TY - JOUR A1 - Munzke, Dorit A1 - Kraus, David A1 - Eisermann, René A1 - Kübler, Stefan A1 - Schukar, Marcus A1 - Nagel, Lukas A1 - Hickmann, Stefan A1 - Trappe, Volker T1 - Distributed fiber-optic strain sensing with millimeter spatial resolution for the structural health monitoring of multiaxial loaded GFRP tube specimens JF - Polymer Testing N2 - Due to their high strength-to-weight ratio and excellent fatigue resistance, glass fiber reinforced polymers (GFRP) are used as a construction material in a variety of applications including composite high-pressure gas storage vessels. Thus, an early damage detection of the composite material is of great importance. Material degradation can be determined via measuring the distributed strain profile of the GFRP structures. In this article, swept wavelength interferometry based distributed strain sensing (DSS) was applied for structural health monitoring of internal pressure loaded GFRP tube specimens. Measured strain profiles were compared to theoretical calculation considering Classical Lamination Theory. Reliable strain measurements with millimeter resolution were executed even at elongations of up to 3% in the radial direction caused by high internal pressure load. Material fatigue was localized by damaged-induced strain changes during operation, and detected already at 40% of burst pressure. KW - GFRP KW - Swept wavelength interferometry KW - Distributed fiber optic sensing KW - Material degradation KW - Structural health monitoring PY - 2019 DO - https://doi.org/10.1016/j.polymertesting.2019.106085 SN - 0142-9418 VL - 80 SP - 106085 PB - Elsevier Ltd. AN - OPUS4-48950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraus, David A1 - Trappe, Volker T1 - Transverse damage in glass fiber reinforced polymer under thermo-mechanical loading JF - Composites Part C N2 - In this study, the thermomechanical damage behavior of a glass fiber reinforced polymer material is investigated. The coefficients of thermal expansion of the composite as well as the matrix are measured in a wide temperature range. Quasi-static experiments with neat resin, unidirectional and multidirectional laminates are performed as well as fatigue experiments in a temperature range from 213 K to 343 K. This study focusses on the matrix damage due to fiber-parallel loading. A correlation between matrix effort, the dilatational strain energy of the matrix and the damage state of the specimen is demonstrated. It is shown that a fatigue life assessment can be performed with the aid of a temperature-independent master fatigue curve. KW - Composite KW - Glass fiber reinforced polymer KW - Thermo-mechanics KW - Fatigue KW - Damage KW - Temperature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527462 DO - https://doi.org/10.1016/j.jcomc.2021.100147 SN - 2666-6820 VL - 5 SP - 100147 PB - Elsevier B.V. AN - OPUS4-52746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -