TY - CONF A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Density-based phase field modelling of the interplay between grain boundary segregation transition and structure N2 - Grain boundary (GB) chemical and structural variations can significantly influence materials performance. The former is generally ascribed to the structural gradient between the grain and GB. While GB segregation may be accompanied by chemical and structural variations, clear insights about the GB’s thermodynamic phase behaviour upon coupling between its chemistry and structure is lacking. Using the CALPHAD integrated density-based phase field model, we study the co-evolution of GB’s structure and segregation in Fe-Mn alloys. We found that the GB segregation transition is amplified if its structure can respond to chemical variation. Additionally, the coupling between GB structural and segregation evolution was found to enable co-existence of the spinodally formed low- and high-Mn phases within the GB. In the light of atomistic simulations, we expand on investigating the correlation between the parameters that characterise the GB density map with GB properties. T2 - TMS 2023 CY - San Diego, California, USA DA - 19.03.2023 KW - Grain boundary engineering KW - Density-based phase-field modelling KW - Microstructure design PY - 2023 AN - OPUS4-57970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Management of Reference Data in Materials Science and Engineering Exemplified for Creep Data of a Single-Crystalline Ni-Based Superalloy N2 - Here we present our research data management (RDM) framework to conceptualize & implement a digital infrastructure for the Generation, Distribution, and Utilization of reference datasets of materials. The documentation of the test data is often incomplete. This concerns, e.g., material’s manufacturing process or chemical composition, or test equipment’s description and its calibration status. Our concept addresses this issue by proposing the implementation of a requirements profile. A crucial aspect of our concept is to reach a community-agreement on the definition of reference data and on the underlying data schema and vocabulary. T2 - MaRDA2025 Virtual Annual Meeting CY - Online meeting DA - 18.02.2025 KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen KW - Datenschema PY - 2025 AN - OPUS4-64858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis A1 - Shakeel, Y. A1 - Gedsun, A. A1 - Forti, M. A1 - Hunke, S. A1 - Han, Ying A1 - Hammerschmidt, T. A1 - Aversa, R. A1 - Olbricht, Jürgen A1 - Chmielowski, M. A1 - Stotzka, R. A1 - Bitzek, E. A1 - Hickel, Tilmann A1 - Skrotzki, Birgit T1 - Management of reference data in materials science and engineering exemplified for creep data of a single-crystalline Ni-based superalloy N2 - The identification of process-structure-property relationships of materials inevitably requires the combination of research data from different measurements. Therefore, the concepts related to FAIR (findable, accessible, interoperable, reusable) data handling, increasingly reported in literature, are particularly important in the materials science and engineering domain. However, they have not yet been integrated into a single, overarching methodological framework, particularly for reference data. Here, we introduce such a framework. Our concept covers data generation, documentation, handling, storage, sharing, data search and discovery, retrieval, and usage. Furthermore, we prototypically implement it using a real dataset with creep data of a single-crystal CMSX-6 Ni-based superalloy. The presented implementation is traceable and permanently accessible through open repositories. The individual elements considered in the framework ensure the functionality and usability of the data and, thus, the adherence to the FAIR principles. In conjunction with this, we present a definition for reference data of materials. Our definition underlines particularly the importance of a comprehensive documentation, e.g., on material provenance, data processing procedures, and the software and hardware used, including software-specific input parameters, as these details enable data users or independent parties to assess the quality of the datasets and to reuse and reproduce the results. Reference data that is managed according to the proposed framework can be used to advance knowledge in the materials science and engineering domain, e.g., by identifying new process-structure-property relations. KW - Referenzdaten KW - NFDI-MatWerk KW - Data schema KW - Research Data Management KW - Reference Data PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625047 DO - https://doi.org/10.1016/j.actamat.2025.120735 VL - 286 SP - 1 EP - 15 PB - Elsevier Inc. AN - OPUS4-62504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaiser, Erika A1 - Fareed, Adnan A1 - Manzoni, Anna Maria A1 - Paulisch-Rinke, Melanie C. A1 - Hsu, Wei-Che A1 - Yeh, An-Chou A1 - Murakami, Hideyuki A1 - Vogel, Florian A1 - Maaß, Robert T1 - Pinning-dominated strengthening in high-entropy superalloys N2 - Hierarchical microstructural design of high-entropy superalloys offers novel strengthening pathways beyond classical superalloys. Here we assess the strength of isolated γ’ precipitates with and without an additional internal γ nanophase. The results show that nano-precipitation within the γ’ phase leads to a marked statistical reduction of the dislocation-nucleation limited yield strength. In concert with disorder-driven chemical weakening of the γ’ phase, these findings indicate that bulk strengthening due to hierarchical microstructural design in high entropy superalloys must primarily be pinning dominated. KW - High-entropy alloys KW - Superalloys KW - Dislocation nucleation KW - Plasticity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637590 DO - https://doi.org/10.1016/j.scriptamat.2025.116874 SN - 1359-6462 VL - 268 SP - 1 EP - 6 PB - Elsevier Inc. AN - OPUS4-63759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Han, Seungchang A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza A1 - Maaß, Robert T1 - On the preference of liquid-metal embrittlement along high-angle grain-boundaries in galvanized steels N2 - Focusing on the early stages of liquid-metal embrittlement (LME) of Zinc (Zn) coated advanced high-strength steels, we show that the Zn infiltration path prior to grain-boundary decohesion and therefore cracking distinctly follows high-angle grain boundaries (HAGBs). This selective transport prior to LME-induced microcracking rationalizes the experimentally observed post-mortem cracking along martensitic HAGBs. We discuss the selective Zn transport and GB-weakening in terms of an misorientation-angle dependent atomic density and diffusivity, and its effect on GB-segregation. KW - Liquid-metal embrittlement KW - Advanced high-strength steels KW - Grain boundaries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631103 DO - https://doi.org/10.1016/j.scriptamat.2025.116723 SN - 1359-6462 VL - 265 SP - 1 EP - 5 PB - Elsevier Inc. AN - OPUS4-63110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller-Elmau, Johanna T1 - Transparent feedstocks for photon-based addiTve manufacturing technologies for powder processing of ceramics N2 - Photon-based additive manufacturing technologies such as SLA, DLP, LCM, moreover volumetric two-photon-polymerization, Xolography and holographic technologies promise the highest accuracy and dimensional freedom. But to transfer the light through the feedstock it needs sufficient transparency at the used light wavelength. Ceramic particles used for powder processing routes act as scattering sites and therefore hinder the light transmission, unless… The particle size and particle size distribution are chosen small and narrow enough. Particles which are smaller than roughly 1/10th of the light wavelength, mostly nanoparticles around 5nm size, decrease scattering vastly. This turns resins even with homogeneously distributed ceramic weight fraction of up to 80% transparent again. Feedstocks could be prepared for the highly accurate two-photon-polymerization gaining the smallest yttria stabilized zirconia structures with a resolution of 500nm and unique mechanical properties. The same feedstocks could be applied to DLP and LCM as layer-by-layer AM-technologies for bigger parts. Hybridizing both technologies lead to ceramic parts with microscopic accuracy at macroscopic dimensions. The feedstock was even applied to the volumetric Xolography with the highest transparency requirement so far and to versatile and flexible holographic AM. Highly filled nano-particle containing transparent ceramic feedstocks open the way for technical ceramics in high precision manufacturing where the performance and durability and accessibility are increased and created by the unique ceramic properties such as mechanical strength, chemical and thermal resistance and biocompatibility T2 - 2025 International Conference on Additive Manufacturing Technology Frontiers and Applications CY - Xi'an, China DA - 11.04.2025 KW - Tranparent KW - Ceramic KW - Additive manufacturing PY - 2025 AN - OPUS4-65069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Waske, Anja A1 - Günster, Jens A1 - Widjaja, Martinus Putra A1 - Neumann, C. A1 - Clozel, M. A1 - Meyer, A. A1 - Ding, J. A1 - Zhou, Z. A1 - Tian, X. T1 - Challenges in the Technology Development for Additive Manufacturing in Space N2 - Instead of foreseeing and preparing for all possible scenarios of machine failures, accidents, and other challenges arising in space missions, it appears logical to take advantage of the flexibility of additive manufacturing for “in-space manufacturing” (ISM). Manned missions into space rely on complicated equipment, and their safe operation is a great challenge. Bearing in mind the absolute distance for manned missions to the Moon and Mars, the supply of spare parts for the repair and replacement of lost equipment via shipment from Earth would require too much time. With the high flexibility in design and the ability to manufacture ready-to-use components directly from a computer-aided model, additive manufacturing technologies appear to be extremely attractive in this context. Moreover, appropriate technologies are required for the manufacture of building habitats for extended stays of astronauts on the Moon and Mars, as well as material/feedstock. The capacities for sending equipment and material into space are not only very limited and costly, but also raise concerns regarding environmental issues on Earth. Accordingly, not all materials can be sent from Earth, and strategies for the use of in-situ resources, i.e., in-situ resource utilization (ISRU), are being envisioned. For the manufacturing of both complex parts and equipment, as well as for large infrastructure, appropriate technologies for material processing in space need to be developed. KW - Additive manufacturing KW - Space KW - Process PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549204 DO - https://doi.org/10.1016/j.cjmeam.2022.100018 SN - 2772-6657 VL - 1 IS - 1 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-54920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hmood, F. J. A1 - Wilbig, Janka A1 - Nicolaides, Dagmar A1 - Zocca, Andrea A1 - Günster, Jens T1 - An approach to monitor the real-time deformation during heat treatment of 3D-printed glass N2 - This study suggests a tool for a better control on the sintering/crystallization of 3D-printed bioactive glassceramics bodies. A small cantilever in form of a bar with square cross section attached to a base and inclined 34◦ with the horizon, was used to monitor the viscous flow and sintering/crystallization headway of a glassceramic systems. 3D printing and sintering of bioactive glass-ceramics is of great interest for medical care applications. Viscous flow ensures sufficient densification of the typically low density printed green bodies, while crystallization prevents the structure from collapsing under the gravitational load. As a model system, a bioactive glass called BP1 (48.4 SiO2, 1 B2O3, 2 P2O5, 36.6 CaO, 6.6 K2O, 5.6 Na2O (mol%)), which has a chemical composition based on that of ICIE16, was employed in this work. In addition, ICIE16 was used as a reference glass. The results show that the suggested design is a very promising tool to track the real-time deformation of 3D printed glass-ceramic specimens and gives a good indication for the onset of crystallization as well. KW - Real-time deformation KW - Sintering KW - 3D-printing KW - Bioactive glass PY - 2021 DO - https://doi.org/10.1016/j.ceramint.2021.03.334 VL - 47 IS - 14 SP - 20045 EP - 20050 PB - Elsevier Ltd. AN - OPUS4-53449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Additive Manufacturing of advanced ceramics by layerwise slurry deposition and binder jetting (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Layerwise slurry deposition KW - Laser induced slipcasting KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-55543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Christian A1 - Thore, Johannes A1 - Clozel, Mélanie A1 - Günster, Jens A1 - Wilbig, Janka A1 - Meyer, Andreas T1 - Additive manufacturing of metallic glass from powder in space N2 - Additive manufacturing of metals – and in particular building with laser-based powder bed fusion – is highly flexible and allows high-resolution features and feedstock savings. Meanwhile, though space stations in low Earth orbit are established, a set of visits to the Moon have been performed, and humankind can send out rovers to explore Venus and Mars, none of these milestone missions is equipped with technology to manufacture functional metallic parts or tools in space. In order to advance space exploration to long-term missions beyond low Earth orbit, it will be crucial to develop and employ technology for in-space manufacturing (ISM) and in-situ resource utilisation (ISRU). To use the advantages of laser-based powder bed fusion in these endeavours, the challenge of powder handling in microgravity must be met. Here we present a device capable of building parts using metallic powders in microgravity. This was proven on several sounding rocket flights, on which occasions Zr-based metallic glass parts produced by additive manufacturing in space were built. The findings of this work demonstrate that building parts using powder feedstock, which is more compact to transport into space than wire, is possible in microgravity environments. This thus significantly advances ISRU and ISM and paves the way for future tests in prolonged microgravity settings. KW - Metallic Glass KW - Additive Manufacturing KW - Space PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600667 DO - https://doi.org/10.1038/s41526-023-00327-7 VL - 9 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-60066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Regarding feedstocks for the additive manufacturing (AM) of ceramics, two features are most critical in classical powder based AM processes: a high particle packing density (typically >50% TD) must be achieved with very fine particles (typically submicron) in order to ensure sufficient sintering activity. Three innovative approaches will be introduced to overcome this problem: 1. Layer wise slurry deposition: The use of water based ceramic slurries as feedstock for the additive manufacture of ceramics has many advantages which are not fully exploit yet. In the layerwise slurry deposition (LSD) process a slurry with no or low organic content is repetitively spread as thin layers on each other by means of a doctor blade. During the deposition, the ceramic particles settle on the previously deposited and dried material to form thin layers with a high packing density (55-60%). The LSD therefore shares aspects both of tape casting and slip casting. The LSD differentiates from the classical powder-based AM layer deposition, which typically achieves with a flowable coarse grained powder a low packing density (35-50%) only, consequently hindering the ability of sintering ceramic parts to full density. The LSD is coupled with the principles of selective laser sintering (SLS) or binder jetting, to generate novel processes which take advantage of the possibility of achieving a highly dense powder-bed. 2. Laser induced slip casting: Contrary to the LSD process, which requires drying of each individual layer, the direct interaction of ceramic slurries with intense laser radiation, for the laser induced slip casting (LIS), is a promising approach for the additive manufacture of voluminous parts. 3. Gas flow assisted powder deposition: By the application of a vacuum pump a gas flow is realized throughout the powder bed. This gas flow stabilizes the powder bed and results into an enhanced flowability and packing density of the powder during layer deposition. The presentation will provide a detailed discussion of potentialities and issues connected to the mentioned technologies and will describe the most recent developments in their application to technical ceramics. T2 - SmatMade 2022 CY - Osaka, Japan DA - 25.10.2022 KW - Additive Manufacturing KW - Advanced ceramics PY - 2022 AN - OPUS4-59886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Schubert, Hendrik A1 - Günster, Jens A1 - Zocca, Andrea T1 - Ink development for the additive manufacturing of strong green parts by layerwise slurry deposition (LSD-print) N2 - Obtaining dense fine ceramics by the binder jetting additive manufacturing process is challenging. A slurry-based binder jetting process, such as the layerwise slurry deposition (LSD-print) process, can enable the printing of dense ceramic parts. This work describes a procedure to develop and qualify a suitable ink to manufacture silicon carbide green parts by LSD-print. Not only the printability but also the compatibility of the ink with the powder bed and the effect of the binding agent on the properties of the green parts are considered. Both aspects are important to obtain high green strength, which is necessary for printing large or thin-walled parts. Characterization methods, such as rheological and surface tension measurements, are applied to optimize three selected inks. The interplay between ink and powder bed is tested by contact angle measurements and by comparing the biaxial strength of cast and additively manufactured specimens. Out of the three binding agents tested, a polyethyleneimine and a phenolic resin have a high potential for their use in the LSD-print of silicon carbide green bodies, whereas a polyacrylate binding agent did not show the required properties. KW - Silicon carbide KW - Binders/binding KW - Inkjet KW - Printing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567911 DO - https://doi.org/10.1111/jace.18951 SN - 0002-7820 SP - 1 EP - 12 PB - Wiley online library AN - OPUS4-56791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions, e.g. from fossil-fuel operated power plants or cement mills. Crucial points for a sustainable and future-proof CCUS procedure are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Most components that are in contact with CO2-stream consist of steel. Depending on the operating conditions (e.g. temperature, pressure, and CO2-stream composition) specific suitable steels should be used. The compressed CO2-stream is likely to contain process specific impurities; small amounts of SO2 and NO2 in combination with oxygen and water are most harmful. One approach, as currently preferred by pipeline operators, is to clean the CO2-stream to such levels, acceptable for carbon steel, commonly used as pipeline material. Another consideration would be, to use more corrosion resistant alloys for CO2-streams with higher amounts of impurities. Due to the absence of certified benchmarks for upper limits, systematic experiments with impurities in the CO2-stream were carried out reflecting mainly transport and injection conditions. Within the COORAL project (German acronym for “CO2 purity for capture and storage”) levels of impurities in the CO2-stream, being acceptable when using specific steels, were evaluated. Material exposure to dense or multiphase carbon dioxide (CO2) containing specific amounts of water vapor, oxygen (O2) sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) can be a challenge to steels. In some situations, condensation of impurities and reaction products from the CO2 stream can occur. CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection shall ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. This COORAL-work was extended by a follow-up project, called CLUSTER. Here the additional influence of impurities was investigated when merging CO2 streams from different sources, combined within a “so-called” cluster. Results are summarized within the following table regarding suitability for different parts of the process chain. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 SP - 1 EP - 2 AN - OPUS4-53460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, R. T1 - Towards defining reasonable minimum composition thresholds – impacts of variable CO2 stream compositions on transport, injection and storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: Corrosion of pipeline steel, pipeline network design and related transport costs, alteration of well bore cements, pressure evelopment and rock integrity, geochemical reactions, and petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for eachindividual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv)impurity combinations to be avoided. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 AN - OPUS4-52419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, J.-C. A1 - Fateri, M. A1 - Schubert, T. A1 - de Peindray d’Ambelle, L. A1 - Simon, Sebastian A1 - Gluth, Gregor A1 - Günster, Jens A1 - Zocca, Andrea T1 - Material aspects of sintering of EAC-1A lunar regolith simulant N2 - Future lunar exploration will be based on in-situ resource utilization (ISRU) techniques. The most abundant raw material on the Moon is lunar regolith, which, however, is very scarce on Earth, making the study of simulants a necessity. The objective of this study is to characterize and investigate the sintering behavior of EAC-1A lunar regolith simulant. The characterization of the simulant included the determination of the phase assemblage, characteristic temperatures determination and water content analysis. The results are discussed in the context of sintering experiments of EAC-1A simulant, which showed that the material can be sintered to a relative density close to 90%, but only within a very narrow range of temperatures (20–30 °C). Sintering experiments were performed for sieved and unsieved, as well as for dried and non-dried specimens of EAC-1A. In addition, an analysis of the densification and mechanical properties of the sintered specimens was done. The sintering experiments at different temperatures showed that the finest fraction of sieved simulant can reach a higher maximum sintering temperature, and consequently a higher densification and biaxial strength. The non-dried powder exhibited higher densification and biaxial strength after sintering compared to the dried specimen. This difference was explained with a higher green density of the non-dried powder during pressing, rather than due to an actual influence on the sintering mechanism. Nevertheless, drying the powder prior to sintering is important to avoid the overestimation of the strength of specimens to be fabricated on the Moon. KW - Lunar regolith KW - Ceramics KW - Microstructure KW - Sintering KW - Softening temperature PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592668 DO - https://doi.org/10.1038/s41598-023-50391-y SN - 2045-2322 VL - 13 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-59266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Fateri, M. A1 - Al-Sabbagh, Dominik A1 - Günster, Jens T1 - Investigation of the sintering and melting of JSC-2A lunar regolith simulant N2 - Future lunar exploration can benefit greatly from In-Situ Resource Utilization. Accordingly, the in-Situ Resource Utilization approach highlights the need for detailed analysis of lunar regolith. In this study, JSC-2A Simulant was studied regarding its sintering and melting behaviour using Differential Thermal Analysis under ambient and inert conditions. The minerals at the crystalline peaks were determined using X-Ray Diffraction analysis. Moreover, melting droplet shape and wetting behaviour of pressed regolith samples of different particle size distributions were studied by Hot Stage Microscopy technique. Hot Stage Microscopy experiments were performed at different heating rates under ambient conditions. Bloating effects within the solidified samples were then qualitatively examined by X-ray tomography. Lastly, the optimization of processing strategies for the Additive Manufacturing of lunar regolith is discussed. KW - Lunar regolith KW - Sintering KW - Melting KW - Hot stage microscopy PY - 2020 DO - https://doi.org/10.1016/j.ceramint.2020.02.212 VL - 46 IS - 9 SP - 14097 EP - 14104 PB - Elsevier Ltd. AN - OPUS4-50869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - A comparison of layerwise slurry deposition and (LSD-print) laser induced slip casting (LIS) for the additive manufacturing of advanced ceramics N2 - The presentation gives an overview of two slurry-based additive manufacturing (AM) technologies specifically developed for advanced ceramic materials. The “Layerwise Slurry Deposition” (LSD-print) is a modification of Binder Jetting making use of a ceramic slurry instead of a dry powder as a feedstock. In this process, a slurry is deposited layer-by-layer by means of a doctor blade and dried to achieve a highly packed powder layer, which is then printed by jetting a binder. The LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. The Laser Induced Slip casting (LIS) technology follows a novel working principle by locally drying and selectively consolidating layer-by-layer a ceramic green body in a vat of slurry, using a laser as energy source. LIS combines elements of Vat Photopolymerization with the use of water-based feedstocks containing a minimal amount of organic additives. The resulting technology can be directly integrated into a traditional ceramic process chain by manufacturing green bodies that are sintered without the need of a dedicated debinding. Both technologies offer high flexibility in the ceramic feedstock used, especially concerning material and particle size. Advantages and disadvantages are briefly described to outline the specific features of LSD-print and LIS depending on the targeted application. T2 - AM Ceramics CY - Vienna, Austria DA - 27.09.2023 KW - Additive Manufacturing KW - Dental KW - Ceramics KW - Feldspar PY - 2023 AN - OPUS4-58468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - LSD-print: a 10-years journey of an additive manufacturing technology from porcelain to technical ceramics N2 - Motivated by the aim of developing an additive manufacturing (AM) technology easily integrated in the process chains of the ceramic industry, the LSD-print technology was conceived as a slurry-based variation of binder jetting (BJ). BJ and other powder bed technologies (such as powder bed fusion) are amongst the most successful AM techniques, especially for metals and polymers, thanks to their high productivity and scalability. The possibility to use commercially available feedstocks (in the form of powders or granules) makes BJ also attractive for ceramic materials. The application of these techniques to most advanced ceramics has however been difficult so far, because of the limitations in depositing homogeneous layers with fine, typically poorly flowable powders. In this context, the "layerwise slurry deposition" (LSD) was proposed at TU Clausthal (Germany) as a slurry-based deposition of ceramic layers by means of a doctor blade. Combined with layer-by-layer laser sintering of the material, the LSD process was originally demonstrated for the rapid prototyping of silicate ceramics. Due to the difficulties in controlling the microstructure and the defect formation in laser-sintered technical ceramics, the LSD process was later combined with inkjet printing in the LSD-print technology, which has been further developed at BAM (Germany) in the past decade. The LSD-print technology combines the high speed of inkjet printing, typical of BJ, with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. Due to the mechanical stability of the powder bed, the process can also be carried out with continuous layer deposition on a rotating platform, which further increases its productivity. This presentation will delve into 10 years of research on the LSD-print of a wide variety of technical ceramics including alumina, silicon carbides and dental ceramics. The discussion highlights how a seemingly small process and feedstock modification (from powders to slurries) has great influence on the challenges and potential of this process, which are being addressed on its path to industrialization. T2 - young Ceramists Additive Manufacturing Forum (yCAM) 2024 CY - Tampere, Finland DA - 06.05.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - Slurry KW - LSD-print PY - 2024 AN - OPUS4-60056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens A1 - Wang, Gong A1 - Tian, Xiaoyong T1 - 3D Printing Technologies for Extreme Environment in Space N2 - 3D printing technology can realize the rapid fabrication of complicated structures with short production chain, which just meet the requirements for space manufacturing in the future. However, 3D printing technologies in space are still challenging due to the harsh conditions, such as microgravity, high vacuum, and large temperature difference. Meanwhile, in-situ resource utilization and recycling must be considered as a cost effective and resilient resource for 3D printing in space. On the contrary, extreme environmental conditions such as high vacuum and microgravity can also offer significant advantages for advanced materials with high purity and performance. In-situ fabrication of ultra-large components would overcome the weight and structural limitations imposed by rocket launch and change the future strategy for space exploration. The aim of this specially issue is therefore to provide a platform for discussing the potential technologies for 3D printing in space. KW - Additive Manufacturing KW - space PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652654 DO - https://doi.org/10.1016/j.amf.2025.200248 SN - 2950-4317 VL - 4 IS - 3 SP - 1 EP - 2 PB - Elsevier AN - OPUS4-65265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ECerSXVIII Conference Exhebition of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena T1 - How will we explore, work, and live on the moon? N2 - 3D-printed landing pads on the moon: Paving the road for large area sintering of lunar regolith. A prerequisite for lunar exploration and beyond is the manufacturing of objects directly on the moon, given the extreme costs involved in the shipping of material from Earth. Looking at processes, raw materials, and energy sources, equipment will certainly have to be brought from Earth at the beginning. Available on the moon are lunar regolith as raw material and the sun as an energy source. One of the first steps towards the establishment of a lunar base is the creation of infrastructure elements, such as roads and landing pads. We’ll introduce you to the ESA-project PAVER that demonstrates the sintering and melting of lunar regolith simulant material to produce large scale 3D printed elements that could be used during human and robotic lunar explorations. T2 - Berlin Science Week CY - Online meeting DA - 09.11.2022 KW - Additive manufacturing KW - Lunar regolith simulant KW - EAC-1A KW - Space exploration PY - 2022 UR - https://www.youtube.com/watch?v=StfLuVhKkUE AN - OPUS4-56377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina T1 - Silver diffusion in low-melting alkali zinc borate model glasses studied by means of SNMS, TEM and XAS N2 - In many late-breaking research fields as in photovoltaics, microelectronics, nuclear waste glasses or at least mirror glasses silver diffusion in glasses is relevant to the issues of high-level functionality and recycling. The present study is focused on silver diffusion in innovative, low-melting alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) potentially usable for silver metallization-pastes in solar cells. The glasses were coated with a thin metallic silver layer and heat treatments in air and nitrogen close to Tg at 470 °C for 2 h were performed. After heat treatment under air and nitrogen atmospheres the coating thickness, measured by a white light interferometer, was about 1.8 µm thick. Silver depth profiles determined by means of secondary neutral mass spectrometry (SNMS) indicate the fastest silver diffusion to a depth of 3.5 µm for Li2O-ZnO-B2O3 (LZB) glass. Nevertheless, the influence of the different alkali ions on the silver diffusion is small. The oxygen availability determines the silver diffusion into the glasses. The oxygen promotes the oxidation of the silver layer enabling Ag+ to diffuse into the glass and to precipitate as Ag0. Both species were detected by x-ray absorption spectroscopy (XAS). The precipitated metallic silver particles in Na2O-ZnO-B2O3 (NZB) glass have a mean size of 5.9 nm ± 1.2 nm diameter, which was determined using transmission electron microscopy (TEM). Phase separation in zinc-rich and zinc-poor phases with a mean diameter of 75 nm ± 20 nm occurred in NZB glass after heat treatment. Ion diffusion of the glasses into the silver layer was suggested by EDX-line scans. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Silver diffusion KW - Alkali zinc borate glass KW - Metallic silver precipitates KW - Phase separation PY - 2021 AN - OPUS4-52861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Study of Polyaniline/Silicon Dioxide based Coating on Carbon Steel in Artificial Geothermal Brine N2 - Geothermal brines are corrosive in nature because of their salt contents and high temperatures. Therefore, they pose a major challenge to geothermal power-plants, which are mostly built of low alloyed steels, e.g., carbon steel. Carbon steel is susceptible to uniform and localized corrosion when exposed to geothermal brines having acidic-saline properties. To overcome this limitation, geothermal power plants should be built by either high alloyed materials or by integrating protection systems on carbon steel, such as coatings and inhibitors. We studied a coating system containing polyaniline/silicon dioxide basing on locally available resources that provides protection against corrosion of carbon steel and enhance the thermal resistance in geothermal environments. Here, exposure and electrochemical tests of coated carbon steels were performed in an artificial geothermal brine. The solution had a pH of 4, with the composition of 1,500 mg/L of chlorides, which is based on the chemical analysis of geothermal brine found in Sibayak, Indonesia. All exposure tests were conducted using autoclaves at 150 °C with a total pressure of 1 MPa, which was performed for up to six months to evaluate the durability of the coating system. Post-experimental analyses were performed by assessing the surface of specimens using optical and electron microscopes. On the other hand, electrochemical tests were performed for seven days at 25 °C and 150 °C to investigate the kinetics of electrochemical reactions by measuring open circuit potential and electrochemical impedance spectra. Experimental results showed the corrosion resistance of PANI/SiO2 composite coatings, where polyaniline and SiO2 play their roles as stabilizers. T2 - World Geothermal Congress CY - Online meeting DA - 30.03.2021 KW - Coatings KW - Corrosion KW - Polyaniline KW - Sibayak KW - SiO2 PY - 2021 SP - 1 EP - 7 AN - OPUS4-52830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geffroy, P.-M. A1 - Schubert, Nils Hendrik A1 - Günster, Jens A1 - Zocca, Andrea T1 - Quantification of in-plane stress development during drying of tape-cast ceramic layers by cantilever deflection method N2 - The control of stress development in cast ceramics during drying is usually one of critical steps in ceramic processes, which is important also for additive manufacturing technologies using a suspension as feedstock. This work introduces a method based on the cantilever deflection method, to simultaneously quantify the kinetics of solvent evaporation, the shrinkage and the intensity of in-plane stresses developed during drying. Particular attention is given here to the experimental limits of the method and to the optimization of the experimental conditions to suitably measure the intensity of in-planar stress in the coating. The optimized method is applied to four alumina slurries for the water-based additive manufacturing technology LSD-print. Four stages of drying are identified and discussed in relation with the granulometry and morphology of the alumina ceramic particles. KW - Additive Manufacturing KW - Tape casting KW - Ceramic layers KW - Drying stress PY - 2025 DO - https://doi.org/10.1016/j.jeurceramsoc.2024.116868 VL - 45 IS - 1 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-61044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Laser beam melting additive manufacturing at μ-gravity N2 - At the Workshop "Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing" at the Institute of Materials Physics in Space, German Aerospace Center (DLR) in Cologne, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications in microgravity. T2 - Workshop 'Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing' CY - Cologne, Germany DA - 11.08.2022 KW - Additive manufacturing KW - In-space manufacturing KW - Microgravity KW - μ-gravity KW - Laser beam melting KW - Advanced manufacturing KW - Aerospace KW - Process monitoring PY - 2022 AN - OPUS4-56521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller-Elmau, Johanna T1 - 2PP of ceramic N2 - Photon-based additive manufacturing technologies such as SLA, DLP, LCM, moreover volumetric two-photon-polymerization (2PP), Xolography and holographic technologies promise the highest accuracy and dimensional freedom. To transfer the light through the feedstock it needs sufficient transparency. Ceramic particles used for powder processing routes act as scattering sites and therefore hinder the light transmission, unless… The particle size and particle size distribution are chosen small and narrow enough. Particles smaller than roughly 1/10th of the light wavelength, mostly nanoparticles around 5nm size, decrease scattering vastly. This turns resins even with homogeneously distributed ceramic weight fraction of up to 80% transparent again. Feedstocks were prepared for the highly accurate two-photon-polymerization gaining the smallest yttria stabilized zirconia structures with a resolution of 500nm and unique mechanical properties. The same feedstock was applied to DLP and LCM as layer-by-layer AM-technologies for bigger parts. Hybridizing both technologies enables ceramic parts with microscopic accuracy at macroscopic dimensions. The feedstock was even applied to the volumetric Xolography with the highest transparency requirement so far and to versatile and flexible holographic AM. What are the next steps? Can those proof-of -concept studies be transferred to industrial applications and what are the hurdles on the way? How to make the stretch between fundamental research and application-oriented development? T2 - Smart Made 2025 CY - Osaka, Japan DA - 01.10.2025 KW - Tranparent KW - Ceramic KW - Additive manufacturing PY - 2025 AN - OPUS4-65062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Zocca, Andrea T1 - Continuous layer deposition for the Additive Manufacturing of ceramics by Layerwise Slurry Deposition N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method enabling the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder. Not only very fine, submicron powders can be processed with low organics, but also the dense powder bed provides excellent support to the parts built. The latest development of this technology shows that it is possible to print ceramic parts in a continuous process by depositing a layer onto a rotating platform, growing a powder bed following a spiral motion. The unique mechanical stability of the layers in LSD-print allows to grow a powder bed several centimeters thick without any lateral support. The continuous layer deposition allows to achieve a productivity more than 10X higher compared to the linear deposition, approaching a build volume of 1 liter/hour. T2 - DKG Jahrestagung 2024 CY - Höhr-Grenzhausen, Germany DA - 09.09.2024 KW - Ceramic KW - Additive manufacturing PY - 2024 AN - OPUS4-61051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Gojani, Ardian A1 - Völker, Tobias A1 - Günther, Tobias A1 - Gornushkin, Igor B. A1 - Wilsch, Gerd A1 - Günster, Jens T1 - Investigation of grain sizes in cement-based materials and their influence on laser-induced plasmas by shadowgraphy and plasma imaging N2 - The effect of particle grain sizes in different cement-based mixtures on the laser-induced plasma evolution is studied using two experimental methods: (i) temporal and spatial evolution of the laser-induced shock wave is investigated using shadowgraphy and two-dimensional plasma imaging, and (ii) temporal and spatial distribution of elements in the plasma is investigated using two-dimensional spectral imaging. This study is motivated by the interest in applying laser-induced breakdown spectroscopy (LIBS) for chemical analysis of concrete, and subsequently obtain information related to damage assessment of structures like bridges and parking decks. The distribution of grain sizes is of major interest in civil engineering as for making concrete different aggregate grain sizes defined by a sieving curve (64mm to 0.125 mm) are needed. Aggregates up to a size of 180 μm can be excluded from the data set, therefore only the amount of small aggregates with a grain size below 180 μm must be considered with LIBS. All components of the concrete with a grain size smaller than 0.125mm are related to the flour grain content. Tested samples consisted of dry and hardened cement paste (water-cement ratio w/z=0.5), which served as a reference. Aggregate mixtures were made by adding flour grains (size 40 μm) and silica fume (size 0.1 μm) in different ratios to cement: 10%, 30%, 50% and 60%, all combined to the remaining percentage of dry or hydrated cement. The visualization results show that a dependance in the evolution of the plasma as a function of sample grain size can be detected only in the initial stages of the plasma formation, that is, at the initial 3 μs of the plasma life. Spectral information reveals the elemental distribution of the silicon and calcium in plasma, in both neutral and ionized form. Here also, a significant effect is observed in the first 1 μs of the plasma lifetime. KW - LIBS KW - Cement-based materials KW - Particle size KW - Shadowgraphy KW - Plasma imaging PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105772 VL - 165 SP - 105772 PB - Elsevier B.V. AN - OPUS4-50319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Kohl, Anka T1 - Short-term exposure tests of ɣ-Al2O3 Sol-gel coating on X20Cr13 in artificial geothermal waters with different pH N2 - The suitability of an Al2O3 coating for corrosion protection on X20Cr13 was evaluated in various artificial geothermal brines, focusing on the influence of different pH (4, 6 and 8) and their chemical compositions on the coating properties. All experiments were performed in the laboratory using autoclaves at 150 ◦C and 1 MPa in deaerated condition for 1 and 7 days. Results showed that the pH of geothermal waters is the most detrimental factor in the transformation of ɣ-Al2O3 and its protective abilities. Delaminations were found in the Coating exposed to geothermal brines with pH 4. FTIR spectra indicated a transformation of ɣ-Al2O3 to boehmite AlOOH after exposure to pH 4 and 6, and bayerite Al(OH)3 was formed after exposure to pH 8. Different Crystal structures of the hydrated Al2O3 also contribute to the stability of the coatings, observed by the SEM- EDX of the surface and cross-section of coatings. This study indicated that ɣ-Al2O3 sol-gel coating presents a promising aspect of corrosion protection in geothermal environment with a neutral pH. KW - Al2O3 KW - Corrosion KW - Coating KW - Martensitic steel PY - 2021 DO - https://doi.org/10.1016/j.geothermics.2021.102193 SN - 0375-6505 VL - 96 SP - 102193 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Pulverbasierte additive Fertigung unter reduzierten Schwerkraftbedingungen N2 - 2014 wurden die ersten additiv gefertigten Bauteile in der Internationalen Raumstation (ISS) hergestellt. Die Ära des 3D Drucks im Weltraum startete bereits 2010 mit einem NASA Projekt. Made in Space Inc. entwickelte im Auftrag der NASA einen 3D Drucker auf Basis der Fused Deposition Modeling (FDM) Technologie. Seit 2016 gibt es in der ISS eine Additive Manufacturing Facility und seitdem wurden mittels FDM mehr als hundert Teile aus Kunststoff 3D gedruckt. Die ESA arbeitet gleichfalls an der Entwicklung eines FDM-3D Druckers für die Schwerelosigkeit, z.B. im ESA Projekt „IMPERIAL“, „MELT 3D printer“. Metallische Bauteile mit guten mechanischen Eigenschaften und guter Genauigkeit können kommerziell mittels des Laserstrahlschmelzens (Laser Powder Bed Fusion LPBF) dargestellt werden. Diese Technologie kann allerdings im Weltraum nur unter der Voraussetzung angewendet werden, dass das Pulvermaterial in der Schwerelosigkeit manipuliert und in Form einer dünnen Schicht stabilisiert werden kann. Standard LBM-Anlagen sind deshalb für einen Betrieb in Schwerelosigkeit nicht geeignet, was z.B. auch von Made in Space Inc. in der Vergangenheit beleuchtet wurde. Die pulverbasierte additive Fertigung unter Schwerelosigkeit erfordert die Entwicklung völlig neuartiger Technologien zum Schichtauftrag. Methoden: Mit Hilfe der „Gasflussunterstützten Pulverdeposition“ wurden im Rahmen des Projekts unter reduzierter Schwerkraft systematische Parameterstudien zum LPBF-Prozess durchgeführt. Das Projekt knüpfte an erfolgreiche Vorarbeiten zur Gasflussunterstützten Pulverdeposition unter µg Bedingungen aus vier DLR Parabelflugkampagnen (30., 31., 33. und 34.) an. Ergebnisse: In den Parabelflugkampagnen 76 der ESA und 38 des DLR wurde eine neue Einheit in Wabenform für den Schichtauftrag von Pulver getestet. Es konnte gezeigt werden, dass diese Einheit, die auch als Pulverreservoir funktionierte und mittels eines Aktuators in Schwingungen versetzt wurde, einen reproduzierbaren Schichtauftrag mit geringem Pulververlust unter Schwerelosigkeit ermöglicht. Um die Qualität der aufgetragenen Schicht überwachen zu können, wurde ein Linienscanner beschafft und in die Anlage integriert. Mit diesem kann ein 3D Profil der Schichten im laufenden Prozess erstellt werden, was eine Qualitätskontrolle jeder einzelnen Schicht im Prozess erlaubt. Neben Edelstahl (316L) wurde das Schmelzverhalten von Regolith direkt im Pulverbett unter Bedingungen reduzierter Schwerkraft ebenfalls untersucht. Ein Modell zum Verständnis der Einflussgrößen Gravitation, Schmelzbadgröße, Partikelgröße und Zusammensetzung des Regolith wurde entwickelt. Schlussfolgerungen: Die Entwicklung einer leistungsfähigen Rakeleinheit für den Schichtauftrag unter Schwerelosigkeit ist Voraussetzung für die Generierung defektfreier Bauteile in der pulverbasierten additiven Fertigung in Schwerelosigkeit. Der Übergang zum Werkstoff Regolith hat die Thematik der Verwendung von lokalen Rohstoffen (ISRU), z.B. Mondstaub auf dem Mond, in Kombination mit dem Ziel einer hohen Produktivität beim Aufbau großer Strukturen hervorgebracht. Hierbei ist das Thema einer handhabbaren Schmelzpoolgröße im Laserschmelzprozess unter variierender Schwerkraft in den Fokus gerückt und wird derzeit noch beforscht. T2 - DLR Statussymposium CY - Bonn, Germany DA - 12.03.2025 KW - Regolith KW - Mond KW - ISRU KW - micro-g PY - 2025 AN - OPUS4-63964 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - Solar sintering KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving PY - 2022 SP - 1 EP - 9 AN - OPUS4-56519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Nofz, Marianne A1 - Bäßler, Ralph A1 - Sojref, Regine A1 - Le, Quynh Hoa T1 - Preliminary Study on Al2O3 Sol-Gel Coating for Corrosion Protection of Martensitic Stainless Steel in Artificial Geothermal Water N2 - Al2O3 coatings are often used as protective layers on steels against electrochemical and high-temperature corrosion because they are chemically inert and stable at elevated temperatures. This study presents preliminary work on the possibilities of using Al2O3 sol-gel coatings for corrosion protection of martensitic stainless steels in geothermal environments. Al2O3 sol-gel coatings were applied on UNS S42000, which is known to be susceptible to uniform and localized corrosion. The coated steel specimens were then tested in two types of artificial geothermal water, which simulate the geothermal fluids found in Sibayak (SBY), Indonesia, and North German Basin (NGB), Germany, respectively. SBY has pH 4 and 1.5 g/L of chloride ions, whereas NGB has a pH of 6 and 166 g/L of chloride ions. All experiments were carried out in autoclaves at 150 °C and 1 MPa under the deaerated condition. Evaluations were performed by investigating the surface profiles of both uncoated and coated steels before and after the corrosion test using a Laser Scanning Microscope (LSM) and Scanning Electron Microscope (SEM). Finally, Electrochemical Impedance Spectroscopy (EIS) was performed to compare the corrosion resistance of Al2O3 coated steels in SBY and NGB solutions. It was observed from the corrosion test that Al2O3 coatings are more suitable for use in the geothermal water with a higher pH. T2 - AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 19.04.2021 KW - Protective coating KW - Sol-gel coating KW - Geothermal KW - Martensitic steel KW - Corrosion PY - 2021 SP - 16777-01 EP - 16777-12 CY - Houston AN - OPUS4-52501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller-Elmau, Johanna A1 - Meyer, Frank A1 - Goebbert, Christian A1 - Günster, Jens T1 - Manufacturing Ceramics with Light N2 - Additive manufacturing of extremely complex and filigree geometries from ceramic materials is a fascinating topic as ceramic materials are especially suitable for extremely small structures thanks to their physicochemical properties: they are chemically stable and do not corrode, while exhibiting unique mechanical properties especially in the micrometre range (Fig. 1). In addition, the ceramic structures made of yttria-stabilized zirconia (YSZ) shown in the figure are transparent, which makes them interesting candidates for the development of miniaturized optical components. The refractive index of YSZ measures 2,2 and is therefore considerably higher than that of polymer-based materials or glasses. The possibility of building this type of structure is enabled with the use of ceramic slurries with sufficiently high Transparency for the volumetric process of two-photon polymerization, which uses a femtosecond-short-pulse laser to structure photo-crosslinkable resins in the volume of one droplet. Slurries with even further optimized transparency allow even the application of xolography, a volumetric process that builds components with relatively low resolution, but in relatively large volumes and higher productivity. In the scope of the research presented here, for the first time, this process is applied to sintered ceramic materials. To be able to use minute ceramic structures as real components, an approach for the hybridization of processes ispresented in which components in the centimetre range, with relatively low resolution, are combined with very high-resolution nanostructures. KW - Additive manufacturing KW - Zirconia KW - Two-photon-polymerization KW - Nanopowder PY - 2025 SN - 0173-9913 VL - 4 SP - 34 EP - 41 PB - Göller Verlag GmbH CY - Baden-Baden AN - OPUS4-65070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -