TY - CONF A1 - Skrotzki, Birgit T1 - Aging processes in precipitation hardened aluminum alloys N2 - The mechanical strength of wrought high-strength aluminum alloys is essentially based on precipitation hardening, possibly in combination with prior forming, e. g. by stretching. Important parameters for achieving an optimum combination of hardness, strength, ductility, toughness, and further properties such as corrosion resistance are age-hardening temperature and time. During thermal (mechanical) treatment, nucleation and growth of precipitates takes place, leading to the desired degree of hardening. In aluminum alloys, precipitation sequences are usually passed through, i. e. a sequence of metastable precipitates is formed before the stable phase can precipitate. The optimum combination of properties is therefore based on a certain (optimum) microstructure, which can, however, change during the use of a component, since the microstructure is not stable. This happens in particular when the operating temperatures are close to the aging temperature and/or the operating times are sufficiently long. An external mechanical load may accelerate the processes. The presentation gives some examples for this. T2 - Materials Science and Engineering Congress MSE 2022 CY - Darmstadt, Germany DA - 27.9.2022 KW - Aluminium alloy KW - Precipitation hardening KW - Aging KW - Degradation PY - 2022 AN - OPUS4-55877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Han, Ying A1 - Kruse, Julius A1 - Radners, Jan A1 - Madia, Mauro A1 - von Hartrott, Philipp T1 - Fatigue Behavior at Elevated Temperature of Alloy EN AW-2618A N2 - The influence of test temperature and frequency on the fatigue life of the alloy EN AW-2618A (2618A) was characterized. The overaged condition (T61 followed by 1000 h/230 °C) was investigated in load-controlled tests with a stress ratio of R = -1 and two test frequencies (0.2 Hz, 20 Hz) at room temperature and at 230°C, respectively. An increase in the test temperature reduces fatigue life, whereby this effect is more pronounced at lower stress amplitudes. Decreasing the test frequency in tests at high temperatures further reduces the service life. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Aluminium alloy KW - EN AW 2618A KW - Fatigue KW - Overaging KW - Damage behavior PY - 2024 AN - OPUS4-60426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying A1 - Kruse, Julius A1 - Madia, Mauro A1 - Radners, Jan A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - The influence of aging and mean stress on fatigue of Al-alloy EN AW-2618A N2 - In this study, the influence of aging and mean stress on fatigue of the aluminium-alloy EN AW-2618A is investigated. Therefore axial fatigue tests are carried out on smooth specimens. The experiments show that the fatigue life decreases with increasing mean stress. Furthermore, the tests with the overaged specimens demonstrate that the number of cycles to failure is decreasing with increasing aging time. T2 - LCF9 CY - Berlin, Germany DA - 21.06.2022 KW - Fatigue KW - Aluminium alloy KW - EN AW-2618A KW - Damage Behavior PY - 2022 AN - OPUS4-55125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -