TY - CONF A1 - Tiebe, Carlo A1 - Mieller, Björn A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Prager, Jens A1 - Schukar, Marcus A1 - Strohhäcker, J. T1 - Sensoren und Analytik für Sicherheit und Prozesskontrolle in Wasserstofftechnologien N2 - Die Nutzung von Sensortechnologien, insbesondere im Bereich der Gasdetektion mit einem Schwerpunkt auf Wasserstoff, spielt eine entscheidende Rolle in verschiedenen Anwendungsbereichen der Wasserstofftechnologie. Sicherheitsüberwachung, Leckdetektion und Prozesskontrolle gehören zu den prominenten Anwendungsgebieten dieser Sensortechnologien. Ein zentrales Ziel ist die Erkennung von freigesetztem Wasserstoff sowie die genaue Bestimmung des Wasserstoff-Luftverhältnisses mithilfe von Gassensoren. Dies ist von entscheidender Bedeutung, um potenzielle Gefahren frühzeitig zu erkennen und angemessene Maßnahmen zu ergreifen. Ein weiterer Schwerpunkt dieses Beitrags liegt auf der Analytik und der Verwendung zertifizierter Referenzmaterialien in Verbindung mit Metrologie für die Wasserstoffspeicherung. Dies gewährleistet eine präzise und zuverlässige Charakterisierung von Wasserstoff und unterstützt die Entwicklung sicherer Speichertechnologien. Im Rahmen des Euramet-Vorhabens Metrology for Advanced Hydrogen Storage Solutions (MefHySto) wird eine Kurzvorstellung präsentiert. Der Vortrag stellt zwei zerstörungsfreie Prüfverfahren zum strukturellen Zustandsüberwachung (Structural Health Monitoring, SHM) für Wasserstofftechnologien vor. Insbesondere die Fehlstellenerkennung mittels geführter Ultraschallwellen spielt eine bedeutende Rolle bei der Lebensdauerüberwachung von Wasserstoffspeichern. Ein weiterer Aspekt ist die Anwendung faseroptischer Sensorik zur Schadensfrüherkennung von Wasserstoffspeichern. Diese zerstörungsfreien Prüfverfahren ermöglichen eine präzise und frühzeitige Identifizierung von Schäden, was die Sicherheit und Effizienz von Wasserstoffspeichersystemen entscheidend verbessert. T2 - DVGW Kongress H2 Sicherheit CY - Online meeting DA - 15.11.2023 KW - H2Safety@BAM KW - Gassensorik KW - Metrologie KW - zertifizierte Referenzmaterialien KW - Zerstörungsfreie Prüfung KW - Ultraschall KW - Faseroptik PY - 2023 AN - OPUS4-59230 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-1. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice CY - Linköping, Sweden DA - 21.08.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Rosalie, Julian T1 - Small-angle scattering data analysis round robin - Anonymized results, figures and Jupyter notebook N2 - The intent of this round robin was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. This zip file contains the anonymized results and the jupyter notebook used to do the data processing, analysis and visualisation. Additionally, TEM images of the samples are included. KW - Round robin KW - Small-angle scattering KW - Data analysis PY - 2023 DO - https://doi.org/10.5281/zenodo.7509710 PB - Zenodo CY - Geneva AN - OPUS4-56803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Fracture surface energy of glasses obtained from crystalline structure and bond energy data N2 - The search for strong and tough oxide glasses is important for making safer, environment-friendlier, thinner glasses. As fracture toughness experiments in brittle materials are complicated and time-consuming , modelling glass fracture surface energy, G, and fracture toughness, KIc, is of interest for screening promising candidates. Inspired by Rouxel´s idea of preferred crack growth along cutting weakest bonds within a glass structure and a study by Tielemann et al. , which indicates a correlation between crystal fracture surface and glass-crys¬tal interfacial energies, we present a new approach for predicting G. Combining both ideas, we used diatomic bond energies and readily available crystallographic structure data for estimating G. The proposed method assumes that G of the glass equals the surface fracture energy of the cleavage plane in its respective isochemical crystal. We calculated G- values for more than 25 iso-chemical silicate systems and compared them to calculated values from Rouxel’s widely used procedure, which is well working and based on glass densities and chemical bond energies. Not only does our model yields good agreement with [3], but it also enables an estimation for glasses with unknown density and can therefore contribute to broaden the data basis for glass property modelling tools. Most interestingly, however, this agreement indicates an interesting similarity between cleavage planes in a crystal and its corresponding glass state in terms of fracture processes. T2 - DGG-USTV Joint annual meeting 2023 CY - Orleans, France DA - 22.05.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Surface Energy KW - Silicate Glasses PY - 2023 AN - OPUS4-58416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - George, Janine A1 - Mieller, Björn A1 - Stawski, Tomasz T1 - ZrV2O7 negative thermal expansion (NTE) material N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material that exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). Therefore, it can be used to create composites with controllable expansion coefficients and prevent thermal stress, fatigue, cracking, and deformation at interfaces. We implement interdisciplinary research to analyze such material. We study the influence of the synthesis methods and their parameters on the sample's purity, crystallinity, and homogeneity. Moreover, we implement ab initio-based vibrational computations with partially treated anharmonicity in combination with experimental methods to follow temperature-induced structural changes and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder. T2 - SALSA Make and Measure Conference CY - Berlin, Germany DA - 13.09.2023 KW - NTE KW - Composites KW - TEM PY - 2023 AN - OPUS4-58367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Müller, Ralf A1 - Maaß, Robert T1 - A new model for predicting fracture surface energies in oxide glasses - How cleavage planes help us understand the intrinsic fracture toughness of oxide glasses N2 - The search for strong and tough oxide glasses is important for making safer, more environmentally friendly, thinner glass products. However, this task remains generally difficult due to the material’s inherent brittleness. In search for tougher glasses, fracture toughness (KIC) prediction models are helpful tools to screen for promising candidates. In this work, a novel model to predict KIC via the fracture surface energy, γ, is presented. Our approach uses readily available crystallographic structure data of the glass’s isochemical crystal and tabled diatomic chemical bond energies, D0. The method assumes that γ of a glass equals the fracture surface energy of the most likely cleavage plane of the crystal. Calculated values were not only in excellent agreement with those calculated with a former well-working model, but also demonstrates a remarkable equivalence between crystal cleavage planes and glass fracture surfaces. Finally, the effectiveness of fracture toughness enhancement by chemical substitution is discussed based on our results and alternative toughening strategies will be suggested. T2 - Deparment Seminar Materials Engineering CY - Berlin, Germany DA - 15.06.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Fracture Mechanics KW - Silicate Glasses KW - Phase Separation PY - 2023 AN - OPUS4-58419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Silicate glass fracture surface energy calculated from crystal structure and bond-energy data N2 - We present a novel method to predict the fracture surface energy, γ, of isochemically crystallizing silicate glasses using readily available crystallographic structure data of their crystalline counterpart and tabled diatomic chemical bond energies, D0. The method assumes that γ equals the fracture surface energy of the most likely cleavage plane of the crystal. Calculated values were in excellent agreement with those calculated from glass density, network connectivity and D0 data in earlier work. This finding demonstrates a remarkable equivalence between crystal cleavage planes and glass fracture surfaces. KW - Glass KW - Fracture surface energy KW - Toughness KW - Modeling KW - Mechanical properties PY - 2023 DO - https://doi.org/10.1016/j.jnoncrysol.2023.122679 SN - 0022-3093 VL - 622 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-58767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. KW - Creep KW - Computed Tomography KW - PBF-LB/M/316L KW - Laser Powder Bed Fusion KW - Microstructure KW - AISI 316L KW - Additive Manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574127 DO - https://doi.org/10.1002/adem.202201581 SP - 1 EP - 9 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718 N2 - The elastic properties (Young's modulus, shear modulus) of Ni-based alloy Inconel IN718 were investigated between room temperature and 800 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - IN718 PY - 2023 DO - https://doi.org/10.5281/zenodo.7813824 PB - Zenodo CY - Geneva AN - OPUS4-57287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L N2 - This article reports temperature-dependent elastic properties (Young’s modulus, shear modulus) of three alloys measured by the dynamic resonance method. The alloys Ti-6Al-4V, Inconel IN718, and AISI 316 L were each investigated in a variant produced by an additive manufacturing processing route and by a conventional manufacturing processing route. The datasets include information on processing routes and parameters, heat treatments, grain size, specimen dimensions, and weight, as well as Young’s and shear modulus along with their measurement uncertainty. The process routes and methods are described in detail. The datasets were generated in an accredited testing lab, audited as BAM reference data, and are hosted in the open data repository Zenodo. Possible data usages include the verification of the correctness of the test setup via Young’s modulus comparison in low-cycle fatigue (LCF) or thermo-mechanical fatigue (TMF) testing campaigns, the design auf VHCF specimens and the use as input data for simulation purposes. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L KW - IN 718 KW - Ti-6Al-4V KW - Reference data KW - Temperature dependence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579716 DO - https://doi.org/10.1038/s41597-023-02387-6 VL - 10 IS - 1 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-57971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Uhlemann, Patrick A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Experimental data from service-like creep-fatigue experiments on grade P92 steel N2 - This article refers to the research article entitled “Creep-Fatigue of P92 in Service-Like Tests with Combined Stress- and Strain-Controlled Dwell Times” [1]. It presents experimental mechanical data from complex service-like creep-fatigue experiments performed isothermally at 620 °C and a low strain amplitude of 0.2 % on tempered martensite-ferritic grade P92 steel. The data sets in text file format provide cyclic deformation (min. and max. stresses) and the total (hysteresis) data of all recorded fatigue cycles for three different creep-fatigue experiments: 1) a standard relaxation fatigue (RF) test with symmetrical dwell times of three minutes introduced at minimum and maximum strain, 2) a fully strain-controlled service-like relaxation (SLR) test combining these three-minute peak strain dwells with a 30-minute dwell in between at zero strain, and 3) a partly stress-controlled service-like creep (SLC) test combining the three-minute peak strain dwells with 30-minute dwells at constant stress. Such service-like (SL) tests with additional long-term stress- and strain-controlled dwell times are non-standard, rare, and expensive, making these data very valuable. They may be used to approximate cyclic softening in the technically relevant range, for the design of complex SL experiments, or for detailed analyses of stress-strain hystereses (e.g., for stress or strain partitioning methods, for the determination of hysteresis energies (work), inelastic strain components, etc.). In addition, the latter analyses may supply important input for advanced parametric lifetime modeling of components under creep-fatigue loading or model calibration parameters. KW - Tempered martensite-ferritic steel KW - Creep KW - Stress relaxation KW - Creep-fatigue KW - Dwell times PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578407 DO - https://doi.org/10.1016/j.dib.2023.109333 SN - 2352-3409 VL - 49 SP - 1 EP - 9 PB - Elsevier Inc. AN - OPUS4-57840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ti-6Al-4V N2 - The elastic properties (Young's modulus, shear modulus) of titanium alloy Ti-6Al-4V were investigated between room temperature and 400 °C in an additively manufactured variant (laser-based directed energy deposition with powder as feedstock, DED-LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, microstructure, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - Ti-6Al-4V PY - 2023 DO - https://doi.org/10.5281/zenodo.7813732 PB - Zenodo CY - Geneva AN - OPUS4-57286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of austenitic stainless steel AISI 316L N2 - The elastic properties (Young's modulus, shear modulus) of austenitic stainless steel AISI 316L were investigated between room temperature and 900 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled sheet). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L PY - 2023 DO - https://doi.org/10.5281/zenodo.7813835 PB - Zenodo CY - Geneva AN - OPUS4-57288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Creep-fatigue of P92 in service-like tests with combined stress- and strain-controlled dwell times N2 - Complex service-like relaxation- and creep-fatigue tests with strain- and stress-controlled dwells and fatigue cycle durations of approx. 2200 s were performed exemplarily on a grade P92 steel at 620 ◦C in this study. The results indicate deviations in the prevailing creep mechanisms of long-term relaxation and creep dwells, affecting subsequent dwells, load shifts, and the macroscopic softening behavior quite differently. In addition, fracture surfaces and longitudinal metallographic sections reveal intergranular crack growth for complex loading with stress-controlled dwells, whereas complex strain-controlled tests enhance oxidation and transgranular crack propagation. These findings substantiate the limited transferability of relaxation-fatigue to creep-fatigue conditions. KW - Tempered martensite-ferritic steel KW - P92 KW - Dwell periods KW - Creep-fatigue interaction KW - Stress relaxation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564239 DO - https://doi.org/10.1016/j.ijfatigue.2022.107381 SN - 0142-1123 VL - 168 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-56423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Hanke, Thomas A1 - Eisenbart, Miriam T1 - Mechanical testing ontology (MTO) N2 - The materials mechanical testing ontology (MTO) was developed by collecting the mechanical testing vocabulary from ISO 23718 standard, as well as the standardized testing processes described for various mechanical testing of materials like tensile testing, Brinell hardness test, Vickers hardness test, stress relaxation test, and fatigue testing. Versions info: V2 developed using BFO+CCO top-level ontologies. V3 developed using PROVO+PMDco top-level ontologies. V4 developed using BFO+IOF top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/ontologies/mechanical-testing-ontology GitHub: https://github.com/HosseinBeygiNasrabadi/Mechanical-Testing-Ontology MatPortal: https://matportal.org/ontologies/MTO IndustryPortal: https://industryportal.enit.fr/ontologies/MTO KW - Ontology KW - Mechanical testing KW - FAIR data PY - 2023 UR - https://gitlab.com/kupferdigital/ontologies/mechanical-testing-ontology/ PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-58271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Hanke, T. A1 - Weber, M. A1 - Eisenbart, M. A1 - Bauer, F. A1 - Meissner, R. A1 - Dziwis, G. A1 - Tikana, L. A1 - Chen, Yue A1 - Skrotzki, Birgit T1 - Toward a digital materials mechanical testing lab N2 - To accelerate the growth of Industry 4.0 technologies, the digitalization of mechanical testing laboratories as one of the main data-driven units of materials processing industries is introduced in this paper. The digital lab infrastructure consists of highly detailed and standard-compliant materials testing knowledge graphs for a wide range of mechanical testing processes, as well as some tools that enable the efficient ontology development and conversion of heterogeneous materials’ mechanical testing data to the machine-readable data of uniform and standardized structures. As a basis for designing such a digital lab, the mechanical testing ontology (MTO) was developed based on the ISO 23718 and ISO/IEC 21838-2 standards for the semantic representation of the mechanical testing experiments, quantities, artifacts, and report data. The trial digitalization of materials mechanical testing lab was successfully performed by utilizing the developed tools and knowledge graph of processes for converting the various experimental test data of heterogeneous structures, languages, and formats to standardized Resource Description Framework (RDF) data formats. The concepts of data storage and data sharing in data spaces were also introduced and SPARQL queries were utilized to evaluate how the introduced approach can result in the data retrieval and response to the competency questions. The proposed digital materials mechanical testing lab approach allows the industries to access lots of trustworthy and traceable mechanical testing data of other academic and industrial organizations, and subsequently organize various data-driven research for their faster and cheaper product development leading to a higher performance of products in engineering and ecological aspects. KW - General Engineering KW - General Computer Science PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582698 DO - https://doi.org/10.1016/j.compind.2023.104016 SN - 0166-3615 VL - 153 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-58269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Eddah, Mustapha A1 - Bajer, Evgenia A1 - Markötter, Henning A1 - Kranzmann, Axel T1 - Destructive and non-destructive 3D-characterization of inner metal structures in ceramic packages N2 - Ceramic multilayer packages provide successful solutions for manifold applications in telecommunication, microsystem, and sensor technology. In such packages, three-dimensional circuitry is generated by combination of structured and metallized ceramic layers by means of tape casting and multilayer technology. During development and for quality assurance in manufacturing, characterization of integrity, deformation, and positioning of the inner metal features is necessary. Visualization with high resolution and material contrast is needed. Robot-assisted 3D-materialography is a useful technique to characterize such multimaterial structures. In that, many sections of the specimen are polished and imaged automatically. A three-dimensional representation of the structure is created by digital combination of the image stack. A quasi non-destructive approach is to perform X-ray computer tomography (CT) with different beam energies. The energies are chosen to achieve a good imaging of either the metal features, or the ceramic matrix of the structure. The combination of the respective tomograms results in a high contrast representation of the entire structure. Both methods were tested to characterize Ag and Ag/Pd conductors in a ceramic multilayer package. The results were compared in terms of information content, effort, and applicability of the methods. T2 - 98th DKG Annual Meeting - CERAMICS 2023 CY - Jena, Germany DA - 27.03.2023 KW - Ceramics KW - Synchrotron CT KW - 3D materialography PY - 2023 AN - OPUS4-57268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Einfluss von Haltezeiten auf die TMF-Lebensdauer von P92 bei mittleren und geringen Dehnungsamplituden N2 - Results of an extended TMF test program on grade P92 steel in the temperature range of 620 ◦C–300 ◦C, comprising in-phase (IP) and out-of-phase (OP) tests, partly performed with symmetric dwells at Tmax/Tmin, are presented. In contrast to previous studies, the low-strain regime is also illuminated, which approaches flexible operation in a power plant with start/stop cycles. At all strain amplitudes, the material performance is characterized by continuous cyclic softening, which is retarded in tests at lower strains but reaches similar magnitudes in the course of testing. In the investigated temperature range, the phase angle does not affect fatigue life in continuous experiments, whereas the IP condition is more detrimental in tests with dwells. Fractographic analyses indicate creep-dominated and fatigue-dominated damage for IP and OP, respectively. Analyses of the (micro)hardness distribution in the tested specimens suggest an enhanced microstructural softening in tests with dwell times for the low- but not for the high-strain regime. To rationalize the obtained fatigue data, the fracturemechanics-based DTMF concept, which was developed for TMF life assessment of ductile alloys, was applied. It is found that the DTMF parameter correlates well with the measured fatigue lives, suggesting that subcritical growth of cracks (with sizes from a few microns to a few millimeters) governs failure in the investigated range of strain amplitudes. T2 - DVM-Arbeitskreis Bauteilverhalten bei thermomechanischer Ermüdung - Workshop 2023 CY - Berlin, Germany DA - 20.09.2023 KW - 9–12%Cr steel KW - Thermomechanical fatigue KW - Symmetric dwell periods KW - Parametric modeling PY - 2023 AN - OPUS4-58431 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Moos, Ralf A1 - Mieller, Björn T1 - Co‐Fired Multilayer Thermoelectric Generators Based on Textured Calcium Cobaltite N2 - Thermoelectric generators are very attractive devices for waste heat energy harvesting as they transform a temperature difference into electrical power. However, commercially available generators show poor power density and limited operation temperatures. Research focuses on high‐temperature materials and innovative generator designs. Finding the optimal design for a given material system is challenging. Here, a theoretical framework is provided that allows appropriate generator design selection based on the particular material properties. For high‐temperature thermoelectric oxides, it can be clearly deduced that unileg multilayer generators have the highest potential for effective energy harvesting. Based on these considerations, prototype unileg multilayer generators from the currently best thermoelectric oxide Ca3Co4O9 are manufactured for the first time by industrially established ceramic multilayer technology. These generators exhibit a power density of 2.2 mW/cm² at a temperature difference of 260 K, matching simulated values and confirming the suitability of the technology. Further design improvements increase the power density by a factor of 22 to facilitate practicable power output at temperature differences as low as 7 K. This work demonstrates that reasonable energy harvesting at elevated temperatures is possible with oxide materials and appropriate multilayer design. KW - Optical and Magnetic Materials KW - Electronic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596306 DO - https://doi.org/10.1002/aelm.202300636 SN - 2199-160X VL - 10 IS - 3 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -