TY - JOUR A1 - Nolze, Gert A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Winkelmann, Aimo T1 - Improving the precision of orientation measurements from technical materials via EBSD pattern matching JF - Acta materialia N2 - We use pattern matching of experimental and dynamically simulated backscattered Kikuchi diffraction (BKD) patterns to increase the orientation precision of electron backscatter diffraction (EBSD) measurements. In order to quantify the improvement in orientation precision, we analyze the experimental distribution of the kernel average misorientation (KAM) angles. We find that for the same raw data, i.e. the same EBSD data acquisition time budget, the pattern matching approach improves the KAM resolution by an order of magnitude compared to orientation data delivered from the conventional Hough-transform based data analysis. This quantitative improvement enables us to interpret small orientation changes in plastically deformed materials which are hidden in noisy orientation data delivered from the reference EBSD system. As an application example, we analyze a ferritic-martensitic steel (P92) sample before and after low-cycle fatigue (LCF) loading (±0.3% strain) at 620 °C. Whereas the low precision of the EBSD orientation data from the manufacturer software does not allow a reliable discrimination of the gradually changing microstructure, we find very clear systematic differences of the local microstructure after the pattern matching orientation refinement of the initial, raw pattern data. For the investigated P92 sample, the KAM-angle histograms are well described by two log-normal distributions indicating the already tempered and the remaining and mostly untempered martensite. KW - Misorientation KW - Thermo-mechanical loading KW - Martensite KW - Log-normal distribution KW - Bimodal distribution PY - 2018 DO - https://doi.org/10.1016/j.actamat.2018.08.028 VL - 159 SP - 408 EP - 415 PB - Elsevier Ltd. AN - OPUS4-46454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Han, M. A1 - Chen, C. A1 - Zhao, G. A1 - Li, L. A1 - Yo, B. A1 - Huang, X. A1 - Zhu, Y. T1 - Blind lattice-parameter determination of cubic and tetragonal phases with high accuracy using a single EBSD pattern JF - Acta Crystallographia N2 - The Bravais lattices and their lattice parameters are blindly determined using electron backscatter diffraction (EBSD) patterns of materials with cubic or tetragonal crystal structures. Since the geometric relationships in a single EBSD pattern are overdetermined, the relative errors of determining the lattice parameters as well as the axial ratios are confined to about 0.7 ± 0.4% and 0.07 ± 0.03%, respectively, for ideal simulated EBSD patterns. The accuracy of the crystal orientation determination reaches about 0.06 ± 0.03°. With careful manual band detection, the accuracy of determining lattice parameters from experimental patterns can be as good as from simulated patterns, although the results from simulated patterns are often better than expermental patterns, which are lower quality and contain uncertain systematic errors. The reasonably high accuracy is obtained primarily because the detection of the diffracting-plane traces and zone axes is relatively accurate. The results here demonstrate that the developed procedure based on the EBSD technique presents a reliable tool for crystallographic characterization of the Bravais lattices of unknown phases. KW - EBSD KW - Bravais lattice KW - Lattice parameters KW - Kikuchi pattern PY - 2018 DO - https://doi.org/10.1107/S2053273318010963 SN - 2053-2733 VL - 74 IS - 6 SP - 630 EP - 639 PB - International Union of Crystallography AN - OPUS4-46455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid JF - Microscopy and Microanalysis N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reith, F. A1 - Rea, M.A.D. A1 - Sawley, P. A1 - Zammit, C.M. A1 - Nolze, Gert A1 - Reith, T. A1 - Rantanen, K. A1 - Bissett, A. T1 - Biogeochemical cycling of gold: Transforming gold particles from arctic Finland JF - Chemical Geology N2 - (Bio)geochemical cycling of gold (Au) has been demonstrated in present-day (semi)-arid, (sub)-tropical and temperate environment. Hereby biofilms on Au-bearing mineral- and Au-particle surfaces drive Au dispersion and reconcentration, thereby (trans)forming the particles. However, it is unknown if biogeochemical cycling of Au occurs in polar environments, where air temperatures can reach −40 °C and soils remain frozen for much of the year. Therefore, placer Au-particles, soils and waters were collected at two placer mining districts in arctic Finland, i.e., the Ivalojoki and Lemmenjoki goldfields. Sites were chosen based on contrasting settings ((glacio)-fluvial vs. glacial-till deposits) and depths (surface to 5m below current surface). Gold particles were studied using a combination of tagged 16S rRNA gene next generation sequencing and electron microscopic/microanalytical techniques. Across all sites a range of Au-particle morphologies were observed, including morphotypes indicative of Au dissolution and aggregation. Elevated Au concentrations indicative of Au mobility were detected in placer particle bearing soils at both districts. Typically Au-particles were coated by polymorphic biofilm layers composed of living and dead cells embedded in extracellular polymeric substances. Intermixed were biominerals, clays and iron-sulfides/oxides and abundant secondary Au morphotypes, i.e., nano-particles, microcrystals, sheet-like Au, branched Au networks and overgrowths and secondary rims. Biofilms communities were composed of Acidobacteria (18.3%), Bacteroidetes (15.1%) and Proteobacteria (47.1%), with β-Proteobacteria (19.5%) being the most abundant proteobacterial group. Functionally, biofilms were composed of taxa contributing to biofilm establishment, exopolymer production and nutrient cycling, abundant taxa capable of Au mobilization, detoxification and biomineralization, among them Cupriavidus metallidurans, Acinetobacter spp. and Pseudomonas spp., were detected. In conclusion, these results demonstrate that placer Au-particle transformation and Au dispersion occur in cold, arctic environments. This corroborates the existence of biogeochemical Au cycling in present-day cold environments. KW - Gold KW - Bacteria KW - Biogeochemistry KW - Mobility KW - Finland KW - Cupriavidus metallidurans KW - NGS PY - 2018 DO - https://doi.org/10.1016/j.chemgeo.2018.03.021 SN - 0009-2541 VL - 483 SP - 511 EP - 529 PB - Elsevier AN - OPUS4-44805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Degradation of AISI 630 exposed to CO2-saturated saline aquifer at ambient pressure and 100 bar JF - Journal of applied sciences research N2 - In general high alloyed steels are suitable as pipe steels for carbon capture and storage technology (CCS), because they provide sufficient resistance against the corrosive environment of CO2-saturated saline aquifer which serves as potential CCS-site in Germany. High alloyed martensitic steel AISI 630 has been proven to be sufficient resistant in corrosive environments, e.g. regarding heat, pressure, salinity of the aquifer, CO2-partial pressure), but reveals a distinct corrosion pattern in CCS environment. Therefore coupons of AISI 630 heat treated using usual protocols were kept at T=60 °C and ambient pressure as well as p=100 bar up to 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. AISI 630 precipitates a discontinuous ellipsoidal corrosion layer after being exposed for more than 4000 hours. Best corrosion resistance in the CO2-saturated synthetic aquifer environment phase is achieved via normalizing prior to exposure. In water saturated supercritical CO2 tempering at medium temperatures after hardening gives lowest corrosion rates. Corrosion fatigue via push-pull tests with a series of 30 specimens was evaluated at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). The endurance limit of AISI 630 is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa). KW - Corrosion Fatigue KW - High Cycle Fatigue KW - Steel KW - Ccs KW - Co2-Storage PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503783 DO - https://doi.org/10.22587/jasr.2018.14.6.3 SN - 1819-544X SN - 1816-157X SP - 11 EP - 17 PB - INSInet Publications CY - Faisalabad AN - OPUS4-50378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Jaeger, P A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels in simulated oxyfuel flue gas JF - CORROSION N2 - The research focus of this study was set on the corrosion process of condensate as droplets on the surface of carbon steels (X52, X70) martensitic steel UNS S41500, and super austenite UNS N08031 in CO2 atmosphere with impurities at 278 K (to simulate the offshore transportation condition in a buried pipeline). The possibility of dew/droplet formation on the steel surface and wetting behavior of corresponding materials were evaluated by contact angle measurement in dense CO2 at 278 K. To observe the effect of impurities (SO2 and O2) on droplet corrosion process, exposure tests were carried out in the mixed atmosphere with a drop, 1 ‑ 10 µL in volume, of CO2 saturated ultra-pure water on steel surface. Comparable exposure tests were carried out with the same gas mixture and the same volume of water, as vapor, to observe the droplet formation and the corrosion process that follows. Effects of surface roughness on the droplet formation and its corrosion process were further studied and showed no significant role upon long time exposure. The results from droplet experiments were compared to those from the bulk electrolyte for the further recommendation on the quality control of gas stream along with the use of carbon steels as transport pipelines in CCS - Carbon Capture and Storage system. KW - CCUS, supercritical/dense phase CO2, carbon steels, martensitic steel, superaustenite steel, droplet corrosion PY - 2018 UR - http://corrosionjournal.com/doi/abs/10.5006/2927 DO - https://doi.org/10.5006/2927 SN - 0010-9312 SN - 1938-159X VL - 74 IS - 12 SP - 1406 EP - 1420 PB - NACE International CY - Houston, Texas, USA AN - OPUS4-46903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hinrichs, R. A1 - Zen Vasconcellos, M.A. A1 - Österle, Werner A1 - Prietzel, C. T1 - Amorphization of graphite flakes in gray cast iron under tribological load JF - Materials Research N2 - A gray cast iron disc, which had been submitted to a heavy duty automotive brake test, was examined with energy filtered transmission electron microscopy. A graphite flake in a convenient angular position showed the shear interaction of graphite layers with the iron matrix in nano-scale resolution. Atomic layers of graphite were wedged into the ferritic bulk, allowing the entrance of oxygen and the subsequent formation of magnetite. The exfoliated few-layer graphene batches deformed heavily when forced into the matrix. When Raman spectra from the disc surface, which show distinctive carbonaceous bands, were compared with Raman spectra from graphite subjected to deformation in a shaker mill with different milling times, it could be seen that the shear stress on the brake surface was much more effective to induce disorder than the milling, where compressive and impact forces had been additionally exerted on the sample. During shear load the high anisotropy of elastic modulus in the graphite crystalline structure and the low adhesion between graphite basal planes allowed the exfoliation of wrinkled few-layer grapheme batches, causing the formation of more defect related Raman bands than the mechanical stress during high-energy milling. KW - Graphite KW - Shear load KW - Amorphization KW - EFTEM KW - Raman spectroscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469227 DO - https://doi.org/10.1590/1980-5373-MR-2017-1000 SN - 1516-1439 SN - 1980-5373 VL - 21 IS - 4 SP - e20171000, 1 EP - 6 PB - Universidade Federal de São Carlos CY - São Carlos AN - OPUS4-46922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mair, Georg A1 - Becker, B. A1 - Gesell, Stephan A1 - Wang, Bin T1 - Monte-Carlo-analysis of minimum load cycle requirements for composite cylinders for hydrogen JF - International Journal of Hydrogen Energy N2 - Hydrogen is an attractive energy carrier that requires high effort for safe storage. For ensuring safety, storage cylinders must undergo a challenging approval process. Relevant standards and regulations for composite cylinders used for the transport of hydrogen and for its onboard storage are currently based on deterministic (e.g. ISO 11119-3) or to some respect semi-probabilistic criteria (UN GTR No. 13; with respect to burst strength). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the Federal Institute for Materials Research and Testing BAM. The most important aspect of comparing different concepts is the rate for accepting designs with potentially unsafe or critical safety properties. This acceptance rate is analysed by operating Monte-Carlo simulations over the available range of production properties. T2 - ICHS 2017 CY - Hamburg, Germany DA - 11.09.2017 KW - Safety assessment KW - Failure rate KW - Ageing KW - Degradation KW - End of life KW - Production scatter PY - 2018 DO - https://doi.org/10.1016/j.ijhydene.2018.09.185 SN - 0360-3199 VL - 44 IS - 17 SP - 8833 EP - 8841 PB - Elsevier Ltd AN - OPUS4-46341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Unger, Jörg F. T1 - A Fourier transformation-based method for gradient-enhanced modeling of fatigue JF - International journal for numerical methods in engineering N2 - A key limitation of the most constitutive models that reproduce a Degradation of quasi-brittle materials is that they generally do not address issues related to fatigue. One reason is the huge computational costs to resolve each load cycle on the structural level. The goal of this paper is the development of a temporal Integration scheme, which significantly increases the computational efficiency of the finite element method in comparison to conventional temporal integrations. The essential constituent of the fatigue model is an implicit gradient-enhanced formulation of the damage rate. The evolution of the field variables is computed as amultiscale Fourier series in time.On a microchronological scale attributed to single cycles, the initial boundary value problem is approximated by linear BVPs with respect to the Fourier coefficients. Using the adaptive cycle jump concept, the obtained damage rates are transferred to a coarsermacrochronological scale associated with the duration of material deterioration. The performance of the developedmethod is hence improved due to an efficient numerical treatment of the microchronological problem in combination with the cycle jump technique on the macrochronological scale. Validation examples demonstrate the convergence of the obtained solutions to the reference simulations while significantly reducing the computational costs. KW - Accelerated temporal integration KW - Fourier series KW - Gradient-enhanced fatigue model PY - 2018 DO - https://doi.org/10.1002/nme.5740 SN - 1097-0207 SN - 0029-5981 VL - 114 IS - 2 SP - 196 EP - 214 PB - Wiley AN - OPUS4-44008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Hetaba, W. A1 - Skrotzki, Birgit T1 - Thickening of T-1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy JF - Materials N2 - The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical Phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of These two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates. KW - Al-Cu-Li-alloy KW - Precipitation KW - T1 precipitate KW - Microstructure evolution KW - Thickening KW - Creep KW - Volume fraction KW - Number density KW - Strain difference PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471207 DO - https://doi.org/10.3390/ma12010030 SN - 1996-1944 VL - 12 IS - 1 SP - 30, 1 EP - 23 PB - MDPI AN - OPUS4-47120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mueller, Axel A1 - Becker, Roland A1 - Dorgerloh, Ute A1 - Simon, Franz-Georg A1 - Braun, Ulrike T1 - The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics JF - Environmental Pollution N2 - Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 mg/L for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's Kow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer. KW - BTEX KW - Polypropylene KW - Polystyrene KW - Sorption KW - Degradation PY - 2018 DO - https://doi.org/10.1016/j.envpol.2018.04.127 SN - 0269-7491 VL - 240 SP - 639 EP - 646 PB - Elsevier CY - Amsterdam AN - OPUS4-44990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea A1 - Wander, Lukas A1 - Becker, Roland A1 - Goedecke, Caroline A1 - Braun, Ulrike T1 - High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil JF - Environmental Science and Pollution Research N2 - The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, here we tested a macroscopic dimensioned NIR process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 µm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils and real-world samples, e.g. and fermenter residue, suggest a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pre-treatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method. KW - Microplastics KW - Soil KW - Chemometrics KW - PLS-DA KW - Support vector machines KW - Near Infrared Spectroscopy PY - 2018 DO - https://doi.org/10.1007/s11356-018-2180-2 SN - 1614-7499 SN - 0944-1344 VL - 26 IS - 8 SP - 7364 EP - 7374 PB - Springer AN - OPUS4-45405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi JF - ACS Applied Nano Materials N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -