TY - JOUR A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - von Hartrott, P. A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Comparison of long-term radii evolution of the S-phase in aluminum alloy 2618A during ageing and creep JF - Materials Science & Engineering A N2 - A study was made on the effect of creep loading on the precipitate radii evolution of the aluminum alloy 2618A. The overageing process of the alloy was investigated under load at a temperature of 190 °C with stresses between 79 and 181 MPa and compared to stress free isothermal ageing. The precipitates responsible for strength were characterized using dark-field transmission electron microscopy (DFTEM). This allows the experimental Determination of radii distributions of the rod-shaped Al2CuMg precipitates and the evaluation regarding their mean precipitate radius. It was found that the mean precipitate radius enables the comparison of the different microstructural conditions of crept and uncrept samples. The mean precipitate radii of the samples experiencing creep are significantly higher than those of undeformed samples. It was shown that the acquired radii distributions are viable to determine averaged particle radii for comparison of the aged samples. A ripening process including pipe diffusion along dislocations describes the data on coarsening very well for the creep samples. KW - Aluminum alloys KW - Electron microscopy KW - Aging KW - Creep KW - Microstructure KW - S-Phase PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.01.033 SN - 0921-5093 VL - 716 SP - 78 EP - 86 PB - Elsevier B. V. AN - OPUS4-44090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Hetaba, W. A1 - Skrotzki, Birgit T1 - Thickening of T-1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy JF - Materials N2 - The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical Phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of These two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates. KW - Al-Cu-Li-alloy KW - Precipitation KW - T1 precipitate KW - Microstructure evolution KW - Thickening KW - Creep KW - Volume fraction KW - Number density KW - Strain difference PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471207 DO - https://doi.org/10.3390/ma12010030 SN - 1996-1944 VL - 12 IS - 1 SP - 30, 1 EP - 23 PB - MDPI AN - OPUS4-47120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -