TY - CONF A1 - Skrotzki, Birgit A1 - Gesell, Stephan A1 - Rehmer, Birgit A1 - Fedelich, Bernard T1 - Fatigue Crack Growth of Heat Resistant Austenitic Cast Iron under Isothermal and Anisothermal Conditions N2 - The heat-resistant cast iron EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) was investigated for its fatigue crack growth behavior at room and high temperatures. Force-controlled tests were carried out at constant temperatures (20 °C, 500 °C, 700 °C) without and with hold time and different load ratios. The crack growth behavior was also characterized under TMF loading (Tmin = 400 °C, Tmax = 700 °C) by applying IP and OP conditions and different load ratios. Three different techniques were combined to monitor crack growth: potential drop, thermography, and compliance method. The effect of the different loading conditions on the fatigue crack growth behavior will be presented and discussed. T2 - TMF Workshop 2024 CY - Berlin, Germany DA - 25.04.2024 KW - Fatigue crack growth KW - Thermomechanical fatigue KW - Austenitic cast iron KW - Ni-Resist PY - 2024 AN - OPUS4-59964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gesell, Stephan A1 - Ganesh, Rahul A1 - Kuna, Meinhard A1 - Fedelich, Bernard A1 - Kiefer, Björn T1 - Numerical calculation of ΔCTOD for thermomechanical fatigue crack growth N2 - The cyclic crack tip opening displacement ΔCTOD is a promising loading Parameter to quantify the crack propagation under thermomechanical fatigue (TMF). In this work, suitable techniques are investigated and compared for an accurate calculation of ΔCTOD under TMF loading using a viscoplastic temperature dependent material model. It turned out that collapsed special crack tip elements give the best results. An efficient FEM-technique is developed to simulate the incremental crack growth by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. The developed techniques are demonstrated and discussed for two-dimensional examples like TMF-specimens. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and ΔCTOD value. T2 - ESIS Technical Meeting on Numerical Methods (TC8) CY - Online meeting DA - 06.04.2021 KW - Crack tip opening displacement KW - Thermomechanical fatigue KW - Crack growth PY - 2021 AN - OPUS4-52410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ganesh, Rahul A1 - Gesell, Stephan A1 - Kuna, M. A1 - Fedelich, Bernard A1 - Kiefer, B. T1 - Numerical calculation of ΔCTOD for thermomechanical fatigue crack growth N2 - The cyclic crack tip opening displacement ΔCTOD is a promising loading Parameter to quantify the crack propagation under thermomechanical fatigue (TMF). In this work, suitable techniques are investigated and compared for an accurate calculation of ΔCTOD under TMF loading using a viscoplastic temperature dependent material model. It turned out that collapsed special crack tip elements give the best results. An efficient FEM-technique is developed to simulate the incremental crack growth by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. The developed techniques are demonstrated and discussed for two-dimensional examples like TMF-specimens. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and ΔCTOD value. T2 - 53. Tagung des Arbeitskreises "Bruchmechanik und Bauteilsicherheit" CY - Online meeting DA - 18.02.2021 KW - Crack tip opening displacement KW - Thermomechanical fatigue KW - Crack growth PY - 2021 AN - OPUS4-52520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -