA - 27.05.2024 KW - Gas permeation KW - Hydrogen gas KW - High pressure gas storage PY - 2024 AN - OPUS4-60420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Salari, Farid A1 - Zocca, Andrea A1 - Bosetti, Paolo A1 - Hlaváček, Petr A1 - Italiano, Antonino A1 - Gobbin, Filippo A1 - Colombo, Paolo A1 - Kühne, Hans-Carsten A1 - Sglavo, Vincenzo M. T1 - Powder-bed 3D printing by selective activation of magnesium phosphate cement: Determining significant processing parameters and their effect on mechanical strength N2 - The present work addresses powder bed binder jetting additive manufacturing by selective magnesium phosphate cement activation. Despite the potential of this technology to aid the digitalization of the construction industry, the effect of processing parameters on the mechanical performance of printed materials has not yet been studied to generate a guideline for the further development of the technology. Statistical methodologies were used to screen the effect of four printing process parameters (printing speed, layer thickness, raster angle, and build direction on flexural and compressive strength). As the exploited technology works with constant fluid pressure, the physical interpretation of the effect of each factor can be considered taking into account the interactions between the binder materials in the powder bed. Analysis of variance (ANOVA) indicated that printing speed and layer thickness significantly affect mechanical performances. Furthermore, the layout of samples for the printing process is preferable to be parallel the printhead movement. An anisotropic behavior was observed, and the samples subjected to compressive forces parallel to the layer plane possessed lower strength values. This effect can be interpreted as a result of a weak area of low density in between layers, leading to a pronounced delamination under compression. Even though the strength of the printed material is not suitable for a structural concrete, it can be marginally improved by design of experiment and optimized for non-structural applications, such as for porous artificial stone. Design of experiment coupled with ANOVA methods can be used in the future to support the development of novel material mixtures, thus expanding the fields of application of this novel additive manufacturing technology. KW - Concrete 3D-printing KW - Particle-bed binder jetting KW - Design of experiment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601654 DO - https://doi.org/10.1016/j.oceram.2024.100609 VL - 18 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-60165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Optical properties of glasses and ceramics N2 - Optical glasses and glass ceramics are present in many devices often used in our daily routine, such as the mobile phones and tablets. Since the 1960´s with the development of glass lasers, and more recently, within the search for efficient W-LEDs, sensors and solar converters, this class of materials has experienced extreme research progress. In order to tailor a material for such applications, it is very important to understand and characterize optical properties such as refractive index, transmission window, absorption and emission cross sections, quantum yields, etc. These properties can often be tuned by appropriate compositional choice and post-synthesis processing. In this lecture we will discuss the optical properties of glasses and glass ceramics, relevant to that end. T2 - 2nd CeRTEV Glass School CY - São Carlos, SP, Brazil DA - 22.04.2024 KW - Optical properties of glasses and ceramics PY - 2024 AN - OPUS4-60370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - From guest scintillators to luminescent host-guest hybrid materials and nanoparticles: Contributions from LEMAF N2 - An overview of the research work conducted at LEMAF - the laboratory of spectroscopy of functional materials in IFSC/USP Brazil under my leadership, before I joined BAM was given. T2 - FunGlass Graduate Program School CY - Oponice, Slovakia DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Structure property correlations KW - Host-guest hybrid materials KW - Scintillators KW - Persistent luminescent KW - Phosphors KW - Composite materials PY - 2024 AN - OPUS4-60368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - de Camargo, Andrea Simone Stucchi A1 - Contreras, A. A1 - Niebergall, R. A1 - Schottner, G. A1 - Kilo, M. A1 - Diegeler, A. A1 - Kempf, S. A1 - Puppe, F. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. A1 - Limbach, R. A1 - Pan, Z. A1 - Wondraczek, L. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Sierka, M. T1 - GlasDigital - Datengetriebener Workflow für die beschleunigte Glasentwicklung N2 - Im Projekt GlasDigital sollen digitale Werkzeuge für die Hochdurchsatzentwicklung neuartiger Glaswerkstoffe erarbeitet werden. Dies soll durch die Kombination robotischer Syntheseverfahren mit selbstlernenden Maschinen und ihre Einbindung in eine Ontologie-basierte digitale Infrastruktur realisiert werden. T2 - 4. Fachsymposium der Fachgruppe Glasapparatebauer CY - Mitterteich, Germany DA - 13.06.2024 KW - Glas KW - Ontology KW - Data Space KW - Simulation KW - Workflow KW - Robotische Schmelzanlage PY - 2024 AN - OPUS4-60388 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - de Camargo, Andrea Simone Stucchi A1 - Contreras, A. A1 - Niebergall, R. A1 - Schottner, G. A1 - Kilo, M. A1 - Diegeler, A. A1 - Kempf, S. A1 - Puppe, F. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Sierka, M. A1 - Limbach, R. A1 - Pan, Z. A1 - Wondraczek, L. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. T1 - Digital infrastructure for accelerated glass development N2 - Glasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design. This includes software tools for data mining as well as property and process modelling. The presentation provides an overview of how all these tools merge into a digital infrastructure and illustrates their usability using examples. All infrastructural parts were developed by a consortium consisting of the Fraunhofer ISC in Würzburg, the Friedrich-Schiller-University Jena (OSIM), the Clausthal University of Technology (INW) and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) as part of a joint project of the German research initiative MaterialDigital. T2 - 97. Glass-Technology Conference CY - Aachen, Germany DA - 27.05.2024 KW - Glass KW - Robotic melting KW - Ontologie KW - Simulation KW - Workflow KW - Data Space KW - Digital Twin PY - 2024 AN - OPUS4-60387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses sought by NMR, EPR & PL N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, expensive, and time consuming, it is desirable to gather fundamental understanding of structure and to develop structure-property relation models, which allow best and faster choices. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to some extent, based on structural information given by magnetic resonance (NMR and EPR) techniques associated to Raman and photophysical characterization. For the past 5 years, one of the interests of my research group at the University of São Paulo, in Brazil, has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides improved mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10-30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by F, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages i.e, the network structures are dominated by Ga-O-P or In-O-P linkages as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity in the vibronic band of Eu3+ and significant increase in the excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+ yielding intense emissions in the blue and green, respectively, compatible to the spectral region of highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the combination of NMR, EPR, Raman and PLE spectroscopies can be to provide structural information and to present the perspectives for their introduction in the research agenda of Division 5.6 – Glass, which I now lead, at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. T2 - GOMD 2024 - Glass and Optical Division Meeting, ACerS CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Glass Digital KW - Glasses KW - Robotic melting PY - 2024 AN - OPUS4-60357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Glass Digitalization: Contributions from BAM N2 - An overview of the Glass Digitalization efforts at BAM, within the framework of the Glass Digital consortium, was given. From the development of the robotic melting device to the ML capabilities, a description of the different stages of the developments and roles of project partner was presented. T2 - GlaCerHub Melting Day CY - Oponice, Slovakia DA - 12.06.2024 KW - Glass Digital KW - Robotic glass melting KW - Digitalization PY - 2024 AN - OPUS4-60365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Oriented Surface Crystallization in Glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied at the Institute of Physics of Rennes in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - ACerS GOMD 2024- Glass & Optical Materials Division Meeting CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Surface nucleation KW - Oriented surface crystallization KW - Surface energy PY - 2024 AN - OPUS4-60238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Undesired Foaming of Silicate Glass Powders N2 - The manufacture of sintered glasses and glass-ceramics, glass matrix composites, and glass-bounded ceramics or pastes is often affected by un-expected gas bubble formation also named foaming. Against this background, in this presentation the main aspects and possible reasons of foaming are shown for completely different glass powders: a barium silicate glass powders used as SOFC sealants, and bioactive glass powders using different powder milling procedures. Sintering and foaming were measured by means of heating microscopy backed up by XRD, differential thermal analysis (DTA), vacuum hot extraction (VHE), optical and electron microscopy, and infrared spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Different densification was reached followed by significant foaming starting partly immediately, partly at higher temperature. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the milling atmosphere significantly affects the foaming of uniaxially pressed powder compacts sintered in air. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750 °C, which hints on a thermally very stable species or mechanical trapping or encapsulating of CO2. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. T2 - Seminário de Laboratório de Materiais Vítreos (LaMaV) de Departamento de Engenharia de Materiais (DEMa), Universidade Federal São Carlos UFSCar) CY - Saint Charles, Brazil DA - 06.06.2024 KW - Bioactive KW - Foaming KW - Glass KW - Crystallization KW - Viscose sintering PY - 2024 AN - OPUS4-60245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Orientierte Oberflächenkristallisation in Gläsern N2 - Bislang wird das Phänomen der orientierten Oberflächenkristallisation kontrovers diskutiert und entsprechende Studien beschränken sich auf nur wenige Gläser. Für Silikatgläser haben wir eine gute Korrelation zwischen der berechneten Oberflächenenergie von Kristallflächen und der orientierten Oberflächenkeimbildung gefunden. Die Oberflächenenergien wurden unter der Annahme abgeschätzt, dass die Kristalloberflächen bei der Keimbildung den Kristallebenen mit minimaler Energie entsprechen, denen ein Riss beim Bruch folgt. Dieses Konzept wurde am Institut für Physik in Rennes erfolgreich bei der Berechnung der Bruchflächenenergien von Gläsern angewandt. Mehrere orientierte Keimbildungsphänomene lassen sich dadurch erklären, dass man annimmt, dass Kristalloberflächen mit hoher Energie dazu neigen, von der Schmelze benetzt zu werden. Dies minimiert die gesamte Grenzflächenenergie des Keims. Darüber hinaus werden wir die Entwicklung der Mikrostruktur beim weiteren Kristallwachstum und ihre Auswirkungen auf die bevorzugte Kristallorientierung diskutieren. T2 - 21. Treffen des DGG-DKG Arbeitskreises „Glasig-kristalline Multifunktionswerkstoffe“ CY - Mainz, Germany DA - 22.02.2024 KW - Oberflächenkeimbildung KW - Kristallorientierung KW - Grenzflächenenergie PY - 2024 AN - OPUS4-60237 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Ávila Calderón, Luis Alexander A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Formation of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2024 AN - OPUS4-60295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Spectroscopy Lectures N2 - As a guest professor of FUNGLASS, I delivered 3 lectures on spectroscopy to the Graduate School Program, the postdoctoral fellows and other researchers: 1) Introduction to spectroscopy applied to solid state materials (with focus on glass and glass ceramics); 2) Vibrational spectroscopy (Infrared and Raman); 3) Electron Paramagnetic Resonance T2 - FunGlass CY - Trencín, Slovakia DA - 03.06.2024 KW - Spectroscopy KW - Radiation-matter interaction KW - FT-IR KW - Raman KW - EPR PY - 2024 AN - OPUS4-60367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Gender equality in Sciences: Let´s teach our girls to be brave! N2 - A panorama of the global gender gap scenario in sciences, specially STEM, was given to illustrate the need for urgent actions (and suggestions of them) to correct biased treatment and promote females in their scientific careers. T2 - FunGlass School CY - Oponice, Slovakia DA - 10.06.2024 KW - Gender gap KW - Women in science KW - Female noble prize winners PY - 2024 AN - OPUS4-60366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Gender equality in sciences: Let's teach our girls to be brave! N2 - A global panorama of the Gender Gap in Sciences was presented along with recommendations on how to remediate unequal treatment of females in Science, and to prepare future generations for gender equality. T2 - Lunch Talk - Women@DGM: Gender Mindsets/Bias in an International Context CY - Online meeting DA - 14.06.2024 KW - Gender gap PY - 2024 AN - OPUS4-60369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, Andrea Simone Stucchi T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses for scintillation N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, time consuming, and expensive, it is desirable to develop glass compositions based on a fundamental understanding of the glass structure and to establish structure-property relation models. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The local vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to good extent, based on structural information given by magnetic resonance techniques (NMR and EPR), associated to Raman and photophysical characterization. For the past 5 years, while still employed at the University of São Paulo, in Brazil, one of the interests of my research group has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides better mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10 - 30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by fluorine, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages. That is, the network structures are dominated by Ga-O-P or In-O-P linkages, as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity of the vibronic band in Eu3+-doped glasses and marked increase in excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+, yielding intense emissions in the blue and green, respectively, compatible to the spectral region of the highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the NMR and EPR techniques can be to provide decisive structural information, and to present the research perspectives in my new role as the Head of Division 5.6 – Glass at BAM. T2 - Fachausschusses I „Physik und Chemie des Glases“, DGG CY - Jena, Germany DA - 02.11.2023 KW - Structure-property correlation KW - Fluoride phosphate glasses KW - Scintillators KW - High energy radiation PY - 2024 AN - OPUS4-60360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galleani, Gustavo A1 - Lodi, Thiago A. A1 - Conner, Robin L. A1 - Jacobsohn, Luiz G. A1 - de Camargo, Andrea Simone Stucchi T1 - Photoluminescence and X-ray induced scintillation in Gd3+-Tb3+ co-doped fluoride-phosphate glasses, and derived glass-ceramics containing NaGdF4 nanocrystals N2 - The glass system (50NaPO3–20BaF2–10CaF2–20GdF3)-xTbCl3 with x = 0.3, 1, 3, 5, and 10 wt % was investigated. We successfully produced transparent glass ceramic (GC) scintillators with x = 1 through a melt-quenching process followed by thermal treatment. The luminescence and crystallization characteristics of these materials were thoroughly examined using various analytical methods. The nanocrystallization of Tb3+-doped Na5Gd9F32 within the doped fluoride-phosphate glasses resulted in enhanced photoluminescence (PL) and radioluminescence (RL) of the Tb3+ ions. The GC exhibited an internal PL quantum yield of 33 % and the integrated RL intensity across the UV-visible range was 36 % of that reported for the commercial BGO powder scintillator. This research showcases that Tb-doped fluoridephosphate GCs containing nanocrystalline Na5Gd9F32 have the potential to serve as efficient scintillators while having lower melting temperature compared to traditional silicate and germanate glasses. KW - Glass scintillator KW - Fluoride phosphate glasses KW - Gd3+ KW - Tb3+ PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603588 DO - https://doi.org/10.1016/j.omx.2023.100288 VL - 21 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-60358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -