TY - CONF A1 - Olbricht, Jürgen A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading performance and related microstructure evolution of ferritic-martensitic 9-12% Cr steels N2 - The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Cyclic loading KW - Microstructure evolution PY - 2018 SP - 259 EP - 265 AN - OPUS4-47118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eggeler, G. A1 - Wieczorek, N. A1 - Fox, F. A1 - Berglund, S. A1 - Bürger, D. A1 - Dlouhý, A. A1 - Wollgramm, P. A1 - Neuking, K. A1 - Schreuer, J. A1 - Agudo Jácome, Leonardo A1 - Gao, S. A1 - Hartmaier, A. A1 - Laplanche, G. T1 - On shear testing of single crystal Ni-base superalloys N2 - Shear testing can contribute to a better understanding of the plastic deformation of Ni-base superalloy single crystals. In the present study, shear testing is discussed with special emphasis placed on its strengths and weaknesses. Key mechanical and microstructural results which were obtained for the high-temperature (T ≈ 1000 °C) and low-stress (τ ≈ 200 MPa) creep regime are briefly reviewed. New 3D stereo STEM images of dislocation substructures which form during shear creep deformation in this regime are presented. It is then shown which new aspects need to be considered when performing double shear creep testing at lower temperatures (T < 800 °C) and higher stresses (τ > 600 MPa). In this creep regime, the macroscopic crystallographic [11−2](111) shear system deforms significantly faster than the [01−1](111) system. This represents direct mechanical evidence for a new planar fault nucleation scenario, which was recently suggested (Wu et al. in Acta Mater 144:642–655, 2018). The double shear creep specimen geometry inspired a micro-mechanical in-situ shear test specimen. Moreover, the in-situ SEM shear specimen can be FIB micro-machined from prior dendritic and interdendritic regions. Dendritic regions, which have a lower γ′ volume fraction, show a lower critical resolved shear stress. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Superalloy single crystals KW - Shear testing KW - Creep mechanisms KW - In-situ SEM micro shear deformation KW - Transmission electron microscopy PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-456591 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3951 EP - 3962 PB - Springer US CY - New York AN - OPUS4-45659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mujica Roncery, L. A1 - Agudo Jácome, Leonardo A1 - Aghajani, A. A1 - Theisen, W. A1 - Weber, S. T1 - Subsurface characterization of high-strength high-interstitial austenitic steels after impact wear N2 - The microstructure of the subsurface after impact wear of three high-strength high interstitial austenitic steels has been analysed using transmission electron microscopy (TEM) in alloys with C and N as interstitial elements. In all cases, a nanocrystalline region followed by a transition zone and a cold-worked area are present. Additionally, microhardness and nano-scratching tests were conducted to study the wear-related properties of the impact subsurface and the base material. The results of the microstructural analysis reveal that the following mechanisms are involved during impact wear: abrasion (ploughing), microcrack formation associated with contact fatigue, entrapment and adhesion of SiO2 particles. The analysis of the wear-related properties indicates that the subsurface acts as a self-protective layer that prevents the deterioration of the substrate. KW - Impact wear KW - TEM KW - Nano-scratch test KW - High interstitial austenitic steel PY - 2018 U6 - https://doi.org/10.1016/j.wear.2018.02.016 SN - 0043-1648 VL - 402-403 SP - 137 EP - 147 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-44290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Pöthkow, K. A1 - Paetsch, O. A1 - Hege, H.-C. T1 - Three-dimensional reconstruction and quantification of dislocation substructures from transmission electron microscopy stereo pairs N2 - A great amount of material properties is strongly influenced by dislocations, the carriers of plastic deformation. It is therefore paramount to have appropriate tools to quantify dislocation substructures with regard to their features, e.g., dislocation density, Burgers vectors or line direction. While the transmission electron microscope (TEM) has been the most widely-used equipment implemented to investigate dislocations, it usually is limited to the two-dimensional (2D) observation of three-dimensional (3D) structures. We reconstruct, visualize and quantify 3D dislocation substructure models from only two TEM images (stereo pairs) and assess the results. The reconstruction is based on the manual interactive tracing of filiform objects on both images of the stereo pair. The reconstruction and quantification method are demonstrated on dark field (DF) scanning (S)TEM micrographs of dislocation substructures imaged under diffraction contrast conditions. For this purpose, thick regions (> 300 nm) of TEM foils are analyzed, which are extracted from a Ni-base superalloy single crystal after high temperature creep deformation. It is shown how the method allows 3D quantification from stereo pairs in a wide range of tilt conditions, achieving line length and orientation uncertainties of 3% and 7°, respectively. Parameters that affect the quality of such reconstructions are discussed. KW - Dislocation KW - Diffraction contrast KW - Scanning transmission electron microscopy (STEM) KW - Stereoscopy KW - Visualization PY - 2018 U6 - https://doi.org/10.1016/j.ultramic.2018.08.015 SN - 0304-3991 VL - 195 SP - 157 EP - 170 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-46355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Pöthkow, K. A1 - Paetsch, O. A1 - Hege, H.-C. T1 - 3D reconstruction and quantification of dislocation substructures from TEM stereo pairs N2 - Dislocations are the carriers of plastic deformation. As such, their characterization offers important information on the properties they affect. In this contribution, a new tool is presented, which is incorporated in Amira ZIB Edition and allows for three-dimensional (3D) imaging and quantification of dislocations substructures from thick regions an electron-transparent specimen. In the tool, the dislocation segments are traced on diffraction contrast images that are obtained in the transmission electron microscope (TEM). The uncertainties related to the experimental setup and to the proposed method are discussed on the base of a tilt series. T2 - AVIZO / AMIRA User Meeting CY - Berlin, Germany DA - 14.11.2018 KW - Dislocation KW - Diffraction contrast KW - Scanning transmission electron microscopy (STEM) PY - 2018 AN - OPUS4-47394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Effect of a circular notch on [001] tensile creep behavior of the Ni-base superalloy single crystal LEK 94 at 1020 °C N2 - Ni-base superalloy single crystals have been used in turbine blades for hot sections of gas turbines for over four decades. In order to increase the efficiency of the turbines, a continuous increase in the inlet temperature of combustion gases into the turbine has driven the design of turbine blades to complicated shapes and the presence of a complex pattern of cooling channels. These three-dimensional shapes, together with the inhomogeneous distribution of stresses along the blade, induce an also complicated triaxial stress state, which does not compare to uniaxial tests that are performed to characterize high temperature properties such as creep. A round notch on a test piece represents a simple configuration that generates a quasi-isostatic stress state across the notch. In the present contribution, the effect of a sharp round notch on the microstructural micromechanisms within the notched region cylindrical bars, loaded along [001] at 1020 °C and 160 MPa net stress, is studied. To this end, a series of interrupted creep tests is conducted on plain and notched bars and the microstructure is compared. Results are discussed in terms of degree microstructural coarsening, and dislocation activity. The effect of notch generation via grinding is also discussed in these terms. The presence of carbides evolving in from residual carbon is also shown and discussed. .Funding by the German Research Association (DFG) [grant number AG 191/1] is acknowledge T2 - DGM-Arbeitskreis mechanisches Werkstoffverhalten bei hoher Temperatur CY - Hochschule Augsburg, Germany DA - 20.09.2018 KW - Superalloy single crystals KW - Microstructure KW - Electron microscopy KW - Creep KW - Multiaxial stress state PY - 2018 AN - OPUS4-46050 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 2: Microstructural evolution during cyclic loading and its representation in a physically-based micromechanical model N2 - The current competitive situation on electricity markets forces conventional power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 45. MPA-Seminar CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - P92 KW - TEM KW - EBSD KW - Micromechanical model PY - 2019 SP - 80 EP - 85 PB - MPA (Materialprüfungsanstalt Universität Stuttgart) CY - Stuttgart AN - OPUS4-50052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic Operation Performance of 9-12% Cr Ferritic-Martensitic Steels. Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based Micromechanical Model N2 - The current trend towards cyclic, “flexible” operation of fossil-fueled power plants constitutes a major issue regarding lifetime and operational safety of the respective installations and their components, as was outlined in our complementary contribution (Part 1). The present contribution reports on the investigation of the microstructure evolution in cyclically loaded ferritic-martensitic steels and its representation in a physically-based micromechanical model. For this purpose, specimens of P92 steel grade from the mechanical test programme outlined in our companion contribution (Part 1) were analyzed by scanning electron microscopy (SEM), including backscattered diffraction (EBSD) mapping, and transmission electron microscopy (TEM). A novel method was implemented to improve angular resolution of EBSD scans. Additionally, a correlative microscopy approach was developed and used to correlate EBSD and TEM measurements on the same locations of thick regions of electron transparent specimens. By applying these techniques, a detailed quantitative microstructure description of the as-received material condition, namely in terms of subgrain morphology and dislocation density/distributions, was established. Comparisons of as-received and cyclically loaded conditions from tests interrupted at different stages of lifetime indicate a rapid redistribution of in-grain dislocations with a strong interaction between mobile dislocations and low angle grain boundaries (LABs). The proposed micromechanical model is formulated in a viscoplastic self-consistent (VPSC) scheme, which is a mean-field approach that allows us to include the crystal details at the level of slip systems while avoiding the considerable computational costs of full-field approaches (such as the classical crystal plasticity finite element analysis). Being physically-based, the model uses dislocation densities and includes the interaction between dislocations, e.g. annihilation of mobile dislocations, and evolution of microstructure, e.g. the grain coarsening. Particularly, the constitutive laws for dislocation evolution and interaction between dislocations and low angle boundaries are calibrated based on two-dimensional discrete dislocation dynamic (2D DDD) simulations, which are performed at a micro-/meso-scale. The results of the beforementioned EBSD experiments are considered as a direct input, involving e.g. the amount of geometrically necessary dislocations, average misorientations and grain characteristics. T2 - 45th MPA-Seminar 2019 CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered martensite ferritic steel KW - Dislocation KW - Electron backscattered diffraction (EBSD) KW - Transmission electron microscopy (TEM) KW - Microstructure KW - Physically based material model PY - 2019 AN - OPUS4-49346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9 -12% cr ferritic martensitic steels part 1: cyclic mechanical behavior under fatigue and creep fatigue loading N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing share of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In the present first part of our contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain) to different degrees of softening at temperatures up to 620 °C. The test results will be presented and discussed with a focus on the impact of hold periods (i.e. combined creep-fatigue conditions) on mechanical softening, lifetime and crack formation. Details on the microstructural evolution and their representation in a micromechanical model will be given in a second, complementary contribution to this conference. T2 - 45. MPA-Seminar CY - Stuttgart, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - Low Cycle Fatigue KW - Creep-Fatigue KW - Thermo-Mechanical Fatigue KW - P92 PY - 2019 AN - OPUS4-50050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pu, Y. A1 - Lawrence, M. J. A1 - Celorrio, V. A1 - Wang, Q. A1 - Gu, M. A1 - Sun, Z. A1 - Agudo Jácome, Leonardo A1 - Russell, A. E. A1 - Huang, L. A1 - Rodriguez, P. T1 - Nickel confined in 2D earth-abundant oxide layers for highly efficient and durable oxygen evolution catalysts N2 - Low cost, high-efficiency catalysts towards water splitting are urgently required to fulfil the increasing demand for energy. In this work, low-loading (<20 wt%) Ni-confined in layered metal oxide anode catalysts (birnessite and lepidocrocite titanate) have been synthesized by facile ion exchange methodology and subjected to systematic electrochemical studies. It was found that Ni-intercalated on K-rich birnessite (Ni-KMO) presents an onset overpotential (ηonset) as low as 100 mV and overpotential at 10 mA cm−2 (η10) of 206 mV in pH = 14 electrolyte. By combining electrochemical methods and X-ray absorption and emission spectroscopies (XAS and XES), we demonstrate Ni sites are the active sites for OER catalysis and that the Mn3+ sites facilitate Ni intercalation during the ion-exchange process, but display no observable contribution towards OER activity. The effect of the pH and the nature of the supporting electrolyte on the electrochemical performance was also evaluated. KW - Confined catalyst KW - Low-loading KW - Layered manganese oxide KW - Oxygen evolution reaction KW - Transmission electron microscopy (TEM) PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-515027 SN - 2050-7496 SN - 2050-7488 VL - 8 IS - 26 SP - 13340 EP - 13350 PB - Royal Society of Chemistry CY - London AN - OPUS4-51502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Famy, A. A1 - Agudo Jácome, Leonardo A1 - Schönhals, Andreas T1 - Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly(acrylic acid) Thin Films N2 - For the first time, structure−electrochemical relationships of thin films of a plasma-polymerized acrylic acid/carbon dioxide AA/CO2 (75/25%) copolymer modified by implanted silver nanoparticles are discussed. The pulsed plasma polymerization of AA/CO2 was utilized and adjusted to obtain a maximal amount of COOH Groups forming an almost uncross-linked polymer structure. The prepared polymer layer is rinsed by a silver nitrate solution to impregnate Ag+ ions. This step is followed by its reduction of Ag+ with NaBH4 as a chemical route in comparison to the reduction by sunlight as an ecofriendly photoreduction method. The chemical composition and morphology of the topmost surface layer of the AA/CO2 polymer thin film were investigated by X-ray photoelectron spectroscopy and atomic force microscopy. Moreover, the molecular mobility, conductivity, and thermal stability of the polymer layer were analyzed using broadband dielectric spectroscopy. The dielectric properties of the AA/ CO2 polymer thin film were studied in the presence of Ag+ ions or Ag0. It was found that a cross-linked polymer layer with a smooth surface and high conductivity was obtained in the presence of Ag+/ Ag0. KW - Nanoparticles PY - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c06712 SN - 1932-7447 VL - 124 IS - 41 SP - 22817 EP - 22826 PB - ACS AN - OPUS4-51468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cao, L. A1 - Thome, P. A1 - Agudo Jácome, Leonardo A1 - Somsen, C. A1 - Cailletaud, G. A1 - Eggeler, G. T1 - On the influence of crystallography on creep of circular notched single crystal superalloy specimens N2 - The present work contributes to a better understanding of the effect of stress multiaxiality on the creep behavior of single crystal Ni-base superalloys. For this purpose we studied the creep deformation and rupture behavior of double notched miniature creep tensile specimens loaded in three crystallographic directions [100], [110] and [111] (creep conditions: 950 °C and 400 MPa net section stress). Crystal plasticity finite element method (CPFEM) was used to analyze the creep stress and strain distributions during creep. Double notched specimens have the advantage that when one notch fails, the other is still intact and allows to study a material state which is close to rupture. No notch root cracking was observed, while microstructural damage (pores and micro cracks) were frequently observed in the center of the notch root region. This is in agreement with the FEM results (high axial stress and high hydrostatic stress in the center of the notched specimen). Twinning was observed in the notch regions of [110] and [111] specimens, and <112> {111} twins were detected and analyzed using orientation imaging scanning electron microscopy. The present work shows that high lattice rotations can be detected in SXs after creep fracture, but they are associated with the high strains accumulated in the final rupture event. KW - Single crystal Ni-Base superalloys KW - Double notched creep specimen KW - Stress distribution KW - Lattice rotation KW - Cracks PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506060 SN - 0921-5093 VL - 782 SP - 139255 PB - Elsevier B. V. AN - OPUS4-50606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Weber, Kathrin A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Elucidation of orientation relations between Fe-Cr alloys and corrosionproducts after high temperature SO2 corrosion N2 - The early stages of corrosion of Fe-Cr-model alloys (2 and 9 % Cr) were investigated after exposure at 650 °C in0.5 % SO2containing gas by electron backscattered diffraction (EBSD) and transmission electron microscopy(TEM). The impact of the grain orientation of the base alloy on the orientation relations of the corrosion productsis presented. After 2 min–5 min exposure the formation of a multi-layered corrosion zone was discovered. Aclear orientation relationship between ferrite and the (Fe,Cr)3O4 spinel could be demonstrated. The obtainedresults show the importance of the grain orientation on oxidation resistance. KW - Iron KW - TEM KW - SEM KW - High temperature corrosion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508911 VL - 174 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-50891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodrigues, A. C. P. A1 - Feller, A. A1 - Agudo Jácome, Leonardo A1 - Azevedo, C. R. F. T1 - Use of synthetic Fe3O4-rich tribofilms to investigate the effect of microconstituents, temperature and atmosphere on the friction coefficient during pin-on-disc tribotest N2 - This work investigates the effect of the tribotesting parameters (temperature, atmosphere, and third body chemical composition) on the coefficient of friction (CoF) during pin-on-disc dry (PoD) sliding tribotests using artificial third bodies. The third body comprised nanometric Fe3O4-based binary to quaternary chemical compositions containing copper, graphite, and zirconia. These mixtures were manually or ball-milled prepared, and pin-on-disc tribotests were conducted at 23 °C and 400 °C under air or nitrogen atmospheres. Combining PoD and artificial third body to create synthetic tribofilms might be useful for testing new formulations of Cu-free friction materials. Microstructural characterisation of the tribofilms was used to study the stability of the Fe3O4, copper, and graphite nanoparticles under different testing conditions to understand their effects on the CoF. For the Fe3O4-C-ZrO2-X systems, the ball milling mixing promoted the formation of turbostratic graphite in the tribofilm, impairing the lubricating effect of the graphite under air atmosphere at 23 °C. The formation of monoclinic CuO in the tribofilms during tribotests at 400 °C under air and N2 atmospheres promoted a lubricating effect. KW - Tribology KW - Microstructure KW - Oxide KW - Transmission electron microscopy PY - 2022 U6 - https://doi.org/10.1088/2051-672X/ac9d51 SN - 2051-672X VL - 10 IS - 4 SP - 044009-1 EP - 044009-18 PB - IOP Pobilishing AN - OPUS4-56467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Roik, J. A1 - Agudo Jácome, Leonardo T1 - The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: Experimental findings and comparison with calculations using the CALPHAD method N2 - Detailed microstructural characterization of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy in the as-cast state is reported for first time and compared with the state annealed at 1400 oC for 24 h. The former shows a dendritic structure, with a mixture of A2/B2 phases < 20 nm in both the dendritic and interdendritic regions. A mostly amorphous phase, rich in Al and Zr, is found within the interdendritic region. The annealed state reproduced the combination of A2/B2/Al-Zr-rich phases reported previously. Calculations from two relevant ThermoCalc databases were compared with the experimental results. Equilibrium calculations were compared with results for the annealed alloy, whereas solidification paths calculated using Scheil-Gulliver model were used for comparison with the as-cast alloy. A previously hypothesized spinodal decomposition during cooling as the mechanism responsible for the patterned A2/B2 microstructure is confirmed via the CALPHAD calculations, pointing to its use as an efficient design tool for such alloys. Finally, the comparison between the experimental and computational findings allowed better understanding the solidification path and equilibrium stability of this alloy, giving a base to make better decisions on the field of new refractory superalloy design. KW - CALPHAD database analysis KW - Refractory superalloys KW - Chemically complex alloy KW - Characterization KW - Microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545906 SN - 1873-4197 VL - 217 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547295 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Mohring, Wencke A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early material damage in equimolar CrMnFeCoNi in mixed oxidizing/sulfiding hot gas atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials toward a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. Herein, oxidation/sulfidation of an equimolar CrMnFeCoNi high-entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of X-ray diffraction, scanning and transmission electron microscopy, and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Submicrometer scaled Cr–S–O-rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe-, Mn-, and Cr-based spinels and other oxides. KW - High entropy alloy KW - Sulfiding KW - Corrosion KW - Transmission electron microscopy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543495 SN - 1527-2648 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Manzoni, Anna Maria T1 - Elementverteilung in Hochentropiewürfelchen N2 - Seit Beginn der Luftfahrt Anfang des letzten Jahrhunderts ist die Menschheit auf der Suche nach neuen Materialien, die das Abenteuer Fliegen sicherer, angenehmer, schneller und rentabler gestalten. Hochentropielegierungen sind solche vielversprechenden Materialien. Die richtige Analytik hilft dabei, besser zu verstehen, wie deren Zusammensetzung und atomare Anordnung die makroskopischen Eigenschaften beeinflusst. KW - Chemically complex alloy KW - Transmissionselektronenmikroskopie KW - Energiedisersive Röntgenspektroskopie PY - 2022 UR - https://www.gdch.de/fileadmin/downloads/Netzwerk_und_Strukturen/Fachgruppen/Analytische_Chemie/Mitteilungsblatt/Internet_AC04-2022.pdf SN - 0939-0065 IS - 4 SP - 12 EP - 14 PB - Gesellschaft Deutscher Chemiker CY - Frankfurt, Main AN - OPUS4-56699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -