TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Weber, Kathrin A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Elucidation of orientation relations between Fe-Cr alloys and corrosionproducts after high temperature SO2 corrosion JF - Corrosion Science N2 - The early stages of corrosion of Fe-Cr-model alloys (2 and 9 % Cr) were investigated after exposure at 650 °C in0.5 % SO2containing gas by electron backscattered diffraction (EBSD) and transmission electron microscopy(TEM). The impact of the grain orientation of the base alloy on the orientation relations of the corrosion productsis presented. After 2 min–5 min exposure the formation of a multi-layered corrosion zone was discovered. Aclear orientation relationship between ferrite and the (Fe,Cr)3O4 spinel could be demonstrated. The obtainedresults show the importance of the grain orientation on oxidation resistance. KW - Iron KW - TEM KW - SEM KW - High temperature corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508911 DO - https://doi.org/10.1016/j.corsci.2020.108809 VL - 174 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-50891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as‑built Laser Powder Bed Fusion IN718 alloy as a consequence of the scanning strategy induced microstructure JF - Scientific reports N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - Additive manufacturing KW - LPBF KW - Residual stress KW - Inconel 718 KW - Kernel average misorientation KW - Texture PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511769 DO - https://doi.org/10.1038/s41598-020-71112-9 VL - 10 IS - 1 SP - 14645 AN - OPUS4-51176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. T1 - Refined Calibration Model for Improving the Orientation Precision of Electron Backscatter Diffraction Maps JF - Materials N2 - For the precise determination of orientations in polycrystalline materials, electron backscatter diffraction (EBSD) requires a consistent calibration of the diffraction geometry in the scanning electron microscope (SEM). In the present paper, the variation of the projection center for the Kikuchi diffraction patterns which are measured by EBSD is calibrated using a projective transformation model for the SEM beam scan positions on the sample. Based on a full pattern matching approach between simulated and experimental Kikuchi patterns, individual projection center estimates are determined on a subgrid of the EBSD map, from which least-square fits to affine and projective transformations can be obtained. Reference measurements on single-crystalline silicon are used to quantify the orientation errors which result from different calibration models for the variation of the projection center. KW - Scanning electron microscopy KW - Electron backscatter diffraction KW - Kikuchi diffraction KW - Projection center KW - Orientation precision PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509342 DO - https://doi.org/10.3390/ma13122816 VL - 13 IS - 12 SP - 2816 PB - MDPI AN - OPUS4-50934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Cios, G. A1 - Tokarski, T. A1 - Nolze, Gert A1 - Hielscher, R. A1 - Koziel, T. T1 - EBSD orientation analysis based on experimental Kikuchi reference patterns JF - Acta Materialia N2 - Orientation determination does not necessarily require complete knowledge of the local atomic arrangement in a crystalline phase. We present a method for microstructural phase discrimination and orientation analysis of phases for which there is only limited crystallographic information available. In this method, experimental Kikuchi diffraction patterns are utilized to generate a self-consistent master reference for use in the technique of Electron Backscatter Diffraction (EBSD). The experimentally derived master data serves as an application-specific reference in EBSD pattern matching approaches. As application examples, we map the locally varying orientations in samples of icosahedral quasicrystals observed in a Ti40Zr40Ni20 alloy, and we analyse AlNiCo decagonal quasicrystals. KW - EBSD KW - Quasicrystal KW - Crystal orientation KW - Pattern matching PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507611 DO - https://doi.org/10.1016/j.actamat.2020.01.053 VL - 188 SP - 376 EP - 385 PB - Elsevier Ltd. AN - OPUS4-50761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Cios, G. A1 - Winkelmann, A. T1 - Manual measurement of angles in backscattered and transmission Kikuchi diffraction patterns JF - Journal of Applied Crystallography N2 - A historical tool for crystallographic analysis is provided by the Hilton net, which can be used for manually surveying the crystal lattice as it is manifested by the Kikuchi bands in a gnomonic projection. For a quantitative analysis using the Hilton net, the projection centre as the relative position of the signal source with respect to the detector plane needs to be known. Interplanar angles are accessible with a precision and accuracy which is estimated to be ≤0.3o. Angles between any directions, e.g. zone axes, are directly readable. Finally, for the rare case of an unknown projection-centre position, its determination is demonstrated by adapting an old approach developed for photogrammetric applications. It requires the indexing of four zone axes [uvw]i in a backscattered Kikuchi diffraction pattern of a known phase collected under comparable geometric conditions. KW - Electron backscatter diffraction KW - EBSD KW - Angle measurement KW - Gnomonic projections KW - Kikuchi patterns PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507625 DO - https://doi.org/10.1107/S1600576720000692 VL - 53 SP - 435 EP - 443 AN - OPUS4-50762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity JF - Advanced Materials Technologies N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Heide, K. T1 - Roaldite in the iron-meteorite São Julião de Moreira JF - Geochemistry N2 - Roaldite – Fe4N – has been identified in the São Julião de Moreira iron meteorite using electron backscatter diffraction (EBSD) and simultaneously acquired energy-dispersive x-ray spectroscopy (EDS). Mean-periodic-number images derived from raw EBSD patterns confirm this phase by an even higher spatial resolution compared to EDS. Roaldite appears in the form of systematically and repetitively aligned plates. Despite the locally heavy plastic deformation, it is shown that the origin of the oriented precipitation of roaldite is linked to the orientation of the kamacite matrix. Roaldite can be considered to be precipitated from kamacite using an inverse Kurdjumov-Sachs (K-S) or Nishiyama-Wassermann (N-W) orientation relationship. A more accurate discrimination is impossible due to the accumulated shock deformation, which blurs the local reference orientation of kamacite. The habit plane of roaldite is found to be {112}R, which is most likely parallel to {120}K of kamacite. Some of the roaldite plates contain two orientation variants which repeatedly alternate. Their misorientation angle is about 12°. KW - Plastic deformation KW - Iron meteorite KW - Corrosion KW - Nitride KW - Orientation relationship PY - 2019 DO - https://doi.org/10.1016/j.chemer.2019.125538 VL - 79 IS - 4 SP - 125538 PB - Elsevier AN - OPUS4-50338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Reith, F. A1 - Etschmann, B. A1 - Kilburn, M. R. A1 - Brugger, J. T1 - Unravelling the formation histories of placer gold and platinum-group mineral particles from Corrego Bom Successo, Brazil: A window into noble metal cycling JF - Gondwana research N2 - Gold and platinum-group-metals (PGM) are cycled through Earth's environments by interwoven geological, physical, chemical and biological processes leading to the trans/neoformation of metallic particles in placers. The placer deposit at Corrego Bom Successo (CBS, Brazil) is one of the few localities worldwide containing secondary gold- and PGM-particles. Placer gold consists of detrital particles from nearby hydrothermal deposits that were transformed in the surface environment. Processes that have affected these particles include shortdistance transport, chemical de-alloying of the primary Gold silver, and (bio)geochemical dissolution/reprecipitation of Gold leading to the formation of pure, secondary gold and the Dispersion of gold nanoparticles. The latter processes are likely mediated by non-living organic matter (OM) and bacterial biofilms residing on the particles. The biofilms are largely composed of metallophillic β- and γ-Proteobacteria. Abundant mobile gold and platinum nanoparticles were detected in surface waters, suggesting similar mobilities of these metals. Earlier hydrothermal processes have led to the formation of coarsely-crystalline, arborescent dendritic potarite (PdHg). On potarite surfaces, biogeochemical processes have then led to the formation of platinum- and palladium-rich micro-crystalline layers, which make up the botryoidal platinum palladium aggregates. Subsequently potarite was dissolved from the core of many aggregates leaving voids now often filled by secondary anatase (TiO2) containing biophilic elements. The presence of fungal structures associated with the anatase suggests that fungi may have contributed to ist formation. For the first time a primary magmatic PGM-particle comprising a mono-crystalline platinum palladium-alloy with platinum iridium osmium inclusions was described from this locality, finally defining a possible primary source for the PGM mineralisation. In conclusion, the formation of modern-day placer gold- and PGM-particles at CBS began 100s ofmillions of years ago bymagmatic and hydrothermal processes. These provided the metal sources for more recent biogeochemical cycling of PGEs and gold that led to the trans/neoformation of gold- and PGM-particles. KW - Gold KW - Platinum-group-metals KW - Biogeochemical cycling KW - Magmatic and hydrothermal processes KW - Biomineralisation PY - 2019 DO - https://doi.org/10.1016/j.gr.2019.07.003 SN - 1342-937X VL - 76 SP - 246 EP - 259 PB - Elsevier AN - OPUS4-48657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Britton, T. B. T1 - Constraints on the effective electron energy spectrum in backscatter Kikuchi diffraction JF - Physical review B N2 - Electron backscatter diffraction (EBSD) is a technique to obtain microcrystallographic information from materials by collecting large-angle Kikuchi patterns in the scanning electron microscope (SEM). An important fundamental question concerns the scattering-angle dependent electron energy distribution, which is relevant for the formation of the Kikuchi diffraction patterns. Here we review the existing experimental data and explore the effective energy spectrum that is operative in the generation of backscatter Kikuchi patterns from silicon. We use a full pattern comparison of experimental data with dynamical electron diffraction simulations. Our energy-dependent cross-correlation based pattern matching approach establishes improved constraints on the effective Kikuchi pattern energy spectrum, which is relevant for high-resolution EBSD pattern simulations and their applications. KW - EBSD KW - Kikuchi pattern KW - Simulation KW - Energy distribution KW - Electron energy PY - 2019 SN - 2469-9950 SN - 2469-9969 VL - 99 IS - 6 SP - 064115-1 EP - 064115-13 PB - AIP AN - OPUS4-47635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Farzik Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature JF - Metallurgical and materials transactions A N2 - The creep behavior of single crystals of the nickel-based superalloy CMSX-4 was investigated at 1288 °C, which is the temperature of the hot isostatic pressing treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no gammaPrime-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g., the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-sectional area psi of [001] crystals reached nearly 100 pct, while for a [111] crystal psi = 62 pct. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals did not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. The recrystallization degree was found to be correlated with deformation behavior as well as with dwell time at high temperature. From the analysis of the obtained results (creep anisotropy, stress dependence of the creep rate, traces of shear deformation, and TEM observations), it was concluded that the main strain contribution resulted from <01-1>{111} octahedral slip. T2 - 3rd European Conference on Superalloys (‘Eurosuperalloys 2018’) CY - Oxford, UK DA - 9.9.2018 KW - Single-crystal KW - Superalloy KW - Creep KW - Isostatic hot pressing (HIP) PY - 2018 DO - https://doi.org/10.1007/s11661-018-4729-6 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3973 EP - 3987 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45660 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Petrushin, N. A1 - Gerstein, G. A1 - Maier, J. A1 - Nolze, Gert T1 - Investigation of the gamma'-strengthened quaternary co-based alloys Co-Al-W-Ta JF - Metallurgical and materials transactions A N2 - The alloying system Co-Al-W-Ta is comprehensively investigated in the vicinity of the compositional point Co-9Al-10W-2Ta, at. pct. These investigations provided a large amount of quantitative information, which can be used for alloy development, namely, the compositional dependences of the The alloying system Co-Al-W-Ta is comprehensively investigated in the vicinity of the compositional point Co-9Al-10W-2Ta, at. pct. These investigations provided a large amount of quantitative information, which can be used for alloy development, namely, the compositional dependences of the γ‘-solvus, solidus, and liquidus temperatures; fraction of the extrinsic phases after casting; the compositional dependence of the γ/γ‘-lattice misfit; the element partitioning between γ- and γ‘-phases; and the two Phase compositional area γ/γ‘ in the Co-rich part of the Co-Al-W-Ta phase diagram at 900°C. It is shown that additions of Ta elevate the γ‘-solvus temperature and increase the γ/γ‘-lattice misfit, but adding more than about 3 at. pct Ta results in a large amount of undissolvable extrinsic phases. Additionally, two Co-Al-W-Ta alloys with lower content of W were developed and solidified as [001] single crystals for mechanical testing in a temperature range between 20 and 1200°C. These tests included measurement of the Young modulus, tensile tests with constant strain rate, and stress rupture tests. It was found that at temperatures up to about 750°C the ultimate tensile strength of Co-Al-Ta-W alloys can be at the same level or even higher than of Ni-based superalloys. KW - Cobald based alloy KW - Microstructur KW - Segregation PY - 2018 DO - https://doi.org/10.1007/s11661-018-4756-3 SN - 1543-1940 SN - 1073-5623 VL - 49A IS - 9 SP - 4042 EP - 4057 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Lüders, V. A1 - Nolze, Gert T1 - Microstructural insights into natural silver wires JF - Nature - Scientific Reports N2 - Due to the increasing global demand for pure silver, native wire silver aggregates in very high purities are gaining more industrial attention. Up to the present, no substantial metallurgical Investigation of natural wire silver exists in the accessible literature. To convey urgently needed cross-disciplinary fundamental knowledge for geoscientists and metallurgical engineers, twenty natural wire silver specimens from eight different ore deposits have been investigated in detail for the first time by EBSD (Electron Back Scattering Diffraction), supported by light microscopy and micro-probe analyses. The improved understanding of the natural silver wire microstructure provides additional Information regarding the growth of natural silver aggregates in comparison to undesired artificial growth on electronic devices. Clear evidence is provided that natural silver curls and hairs exhibit a polycrystalline face-centered cubic microstructure associated with significant twinning. Although the investigated natural wire silver samples have relatively high purity (Ag > 99.7 wt.-%), they contain a variety of trace elements such as, S, Cu, Mn, Ni, Zn, Co and Bi, As and Sb. Additionally, Vickers micro-hardness measurements are provided for the first time which revealed that natural silver wires and curls are softer than it might be expected from conversion of the general Mohs hardness of 2.7. KW - Natural silver wires PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-451655 UR - http://www.nature.com/articles/s41598-018-27159-w DO - https://doi.org/10.1038/s41598-018-27159-w SN - 2045-2322 VL - 8 IS - 1 SP - Article 9053, 1 EP - 9 PB - nature publishing group CY - London, United Kingdom AN - OPUS4-45165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Chyrkin, A. A1 - Nolze, Gert A1 - Midtlyng, Jan A1 - Mayer, H. M. A1 - Petrushin, N. A1 - Reimers, W. T1 - Interdiffusion in the Face-Centered Cubic Phase of the Co-Al-W-Ta System Between 1090 and 1240 °C JF - Journal of Phase Equilibria and Diffusion N2 - Interdiffusion of Al, W, Ta and Co in a Co-base alloy at temperatures between 1090 and 1240 °C has been investigated. The interdiffusion coefficients were found to be close to those reported for these elements in Ni-base alloys. Combining the diffusion simulation software DICTRA with the Ni-base diffusion databases TCNi5 and MobNi3, the interdiffusion profiles of Co, Al W, and Ta were modeled for Co9Al8W2Ta/Co diffusion couples annealed at different temperatures and for different times. The results show that interdiffusion in the Co-Al-W-Ta alloys can be modeled reasonably well using the available commercial databases for thermodynamics and kinetics of Ni-base systems. KW - Alloys KW - Interdiffusion KW - Modeling PY - 2018 DO - https://doi.org/10.1007/s11669-018-0620-9 VL - 39 IS - 2 SP - 176 EP - 185 PB - Springer AN - OPUS4-44463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. T1 - Mapping of local lattice parameter ratios by projective Kikuchi pattern matching JF - Physical review materials N2 - We describe a lattice-based crystallographic approximation for the analysis of distorted crystal structures via Electron Backscatter Diffraction (EBSD) in the scanning electron microscope. EBSD patterns are closely linked to local lattice parameter ratios via Kikuchi bands that indicate geometrical lattice plane projections. Based on the transformation properties of points and lines in the real projective plane, we can obtain continuous estimations of the local lattice distortion based on projectively transformed Kikuchi diffraction simulations for a reference structure. By quantitative image matching to a projective transformation model of the lattice distortion in the full solid angle of possible scattering directions, we enforce a crystallographically consistent approximation in the fitting procedure of distorted simulations to the experimentally observed diffraction patterns. As an application example, we map the locally varying tetragonality in martensite grains of steel. KW - EBSD KW - Scanning electron microscopy KW - Orientation refinement PY - 2018 DO - https://doi.org/10.1103/PhysRevMaterials.2.123803 SN - 2475-9953 VL - 2 IS - 12 SP - 123803, 1 EP - 15 PB - American Physical Society CY - College Park, MD AN - OPUS4-47296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Winkelmann, Aimo T1 - Improving the precision of orientation measurements from technical materials via EBSD pattern matching JF - Acta materialia N2 - We use pattern matching of experimental and dynamically simulated backscattered Kikuchi diffraction (BKD) patterns to increase the orientation precision of electron backscatter diffraction (EBSD) measurements. In order to quantify the improvement in orientation precision, we analyze the experimental distribution of the kernel average misorientation (KAM) angles. We find that for the same raw data, i.e. the same EBSD data acquisition time budget, the pattern matching approach improves the KAM resolution by an order of magnitude compared to orientation data delivered from the conventional Hough-transform based data analysis. This quantitative improvement enables us to interpret small orientation changes in plastically deformed materials which are hidden in noisy orientation data delivered from the reference EBSD system. As an application example, we analyze a ferritic-martensitic steel (P92) sample before and after low-cycle fatigue (LCF) loading (±0.3% strain) at 620 °C. Whereas the low precision of the EBSD orientation data from the manufacturer software does not allow a reliable discrimination of the gradually changing microstructure, we find very clear systematic differences of the local microstructure after the pattern matching orientation refinement of the initial, raw pattern data. For the investigated P92 sample, the KAM-angle histograms are well described by two log-normal distributions indicating the already tempered and the remaining and mostly untempered martensite. KW - Misorientation KW - Thermo-mechanical loading KW - Martensite KW - Log-normal distribution KW - Bimodal distribution PY - 2018 DO - https://doi.org/10.1016/j.actamat.2018.08.028 VL - 159 SP - 408 EP - 415 PB - Elsevier Ltd. AN - OPUS4-46454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Han, M. A1 - Chen, C. A1 - Zhao, G. A1 - Li, L. A1 - Yo, B. A1 - Huang, X. A1 - Zhu, Y. T1 - Blind lattice-parameter determination of cubic and tetragonal phases with high accuracy using a single EBSD pattern JF - Acta Crystallographia N2 - The Bravais lattices and their lattice parameters are blindly determined using electron backscatter diffraction (EBSD) patterns of materials with cubic or tetragonal crystal structures. Since the geometric relationships in a single EBSD pattern are overdetermined, the relative errors of determining the lattice parameters as well as the axial ratios are confined to about 0.7 ± 0.4% and 0.07 ± 0.03%, respectively, for ideal simulated EBSD patterns. The accuracy of the crystal orientation determination reaches about 0.06 ± 0.03°. With careful manual band detection, the accuracy of determining lattice parameters from experimental patterns can be as good as from simulated patterns, although the results from simulated patterns are often better than expermental patterns, which are lower quality and contain uncertain systematic errors. The reasonably high accuracy is obtained primarily because the detection of the diffracting-plane traces and zone axes is relatively accurate. The results here demonstrate that the developed procedure based on the EBSD technique presents a reliable tool for crystallographic characterization of the Bravais lattices of unknown phases. KW - EBSD KW - Bravais lattice KW - Lattice parameters KW - Kikuchi pattern PY - 2018 DO - https://doi.org/10.1107/S2053273318010963 SN - 2053-2733 VL - 74 IS - 6 SP - 630 EP - 639 PB - International Union of Crystallography AN - OPUS4-46455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reith, F. A1 - Rea, M.A.D. A1 - Sawley, P. A1 - Zammit, C.M. A1 - Nolze, Gert A1 - Reith, T. A1 - Rantanen, K. A1 - Bissett, A. T1 - Biogeochemical cycling of gold: Transforming gold particles from arctic Finland JF - Chemical Geology N2 - (Bio)geochemical cycling of gold (Au) has been demonstrated in present-day (semi)-arid, (sub)-tropical and temperate environment. Hereby biofilms on Au-bearing mineral- and Au-particle surfaces drive Au dispersion and reconcentration, thereby (trans)forming the particles. However, it is unknown if biogeochemical cycling of Au occurs in polar environments, where air temperatures can reach −40 °C and soils remain frozen for much of the year. Therefore, placer Au-particles, soils and waters were collected at two placer mining districts in arctic Finland, i.e., the Ivalojoki and Lemmenjoki goldfields. Sites were chosen based on contrasting settings ((glacio)-fluvial vs. glacial-till deposits) and depths (surface to 5m below current surface). Gold particles were studied using a combination of tagged 16S rRNA gene next generation sequencing and electron microscopic/microanalytical techniques. Across all sites a range of Au-particle morphologies were observed, including morphotypes indicative of Au dissolution and aggregation. Elevated Au concentrations indicative of Au mobility were detected in placer particle bearing soils at both districts. Typically Au-particles were coated by polymorphic biofilm layers composed of living and dead cells embedded in extracellular polymeric substances. Intermixed were biominerals, clays and iron-sulfides/oxides and abundant secondary Au morphotypes, i.e., nano-particles, microcrystals, sheet-like Au, branched Au networks and overgrowths and secondary rims. Biofilms communities were composed of Acidobacteria (18.3%), Bacteroidetes (15.1%) and Proteobacteria (47.1%), with β-Proteobacteria (19.5%) being the most abundant proteobacterial group. Functionally, biofilms were composed of taxa contributing to biofilm establishment, exopolymer production and nutrient cycling, abundant taxa capable of Au mobilization, detoxification and biomineralization, among them Cupriavidus metallidurans, Acinetobacter spp. and Pseudomonas spp., were detected. In conclusion, these results demonstrate that placer Au-particle transformation and Au dispersion occur in cold, arctic environments. This corroborates the existence of biogeochemical Au cycling in present-day cold environments. KW - Gold KW - Bacteria KW - Biogeochemistry KW - Mobility KW - Finland KW - Cupriavidus metallidurans KW - NGS PY - 2018 DO - https://doi.org/10.1016/j.chemgeo.2018.03.021 SN - 0009-2541 VL - 483 SP - 511 EP - 529 PB - Elsevier AN - OPUS4-44805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -