TY - JOUR A1 - Fantin, Andrea A1 - Manzoni, Anna Maria A1 - Springer, H. A1 - Darvishi Kamachali, Reza A1 - Maaß, Robert T1 - Local lattice distortions and chemical short-range order in MoNbTaW N2 - Extended X-ray absorption fine structure (EXAFS) conducted on an equiatomic MoNbTaW bcc medium-entropy alloy that was annealed at 2273 K reveals unexpectedly small 1st and 2nd shell element-specific lattice distortions. An experimental size-mismatch parameter, δexp, is determined to be ca. 50% lower than the corresponding calculated value. Around W, short-range order (SRO) preferring 4d elements in the 1st and 2nd shells persists. A Nb-W ordering is found, which is reminiscent of ordering emerging at lower temperatures in the B2(Mo,W;Ta,Nb)- and B32(Nb,W)-phases. With high-temperature ordering preferences in fcc also foreshadowing low-temperature phase, these findings suggest a general feature of high-temperature SRO. KW - High Entropy Alloys KW - Short-range order KW - Lattice distortions KW - EXAFS PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-598164 SN - 2166-3831 VL - 12 IS - 5 SP - 346 EP - 354 PB - Taylor & Francis AN - OPUS4-59816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Ngai, S. A1 - Zhou, X. Y. A1 - Zaiser, E. A1 - Manzoni, Anna Maria A1 - Wu, Y. A1 - Zheng, W. W. A1 - Zhang, P. A1 - Thompson, G. B. T1 - Tracking maze-like hierarchical phase separation behavior in a Fe-Si-V alloy N2 - Optimizing the properties of next-generation high-temperature and corrosion-resistant alloys is rooted in balancing structure-property relationships and phase chemistry. Here, we implement a complementary approach based on transmission electron microscopy (TEM) and atom probe tomography (APT) to ascertain aspects of hierarchical phase separation behavior, by understanding the microstructural evolution and the three-dimensional (3D) nanochemistry of a single crystal Fe79.5Si15.5V5.0 (at%) alloy. A maze-like hierarchical microstructure forms, in which a complex network of metastable disordered α plates (A2 phase) emerges within ordered α1 precipitates (D03 phase). The supersaturation in α1 (D03) precipitates with Fe and V drives the formation of α (A2) plates. The morphology of α (A2) plates is discussed concerning crystal structure, lattice misfit, and elastic strain. Phase compositions and a ternary phase diagram aid the thermodynamic assessment of the hierarchical phase separation mechanism via the Gibbs energy of mixing. A perspective on the stabilization of hierarchical microstructures beyond Fe79.5Si15.5V5.0 is elaborated by comparing hierarchical alloys. We find that the ratio of elastic anisotropy (Zener ratio) serves as a predictor of the hierarchical particles’ morphology. We suggest that the strengthening effect of hierarchical microstructures can be harnessed by improving the temporal and thermal stability of hierarchical particles. This can be achieved through phase-targeted alloying aiming at the hierarchical particles phase by considering the constituents partitioning behavior. Beyond Fe79.5Si15.5V5.0, our results demonstrate a potential pathway for improving the properties of high-temperature structural materials. KW - Atom probe tomography KW - Transmission electron microscopy KW - Hierarchical microstructure KW - Phase separation PY - 2023 U6 - https://doi.org/10.1016/j.jallcom.2023.172157 SN - 0925-8388 VL - 968 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-58343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Schneider, M. A1 - Laplanche, G. A1 - Stephan-Scherb, C. T1 - Effect of a mixed atmosphere H2O-O2-SO2 on the oxidation kinetics and phase formation on CrMnFeCoNi and CrCoNi N2 - The high-temperature corrosion behaviors of the equimolar CrCoNi medium- and CrMnFeCoNi high-entropy alloy were studied in a gas atmosphere consisting of a volumetric mixture of 10% H2O, 2% O2, 0.5% SO2, and 87.5% Ar at 800 °C for up to 96 h. Both alloys were initially single-phase fcc structured and showed a mean grain size of ~50 µm and a homogeneous chemical composition. The oxide layer thickness of the Cantor alloy CrMnFeCoNi increased linearly with exposure time while it remained constant at ~1 µm for CrCoNi. A Cr2O3 layer and minor amounts of (Co,Ni)Cr2O4 developed on CrCoNi while three layers were detected on the Cantor alloy. These layers were a thin and continuous chromium rich oxide layer at the oxide/alloy interface, a dense (Mn,Cr)3O4 layer in the center and a thick and porous layer of Mn3O4 and MnSO4 at the gas/oxide interface. Additionally, a few metal sulfides were observed in the CrMnFeCoNi matrix. These results were found to be in reasonable agreement with thermodynamic calculations. T2 - ICHEM 2023 CY - Knoxville, TN, USA DA - 18.06.2023 KW - High entropy alloys KW - Chemically complex alloys KW - Corrosion KW - Mixed gas atmosphere PY - 2023 AN - OPUS4-57776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fantin, Andrea A1 - Lepore, G. O. A1 - Widom, M. A1 - Kasatikov, S. A1 - Manzoni, Anna Maria T1 - How Atomic Bonding Plays the Hardness Behavior in the Al–Co–Cr–Cu–Fe–Ni High Entropy Family N2 - A systematic study on a face‐centered cubic‐based compositionally complex alloy system Al–Co–Cr–Cu–Fe–Ni in its single‐phase state is carried out, where a mother senary compound Al₈Co₁₇Cr₁₇Cu₈Fe₁₇Ni₃₃ and five of its suballoys, obtained by removing one element at a time, are investigated and exhaustively analyzed determining the contribution of each alloying element in the solid solution. The senary and the quinaries are compared using experimental techniques including X‐ray absorption spectroscopy, X‐ray diffraction, transmission electron microscopy, and first principles hybrid Monte Carlo/molecular dynamics simulations. Chemical short‐range order and bond length distances have been determined both at the experimental and computational level. Electronic structure and local atomic distortions up to 5.2 Å have been correlated to the microhardness values. A linear regression model connecting hardness with local lattice distortions is presented. KW - High entropy alloys KW - EXAFS KW - Short-range order KW - Microhardness KW - Alloy design KW - Transmission electron microscopy KW - Lattice distortion PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593333 SN - 2688-4046 SP - 1 EP - 12 PB - Wiley CY - Weinheim AN - OPUS4-59333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocaño, Patricia A1 - Manzoni, Anna Maria A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Laplanche, G. A1 - Agudo Jácome, Leonardo T1 - Influence of cooling rate on the microstructure and room temperature mechanical properties in the refractory AlMo0.5NbTa0.5TiZr superalloy N2 - Refractory chemically complex alloys with bcc-based microstructures show great potential for high-temperature applications but most of them exhibit limited room-temperature ductility, which remains a challenge. One such example is the AlMo0.5NbTa0.5TiZr alloy, mainly consisting of a nano-scaled structure with an ordered B2 matrix and a high-volume fraction of aligned cuboidal and coherently embedded A2 precipitates. This work aims to investigate how the cooling rate after hot isostatic pressing of the AlMo0.5NbTa0.5TiZr alloy affects its microstructure and its resulting hardness and fracture toughness at room temperature. A slow cooling rate of 5 °C/min leads to a coarse microstructure consisting of aligned slabs (mean A2 precipitate ≈ 25 nm) with a nanohardness of about 8 GPa. In contrast, after the fastest cooling rate (30 °C/min), the A2 precipitates become more cubic with an edge length of ≈ 16 nm, resulting in an increase in nanohardness by 10 %. The fracture toughness is roughly independent of the cooling rate and its mean value (≈ 4.2 MPa∙m1/2) resembles that of some B2 intermetallics and other A2/B2 alloys. As the lattice misfit between the A2 and B2 phases is known to play a key role in microstructure formation and evolution, its temperature dependence between 20 and 900 °C was investigated. These findings offer insights into the evolution of the microstructure and room-temperature mechanical properties of the AlMo0.5NbTa0.5TiZr alloy, which could help the development of advanced chemically complex alloys. KW - High entropy alloy KW - Lattice misfit KW - Scanning electron microscopy KW - Transmission electron microscopy KW - X-ray diffraction KW - Refractory alloy PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572809 SN - 0925-8388 VL - 949 SP - 169871 PB - Elsevier B.V. AN - OPUS4-57280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria T1 - A decade of cube optimization in the Al- Co-Cr-Fe-Ni-Ti high entropy family N2 - The multi-phase approach has proven to widen the application properties of high entropy alloys. After a decade of testing different alloys in the Al-Co-Cr-Cu-Fe-Ni-Ti family the Al10Co25Cr8Fe15Ni36Ti6 was found to be a solid base for more fine-tuned microstructural optimization. Following the example of superalloys, the Al10Co25Cr8Fe15Ni36Ti6 alloy aims for a γ/γ' microstructures in order to guarantee a good microstructural stability at high temperatures. The shape and volume fraction of the γ' particles is known to influence the mechanical properties of superalloys, and they do so in the high entropy family as well [1]. Shape, misfit and creep properties of several modified versions of the Al10Co25Cr8Fe15Ni36Ti6 alloy are compared and discussed in this talk. T2 - Department seminar National Chung Hsing University CY - Taichung, Taiwan DA - 15.11.2023 KW - High entropy alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Creep KW - Phase analysis PY - 2023 AN - OPUS4-58979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Laplanche, G. A1 - Schneider, M. A1 - Hagen, S. A1 - Stephan-Scherb, C. T1 - High temperature oxidation of CrFeNi in synthetic air N2 - The surface corrosion behaviour is a key issue which determines whether the material is applicable at a given atmosphere. Medium-entropy alloy FeCrNi alloy was exposed to synthetic air at 1000°C, 1050°C, and 1100 °C for up to 1000 h using a thermobalance. The oxidation rate was parabolic at 1000 and 1050°C, but breakaway occurred at 1100°C after 5 h of aging time. The whole oxide scales formed under the isothermal oxidation tests spalled off and additional oxidation tests were carried out at 1000 °C and 1050°C for 24 h and up to 100 h at 1000°C in a tubular furnace. The corrosion behaviour of the MEA was analysed by scanning electron microscope, energy-dispersive X-ray spectroscopy, and X-ray diffraction and compared to the behaviour of 316 L. The experimental results showed that under all conditions chromium is the main diffusion element resulting in the formation of a Cr2O3 layer at the MEA surface. Spallation of the layer induces the formation of additional oxidation products under the surface of the (spalled off) chromia layer. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Medium entopy alloy KW - Oxidation KW - Scanning electron microscopy KW - Thermogravimetric analysis PY - 2023 AN - OPUS4-58198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk T1 - Mechanical performance and integrity of tungsten inert gas (TIG) welded CoCrFeMnNi high entropy alloy with austenitic steel AISI 304 N2 - High entropy alloys (HEA) are a new class of materials that have been investigated since the early 2000s and offer great potential to replace conventional alloys. However, since they sometimes have significant contents of expensive alloying elements such as Co or Ni, their use is only conceivable in highly stressed areas of components. For this purpose, the weldability with conventional alloys such as high-alloy austenitic steels must be investigated. In addition to the resulting microstructure, the mechanical properties are also fundamental for the usability of HEAs in DMWs. For this purpose, TIG welds of CoCrFeMnNi HEA (cold rolled and recrystallized state) with AISI 304 austenitic steel are investigated. These mechanical properties are analyzed in this work by means of tensile tests and local hardness measurement. The local strain behavior of the welded joints is also characterized by means of Digital Image Correlation (DIC). The results of the local hardness measurement show a clear influence of the initial condition of the HEA on the HAZ. Thus, the HEA in the cold-rolled condition shows a clear softening because of recrystallization processes in the HAZ. On the other hand, there is no influence on the hardness of the weld metal, which is approx. 200 HV0.1 in both cases. The tensile tests show a consistent failure of the weld in the weld metal. However, regardless of the HEA condition, strengths in the range of the recrystallized HEA (RM ~ 550–600 MPa) are achieved, although with significantly reduced fracture elongations. T2 - International Conference on High-Entropy Materials (ICHEM 2023) CY - Knoxville, TN, USA DA - 18.06.2023 KW - Multi-principal element alloys KW - Welding KW - Mechanical properties KW - Dissimilar metal weld KW - Digital image correlation PY - 2023 AN - OPUS4-57713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Schneider, M. A1 - Haas, S. A1 - Hagen, S. A1 - Glatzel, U. A1 - Laplanche, G. A1 - Stephan-Scherb, C. T1 - Corrosion in the Co-Cr-Fe-Ni high entropy alloy family N2 - While a lage amount of research on high entropy alloys is oriented towards mechanical properties and the microstructural improvement it is also necessary to keep an eye on the environment that potential application materials will be submitted to. The Co-Cr-Fe-Ni based high entropy family has shown great potential over the years of high entropy research and some candidate alloys are chosen for an insight into their corrosion behaviour. Several atmospheres are studied, i.e. O2, H2O, SO2 and a mix thereof in argon as well as synthetic air. Just as for classic alloys, the chromium is the most important element in terms of protection agains further corrosion. The addition of manganese, as in case of the “Cantor alloy” CrMnFeCoNi, overpasses Cr when it comes to oxygen affinity and thus counteracts the layer formation of Cr2O3. Even without Mn, a temperature chosen too high will also affect the formation of the chromium oxide layer and spall it off, annulling its protective potential. We can also observe how trace elements influence the layer formation. These effects and their mechanisms will be discussed for the alloys CrFeNi, CoCrNi, CrMnFeCoNi and variations of Al10Co25Cr8Fe15Ni36Ti6 using a combination of electron microscopy, thermodynamic calculations and x-ray diffraction. T2 - MRS-T International Conference CY - Hsinchu, Taiwan DA - 17.11.2023 KW - Corrosion KW - Scanning electron microscopy KW - Mixed gas atmosphere PY - 2023 AN - OPUS4-58980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jacome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan-Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565655 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Inui, H. A1 - Kishida, K. A1 - Li, L. A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Glatzel, U. T1 - Uniaxial mechanical properties of face‑centered cubic singleand multiphase high‑entropy alloys N2 - Since the high entropy concept was proposed at the beginning of the millennium, the research focus of this alloy family has been wide ranging. The initial search for single-phase alloys has expanded with the aim of improving mechanical properties. This can be achieved by several strengthening mechanisms such as solid-solution hardening, hot and cold working and precipitation hardening. Both single- and multiphase high- and medium-entropy alloys can be optimized for mechanical strength via several processing routes, as is the case for conventional alloys with only one base element, such as steels or Ni-based superalloys. KW - High entropy alloy KW - Compositionally complex alloys KW - Tensile properties PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543955 VL - 47 IS - 2 SP - 168 EP - 174 PB - Springer AN - OPUS4-54395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Mohring, Wencke A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early material damage in equimolar CrMnFeCoNi in mixed oxidizing/sulfiding hot gas atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials toward a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. Herein, oxidation/sulfidation of an equimolar CrMnFeCoNi high-entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of X-ray diffraction, scanning and transmission electron microscopy, and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Submicrometer scaled Cr–S–O-rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe-, Mn-, and Cr-based spinels and other oxides. KW - High entropy alloy KW - Sulfiding KW - Corrosion KW - Transmission electron microscopy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543495 SN - 1527-2648 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fantin, Andrea A1 - Cakir, Cafer Tufan A1 - Kasatikov, S. A1 - Schumacher, G. A1 - Manzoni, Anna Maria T1 - Effects of heat treatment on microstructure, hardness and local structure in a compositionally complex alloy N2 - Unlike conventional alloys, high entropy alloys are characterized by one or more solid solution phase(s) without a clearly defined solvent, all element contribute to the matrix in a way that is still not entirely understood. In addition, it is not known to what extent classic thermodynamic rules can be applied to these multi-element alloys, especially concerning the question about what factor incites the matrix to undergo a phase transformation. This work tackles directly some of these aspects on a chosen alloy, Al8Cr17Co17Cu8Fe17Ni33 (at.%), which presents a high temperature single-phase γ state and a two-phase state with γ′ precipitates, above and below 900 ◦C, respectively. A combined investigation via microstructural observations, hardness testing, X-ray absorption and photoelectron spectroscopy was carried out above the γ′ formation temperature. Hardness values are independent of the annealing temperatures, microstructural analysis shows no phase formation and X-ray absorption spectroscopy does not reveal observable changes in neither local atomic nor electronic structure, indicating that approaching γ′ formation temperature is not influenced by atomic or electronic rearrangements. Interestingly, short-range chemical order remains quantitatively compatible at any annealing temperature in the single-phase γ state, and the observed preferred pairs Al–Cu and Al–Ni in the γ state match with the γ’ precipitates composition below 900 ◦C. KW - High entropy alloys KW - EXAFS KW - Short range order KW - Vickers hardness PY - 2022 U6 - https://doi.org/10.1016/j.matchemphys.2021.125432 SN - 0254-0584 VL - 276 SP - 125432 PB - Elsevier B.V. AN - OPUS4-53760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Cheng, J. A1 - Liang, S. B. A1 - Ke, C. B. A1 - Cao, S. S. A1 - Zhang, X. P. A1 - Zizak, I. A1 - Manzoni, Anna Maria A1 - Yu, J. M. A1 - Wanderka, N. A1 - Li, W. T1 - Formation and evolution of hierarchical microstructures in a Ni-based superalloy investigated by in situ high-temperature synchrotron X-ray diffraction N2 - Hierarchical microstructures are created when additional γ particles form in γ’ precipitates and they are linked to improved strength and creep properties in high-temperature alloys. Here, we follow the formation and evolution of a hierarchical microstructure in Ni86.1Al8.5Ti5.4 by in situ synchrotron X-ray diffraction at 1023 K up to 48 h to derive the lattice parameters of the γ matrix, γ’ precipitates and γ particles and misfits between phases. Finite element method-based computer simulations of hierarchical microstructures allow obtaining each phase's lattice parameter, thereby aiding peak identification in the in situ X-ray diffraction data. The simulations further give insight into the heterogeneous strain distribution between γ’ precipitates and γ particles, which gives rise to an anisotropic diffusion potential that drives the directional growth of γ particles. We rationalize a schematic model for the growth of γ particles, based on the Gibbs-Thomson effect of capillary and strain-induced anisotropic diffusion potentials. Our results highlight the importance of elastic properties, elastic anisotropy, lattice parameters, and diffusion potentials in controlling the behavior and stability of hierarchical microstructures. KW - XRD KW - Superalloy KW - Finite element method KW - Transmission electron microscopy PY - 2022 U6 - https://doi.org/10.1016/j.jallcom.2022.165845 SN - 0925-8388 VL - 919 SP - 1 EP - 17 PB - Elsevier CY - Lausanne AN - OPUS4-55394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Manzoni, Anna Maria T1 - Elementverteilung in Hochentropiewürfelchen N2 - Seit Beginn der Luftfahrt Anfang des letzten Jahrhunderts ist die Menschheit auf der Suche nach neuen Materialien, die das Abenteuer Fliegen sicherer, angenehmer, schneller und rentabler gestalten. Hochentropielegierungen sind solche vielversprechenden Materialien. Die richtige Analytik hilft dabei, besser zu verstehen, wie deren Zusammensetzung und atomare Anordnung die makroskopischen Eigenschaften beeinflusst. KW - Chemically complex alloy KW - Transmissionselektronenmikroskopie KW - Energiedisersive Röntgenspektroskopie PY - 2022 UR - https://www.gdch.de/fileadmin/downloads/Netzwerk_und_Strukturen/Fachgruppen/Analytische_Chemie/Mitteilungsblatt/Internet_AC04-2022.pdf SN - 0939-0065 IS - 4 SP - 12 EP - 14 PB - Gesellschaft Deutscher Chemiker CY - Frankfurt, Main AN - OPUS4-56699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials towards a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. In this work oxidation/sulfidation of an equimolar CrMnFeCoNi high entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of x-ray diffraction, scanning and transmission electron microscopy and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Sub-micrometer scaled Cr-S-O rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe, Mn and Cr based spinels and other oxides. T2 - Priority Programme (Schwerpunktprogramm) Compositionally Complex Alloys - High Entropy Alloys (SPP CCA - HEA) CY - Bayreuth, Germany DA - 12.07.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Cantor alloy KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The use of more and more varied fuels implies an increased list of criteria that need to be addressed when choosing a material for a combustion chamber and its supply pipes. The materials must be very resistant against corrosion, especially when the process takes place at temperatures above 500°C. In this work the influence of SO2 on the surface of the “Cantor alloy” is investigated. T2 - HEA-Symposium "Potential for industrial applications" CY - Dresden, Germany DA - 12.05.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Glatzel, U. T1 - Über das Zusammenspiel von Gitterfehlpassung, Kriecheigenschaften und γ'-Würfelform in Hf-W-modifizierten Al10Co25Cr8Fe15Ni36Ti6—Legierungen N2 - Spurenelemente spielen eine wichtige Rolle bei der Verfeinerung der Eigenschaften von komplexen Materialien. Diese Arbeit zeigt die Korrelation zwischen der Mikrostruktur, der Gitterfehlpassung und den Kriecheigenschaften. Die Legierung Al10Co25Cr8Fe15Ni36Ti6 (in at. %) mit komplexer Zusammensetzung wurde mit den Elementen Hf und W verstärkt. Die Zugabe von Hf bewirkt eine eckigere Form der würfelförmigen gamma'-Ausscheidungen und einen erhöhten Anteil der Heusler-Phase. Die Zugabe von W wiederum formt die Würfelchen rundlicher und löst die Heusler-Phase auf. Eine Mischung der beiden Spurenelemente zeigt einen Übergang zwischen den beiden Extremen, sowohl in Hinsicht auf die Form der Ausscheidungen als auch in Bezug auf die Gitterfehlpassung und die Kriecheigenschaften. T2 - 11. Metals and Alloys Seminar CY - Cala Santanyi, Spain DA - 20.06.2022 KW - Hochentropie-Legierung KW - Kriechversuche KW - Gitterfehlpassung KW - Transmissionselektronenmikroskopie PY - 2022 AN - OPUS4-55396 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Dubois, F. A1 - Mousa, M. S. A1 - von Schlippenbach, C. A1 - Többens, D. M. A1 - Yesilcicek, Yasemin A1 - Zaiser, E. A1 - Hesse, René A1 - Haas, S. A1 - Glatzel, U. T1 - On the Formation of Eutectics in Variations of the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy N2 - Superalloy inspired Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy is known for its gamma-gamma' microstructure and the third Heusler phase. Variations of this alloy, gained by replacing 0.5 or 1 at. pct Al by the equivalent amount of Mo, W, Zr, Hf or B, can show more phases in addition to this three-phase morphology. When the homogenization temperature is chosen too high, a eutectic phase formation can take place at the grain boundaries, depending on the trace elements: Mo and W do not form eutectics while Hf, Zr and B do. In order to avoid the eutectic formation and the potential implied grain boundary weakening, the homogenization temperature must be chosen carefully by differential scanning calorimetry measurements. A too low homogenization temperature, however, could impede the misorientation alignment of the dendrites in the grain. The influence of grain boundary phases and incomplete dendrite re-orientation are compared and discussed. KW - High entropy alloy KW - Eutectic KW - Homogenization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543504 VL - 52 IS - 1 SP - 143 EP - 150 PB - Springer AN - OPUS4-54350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -