TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with light into the volume of a ceramic powder compound, its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP), and other volumetric methods for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ICACC 2024 CY - Daytona Beach, Florida, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard T1 - On the cubic slip effect and creep anisotropy modeling of single crystal superalloys at intermediate temperatures (IT) N2 - Low-Temperature High Stress (LTHS) creep plays a crucial role in Ni-base Superalloys, particularly affecting components like blades near the root. Below 850°C, the precipitate microstructure remains stable, characterized by periodically arranged ’ cubic precipitates surrounded by the -matrix. In these conditions, macroscopic traces of cubic slip have been observed in <111> oriented tensile specimens, whereas their microscopic origin has been a topic of debate. Furthermore, in LTHS conditions, Superlattice Intrinsic, Extrinsic Stacking Faults (SISF/SESF), or micro-twins are also frequently reported in crept specimens. Usually, these mechanisms are investigated separately, so that a unified picture and a detailed understanding of these mechanisms and their activation conditions have only recently emerged in the literature, despite the intensive investigations of the last decades. The objective of this work is to develop a dislocation-based constitutive law that includes these recent developments. In particular, the pseudo-cubic slip mechanism is considered as resulting from the lack of hardening in <111> oriented tensile specimens and is represented by a novel estimate of the back-stresses based on the spectral decomposition of a tensorial representation of the back-stress. An additional novelty is that SISF- and SESF-related slip systems are accounted for as distinct slip systems with corresponding dislocation densities. The model has been implemented as a user-defined constitutive law for commercial Finite Element codes and identified as well as validated with data from the literature obtained with <001>, <011> and <111> oriented crystals tested in tension and compression creep. T2 - International Conference on Material Modelling (8) CY - London, GB DA - 15.07.2024 KW - Creep KW - Superalloy KW - Crystal plasticity KW - Single crystal PY - 2024 AN - OPUS4-60744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - On the origin of embrittlement in Mn containing and Zn-coated steels N2 - Grain boundary embrittlement in medium-Mn steels and liquid metal embrittlement (LME) in Zn-coated high strength steels are among key challenges on the way of safe application of sustainable steels for automotive industry. Using a novel density-based model for grain boundaries, we reveal that the affinity of a grain boundary to attract Mn and Zn atoms result in a segregation transition accompanied by interfacial structural changes. In case of the Zn, the simulations show that the amount of segregation abruptly increases with decreasing temperature, while the Zn content in the alloy, required for triggering the segregation transition, decreases. The results are discussed in the context of CALPHAD-integrated density-based grain boundary phase diagrams. T2 - DPG 2024 CY - Berlin, Germany DA - 17.03.2024 KW - Phase-Field Simulation KW - CALPHAD KW - Steels KW - Density-based Thermodynamics PY - 2024 AN - OPUS4-60743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Creep Behavior of Stainless Steel 316L Manufactured by Laser Powder Bed Fusion N2 - Metal additive manufacturing (Metal AM) continues to gain momentum. Many companies explore the manufacturing of innovative products, including components for safety critical applications. Despite the intensive research of recent years, a fundamental understanding of the process‑structure‑property relationships remains challenging due to, i.a., the inherently complex and highly hierarchical microstructures arising from the wide range of build process parameter variability. This contribution presents the resu lts of an experimental study on the creep behavior of an austenitic 316L stainless steel produced by laser powder bed fusion (PBF LB/M/316L) with an emphasis on understanding the effects of microstructure on creep mechanisms. Hot tensile tests and constant force creep tests at 600 °C and 650 °C, X ray computed tomography, as well as optical and electron microscopy were performed. The produced PBF LB/M/316L exhibits a low void population 0.01 %) resulting from the manufacturing parameters used and which a llowed us to understand the effects of other microstructural aspects on creep behavior, e.g., grain morphology and dislocation substructure. A hot‑rolled variant of 316L hwas also tested as a reference. The produced PBF LB/M/316L possesses shorter primary and secondary creep stages and times to rupture and smaller creep stress exponents than the hot‑rolled variant. Overall, the creep damage is more extensive in the PBF LB/M/316L and is characterized as predominantly intergranular. It is considered that the damage behavior is mainly impacted by the formation of precipitates at the grain boundaries combined with their unfavorable orientation. The dislocation substructure and local elemental segregation appear to have a decisive impact on the overall creep behavior. T2 - 16th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Bangalore, India DA - 28.07.2024 KW - AGIL KW - 316L KW - Additive Manufacturing KW - Creep KW - Microstructure evolution PY - 2024 AN - OPUS4-60839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Jokisch, Torsten A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Nickel-based alloys have been widely used for gas turbine blades owing to their excellent mechanical properties and corrosion resistance at high temperatures. The operating temperatures of modern gas turbines have been increased in pursuit of increased thermal efficiency. Turbine blades are exposed to these high temperatures combined with mechanical stresses, resulting in material damage through creep, fatigue, and other mechanisms. These turbine blades must be regularly inspected and replaced as needed, to prevent the loss of efficiency, breakdown, and catastrophic failure. Repair of the damaged turbine blades is often a more practical and cost-effective option than replacement, as replacement is associated with high costs and loss of material resources. To this end, state-of-the-art repair technologies including different additive manufacturing and brazing processes are considered to ensure efficient repair and optimum properties of repaired components. In any repaired part, materials property-mismatches and/or inner defects may facilitate the crack initiation and propagation and thus reduce the number of load cycles to failure. Therefore, a fundamental understanding of the fatigue crack growth and fracture mechanisms in joining zones is required to enable the prediction of the remaining life of repaired components and to further improve and adapt the repair technologies. Fatigue crack growth experiments have been conducted on SEN (Single Edge Notch) specimens joined via brazing, and pre-sintered Preform (PSP) and multi-materials (casted/printed) specimens layered via additive manufacturing (AM). The experiments were performed at 950 °C and various stress ratios. The crack growth was measured using DCPD (Direct Current Potential Drop) method. The stress intensity factors for joined SEN specimens were calculated using the finite element method and then used to derive the fatigue crack growth curves. Metallographic and fractographic analyses were conducted to get insight into the fracture mechanism. Results show that the experimental technique for fatigue crack growth was successfully adapted and applied for testing joined specimens. Furthermore, the initial tests indicate that the investigated braze filler material provides a lower resistance to crack growth, and bonding defects cause a crack to deviate to the interface of the base material and joining zone. In AM-sandwich specimens, the crack growth rates are significantly reduced when the crack reaches the interface of printed material and casted material. The obtained crack growth data can be used to calibrate a crack growth model, which will further be utilized to predict the remaining life of repaired components. T2 - Fatigue 2024 Conference CY - Cambridge, UK DA - 19.06.2024 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2024 AN - OPUS4-60893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Zocca, Andrea T1 - Ceramic Processing with Light N2 - In order to be able to manipulate ceramic powder compacts and ceramic suspensions (slurries) in their volume with light, a minimum transparency of the materials is required. Compared to polymers and metals, ceramic materials are characterized by the fact that they have a wide electronic band gap and therefore a wide optical window of transparency. The optical window generally ranges from less than 0.3 µm to 5 µm wavelength. Therefore, to focus light into the volume of a ceramic powder compact, its light scattering properties need to be tailored. In this study, we present the physical background and material development strategies for the application of two-photon polymerization (2PP), Xolography and selective volumetric sintering for the additive manufacturing of structures in the volume of ceramic slips and green compacts. T2 - CMCEE 14 CY - Budapest, Hungary DA - 18.08.2024 KW - Ceramic KW - Additive manufacturing KW - Light PY - 2024 AN - OPUS4-60892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -