TY - CONF A1 - Manzoni, Anna Maria A1 - Richter, Tim A1 - Rhode, Michael A1 - Schröpfer, Dirk T1 - Reliable welding of high-entropy alloys N2 - The importance of high-entropy alloy (HEAs) in the field of materials research is increasing continuously and numerous studies have been published, recently. These are mainly focused on manufacturing of different alloy systems having excellent structural properties from low to high temperatures. Therefore, HEAs are of high potential for many applications in very demanding conditions. However, this is so far limited by poor knowledge and experience regarding economic and reliable component manufacturing. The processability of HEAs has hardly been investigated so far, indicated by the small number of publications worldwide: welding <30 and machining <5. Hence, this contribution provides an overview about the current state of the art on processing of HEAs. Fundamental principles are shown for safe weld joints while ensuring high component integrity. For safe welding, the combined consideration of complex interactions of material, construction and process is necessary. Recent studies on different HEAs showed the influence of heat input by means of different welding processes on the microstructure and respective properties. Based on intensive literature survey and on our initial study, the main research objectives of processing HEAs are presented. T2 - ICHEM 2020 - Third International Conference on High Entropy Materials CY - Berlin, Germany DA - 27.09.2020 KW - High Entropy Alloy KW - Welding KW - Welding processing influences PY - 2020 AN - OPUS4-51591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Yesilcicek, Yasemin A1 - Demir, E. A1 - Haas, S. A1 - Glatzel, U. T1 - Combining trace elements for microstructural optimization in the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy N2 - Trace elements W and Hf have different influence on the microstructure and the mechanical properties when added to the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy. The addition of both can thus merge both element’s beneficial influences when combined with the appropriate heat treatment: Hf enhances the cubicity of the γ’ particles in the γ matrix while the W reduces the negative influence of the Heusler phase: this phase can be completely dissolved when W is present in the alloy. T2 - ICHEM 2020 CY - Berlin, Germany DA - 27.09.2020 KW - High entropy alloys KW - Transmission electron microscopy KW - Lattice misfit KW - X-ray diffraction KW - Scanning electron microscopy PY - 2020 AN - OPUS4-51370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Manzoni, Anna Maria A1 - Glatzel, U. ED - Buschow, K.H.J. ED - Flemings, M.C. ED - Kramer, E.J. ED - Veyssière, P. ED - Cahn, R.W. ED - Ilschner, B. ED - Mahajan, S. T1 - High-Entropy Alloys: Balancing Strength and Ductility at Room Temperature T2 - Encyclopedia of Materials: Science and Technology N2 - A new race for high performance structural materials has started since the discovery of high entropy alloys at the beginning of the 21st century. The possible combination of several elements in an, until then, unknown composition space opened the ground for discovering new materials. Solid solution strengthening remains the most prominent mechanisms that is active in this family of materials, but it is supported by all other strengthening mechanism on the path to better and better performing materials. Chemical, thermal and mechanical approaches are combined to optimize these alloys. Optimum performances can be reached by using a high number of different strengthening mechanisms, induced both by composition and processing. The most prominent with composition induced mechanism is precipitation hardening, and on the processing side it is cold working such as cold-rolling, torsion or extrusion. The contribution uses tensile test data at room temperature solely for comparison – high temperature and cryogenic data are omitted because it would lead beyond the scope of this manuscript. KW - High entropy alloys KW - Compositionally complex alloys PY - 2020 DO - https://doi.org/10.1016/B978-0-12-803581-8.11774-6 PB - Elsevier Inc. AN - OPUS4-50575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -