TY - CONF A1 - Waurischk, Tina T1 - Vacuum crack growth in silicate glasses N2 - Although the slow crack growth in glass is dominated by stress-corrosion phenomena, it also should reflect the underlaying intrinsic fracture behavior controlled by glass chemistry and structure. To investigate such underlaying phenomena, crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young’s moduli and theoretical fracture surface energy. Data analysis reveals slight correlation with the packing density and significant deviations from the intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Oxide glass KW - Fracture toughness KW - Fracture surface PY - 2022 AN - OPUS4-56485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Chen, Y.-F. A1 - Contreras Jaimes, A. T1 - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas (GlasDigital) N2 - Das Projekt GlasDigital wurde im allgemeinen vorgestellt, sowie die einzelnen Zwischenstände der verschiedenen Arbeitspakete aller Projektpartner präsentiert. Die allgemeine Porjektvorstellung ist auf deutsch. Die Zwischenstände der Arbeitsinhalte sind auf englisch. T2 - PMD Vollversammlung CY - Berlin, Germany DA - 03.11.2022 KW - Oxidglas KW - Robotische Glasschmelzanlage KW - ML KW - Ontologie KW - Digitaler Zwilling KW - Bildanalyse PY - 2022 AN - OPUS4-56491 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. T1 - Glass Screening for the systematic development of new glasses N2 - Die technischen Möglichkeiten der robotischen Glasschmelzanlage der BAM werden vorgestellt. T2 - 26th International Conference on Glass CY - Berlin, Germany DA - 04.07.2022 KW - Material Digital PY - 2022 AN - OPUS4-56280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina T1 - Data-driven Workflow for Accelerated Glass Development (GlasDigital) N2 - As part of a joint project involving the Fraunhofer Institute for Silicate Research (ISC), the Friedrich Schiller University of Jena, the Clausthal University of Technology and the Federal Institute for Materials Research and Testing (BAM), digital tools are to be created for the development of new types of glass materials. Current processes for the production of glasses with improved properties are usually very cost- and energy-intensive due to the low degree of automation and are subject to long development cycles. The use of robotic synthesis processes in combination with self-learning machines is intended to overcome these problems in the long term. The development of new types of glass can then not only be accelerated considerably, but also be achieved with much less effort. In this talk, data generation via a robotic high-throughput glass melting system is presented, which should be the experimental basis for the ontology developed within the project GlasDigital. T2 - Materials Science and Engineering Congress (MSE 2022) CY - Darmstadt, Germany DA - 27.09.2022 KW - Oxidglas KW - Robotische Glasschmelzanlage PY - 2022 AN - OPUS4-56489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenbusch, Ivo A1 - Arai, Marylyn Setsuko A1 - Rizzo, Fabio A1 - de Camargo, Andrea S. S. A1 - Ravoo, Bart Jan T1 - A host–guest approach to ratiometric pH sensing using upconversion nanoparticles N2 - A new pH nanosensor based on β-NaYF4:Yb3+/Tm3+ upconversion nanoparticles functionalized with cyclodextrin and a pH-sensitive adamantane-modified nitrobenzoxadiazole dye (NBD-Ad). KW - Host-guest materials KW - Upconversion nanoparticles KW - Ratiometric optical sensors KW - pH sensing PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637722 DO - https://doi.org/10.1039/d5na00145e SN - 2516-0230 VL - 7 IS - 13 SP - 4142 EP - 4151 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Optical and Spectroscopic Properties of Glasses N2 - Optical glasses have given us the eyes to unveil the microscopic and the macroscopic worlds through microscope and telescope lenses, they have revolutionized the way we communicate through fiber optics and portable device screens, as well as given us new perspectives for sustainable energy harvesting conversion and generation. To meet the demands of ever-growing markets, the compositional design of new glasses requires full characterization of thermal, mechanical, electric, and optical properties. Particularly, the characterization of optical properties is not only relevant for optical/luminescent applications but is also essential for the tailored design of some medical and dental materials such as restorative resins, implants and prothesis. In this seminar we will introduce the fundaments on the optical properties of materials, with particular focus on glasses, and the techniques to characterize them. T2 - 3rd Sao Carlos School on Glasses and Glass-Ceramics CY - Sao Carlos, Brazil DA - 10.03.2025 KW - Optical properties KW - Glasses PY - 2025 AN - OPUS4-63773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Structure and photophysics of RE ion doped gallium phosphofluoride glasses containing silver nanostructures: Effects of heat treatment and femtosecond direct laser writing. N2 - Gallium fluoride phosphate glasses are interesting hosts for emissive rare-earth (RE) dopants. Despite featuring low refractive index, they present high energy radiation resistance and a wide optical transmission range (350 to 1700 nm) enabling observation of important RE3+ emissions in the visible to near-infrared spectral range. In a previous, NMR-based structural study of the system xGa(PO3)3–(40-x)GaF3–20BaF2–20ZnF2–20SrF2 (x = 5 - 25 mol%), we verified that the network structure of these glasses is dominated by P-O-Ga linkages with no P-O-P linkages and that Ga is mainly six-coordinated in a mixed fluoride/phosphate environment. For Eu3+ doped samples, the photophysical properties strongly suggest changes in the ion´s ligand distribution toward a fluoride-dominated environment at low P/F, which translates into improved radiative emissions. To extend the studies to other RE doped glasses, and glasses containing Ag nanostructures (and their influence on RE emission), we selected the composition 25Ga(PO3)3 – 20ZnF2 – 30BaF2 - (25 – x - y)SrF2 – xAgNO3 - yNdF3, where x = 0, 1, 3, 5, 10 mol% and y = 0 or 1 mol%. The glasses were synthesized through the conventional melt-quenching technique and fully characterized from the thermal, structural, and microstructural viewpoints. By appropriate heat-treatment, the presence of both Ag nanoclusters (Ag-NCs, < 10 nm) and larger nanoparticles was confirmed by TEM in agreement with the observation of broad emission bands in the visible spectrum. Excited state lifetime measurements evidence the presence of non-radiative energy transfer processes between the Ag species to Nd3+ ions but there is no direct evidence of plasmon enhancement effects. In samples singly doped with silver, direct laser writing experiments using a femtosecond laser were also performed which induced localized growth of Ag-NCs associated to a variation in the refractive index. Preliminary results indicate the potential of the DLW technique for tailoring optical glass properties. T2 - 27th International Congress on Glass 2025 CY - Kolkata, India DA - 20.01.2025 KW - Gallium phosphofluoride glass KW - Structure-property correlation KW - Femtosecond direct laser writting KW - Neodymium PY - 2025 AN - OPUS4-63774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina T1 - Composition-structure-property relationships of ternary borate glasses N2 - Since the pioneer work of Krogh-Moe [1] in the 1960’s the structure clarification of borate glasses is of interest for many generations. In the present contribution the composition–structure–property relationships of Me2O–ZnO–B2O3, Me = Li (LZB), Na (NZB), K (KZB), Rb (RZB), CaO–ZnO–B2O3 (CaZB), and Li2O–PbO–B2O3 (LPbB) glasses are investigated. Non-toxic, highly polarizable zinc oxide potentially substitutes harmful lead oxide in glasses for applications e.g., in photovoltaics and microelectronics. Glass structure was analyzed using Raman and infrared spectroscopy, and the glass properties were measured using dilatometry (Tg, viscosity data, coefficient of thermal expansion) and rotational viscometry (high-temperature viscosity) [2,3]. The spectroscopic results show that alkali and calcium ions largely balance out the negative charges of BO4-units, while zinc and lead ions mainly stabilize the non-bridging oxygen atoms (NBO). The type of network modifier ion directs formation of the BO4-containing groups and the number of BO4-units (N4). Thus, i.) BO4-containing pentaborate was assigned in LZB, NZB and CaZB glasses, and ii.) diborate in KZB and RZB glasses. Simultaneous presence of pentaborate and diborate was only detected in LPbB. The combination of modifier’s properties, i.e., lower Lewis’s basicity (Rb+ > Li+), higher field strength (Rb+ < Li+), lower polarizability (Rb+ > Li+), and steric effects with increasing size (Rb+ > Li+) [4], leads to slightly increasing N4 in the series RZB (0.36) ≈ KZB < NZB (0.37) < LZB ≈ CaZB (0.39). This increase in N4 results in an increase in the atomic packing density 0.519 (RZB) – 0.584 (LZB) and thus in the Young’s Modulus 38.1 GPa (RZB) – 92.5 GPa (LZB) and in the glass transition temperature (Tg) 444 °C (RZB) – 467 °C (LZB) in the alkali series. In reverse order the coefficient of thermal expansion decreases from 12·10-6 K-1 (RZB) – 8.54·10-6 K-1 (LZB) with increasing N4. Ca2+ in CaZB enhances the viscosity (Tg: 580 °C) compared to Li+ in isocompositional LZB due to higher coordination. On the other hand, Pb2+ in LPbB decreases the viscosity (Tg: 399 °C) compared to Zn2+ in LZB with similar molar fractions. T2 - 98th Glass-Technology Conference of the German Society of Glass Technology (DGG) CY - Goslar, Germany DA - 26.05.2025 KW - Borate glasses KW - Structure-property relationship PY - 2025 AN - OPUS4-63771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xie, Zhuocheng A1 - Atila, Achraf A1 - Guénolé, Julien A1 - Korte-Kerzel, Sandra A1 - Al-Samman, Talal A1 - Kerzel, Ulrich T1 - Predicting grain boundary segregation in magnesium alloys: An atomistically informed machine learning approach N2 - Grain boundary (GB) segregation substantially influences the mechanical properties and performance of magnesium (Mg). Atomic-scale modeling, typically using ab-initio or semi-empirical approaches, has mainly focused on GB segregation at highly symmetric GBs in Mg alloys, often failing to capture the diversity of local atomic environments and segregation energies, resulting in inaccurate structure-property predictions. This study employs atomistic simulations and machine learning models to systematically investigate the segregation behavior of common solute elements in polycrystalline Mg at both 0 K and finite temperatures. The machine learning models accurately predict segregation thermodynamics by incorporating energetic and structural descriptors. We found that segregation energy and vibrational free energy follow skew-normal distributions, with hydrostatic stress, an indicator of excess free volume, emerging as an important factor influencing segregation tendency. The local atomic environment’s flexibility, quantified by flexibility volume, is also crucial in predicting GB segregation. Comparing the grain boundary solute concentrations calculated via the Langmuir-McLean isotherm with experimental data, we identified a pronounced segregation tendency for Nd, highlighting its potential for GB engineering in Mg alloys. This work demonstrates the powerful synergy of atomistic simulations and machine learning, paving the way for designing advanced lightweight Mg alloys with tailored properties. KW - Machine learning KW - Grain boundary segregation KW - Magnesium alloys KW - Atomistic simulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638499 DO - https://doi.org/10.1016/j.jma.2025.03.021 SN - 2213-9567 VL - 13 IS - 6 SP - 2636 EP - 2650 PB - Elsevier B.V. AN - OPUS4-63849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ruehle, Bastian T1 - Workflow generation, management, and semantic description for Self-Driving Labs N2 - The software backend that controls the robotic hardware and runs the synthesis workflows is a very important component of any Self-Driving Lab (SDL). On the one hand, it has to deal with orchestrating and managing complex and task-specific hardware through low-level communication protocols and plan and use the available resources as efficiently as possible while executing (parallelized) workflows, on the other hand, it is the interface the users use to communicate with this highly complex platform, and as such, it needs to be as helpful and user-friendly as possible. This includes the AI-aided experimental design in which the system helps the user to decide which experiment to run next, providing automated data analysis from characterization measurements, and offering easy to understand tools and graphical user interfaces for generating the workflows that are executed on the platform. Lastly, the specificity of the workflows and their dependence on the hardware and software of the SDLs necessitates a common description or ontology for making them easily interchangeable and interoperable between different platforms and labs. In this contribution, we present several key aspects of “Minerva-OS”, the central backend that orchestrates the syntheses workflows of our SDL for Nano- and Advanced Materials Syntheses [1]. One key feature is the resource management or “traffic control” for scheduling and executing parallel reactions in a multi-threaded environment. Another is the interface with data analysis algorithms from in-line, at-line, and off-line measurements. Here, we will give examples of how automatic image segmentation of electron microscopy images with the help of AI [2] can be used for reducing the “data analysis bottleneck” from an off-line measurement. We will also discuss, compare, and show benchmarks of various machine learning (ML) algorithms that are currently implemented in the backend and can be used for ML-guided, closed-loop material optimization in our SDL. Lastly, we will show our recent efforts [3] in making the workflow generation on SDLs more user-friendly by using large language models to generate executable workflows automatically from synthesis procedures given in natural language and user-friendly graphical user interfaces based on node editors that also allow for knowledge graph extraction from the workflows. In this context, we are currently also working on an ontology for representing the process steps of the workflows, which will greatly facilitate the semantic description and interoperability of workflows between different SDL hardware and software platforms. T2 - Accelerate 2025 CY - Toronto, Canada DA - 11.08.2025 KW - Nanomaterials KW - Advanced Materials KW - Workflows KW - Machine Learning KW - SDL PY - 2025 AN - OPUS4-63936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lemiasheuski, Anton A1 - Wehrkamp, F. A1 - Bajer, Evgenia A1 - Sonnenburg, Elke A1 - Göbel, Artur A1 - Porohovoj, Ilja A1 - Bettge, Dirk A1 - Pfennig, Anja T1 - Practical application of an automated 3D metallography system for the reconstruction and microstructural analysis of porosity in a sintered steel N2 - In the 3D microstructural analysis of a digital twin of porosity in the sintered steel Astaloy CrA, pore shape, average pore size as well as pore distribution will be analyzed. Porosity plays a major role in powder-metallurgical materials since it greatly impacts the mechanical properties of these materials and therefore represents a key parameter in their characterization. Based on the robot-assisted automated serial sectioning and imaging (RASI) system of the Federal Institute for Materials Research and Testing (BAM, Bundesanstalt für Materialforschung und Prüfung) in Berlin, the technique of metallographic serial sectioning will be used to image the microstructure and reconstruct a digital 3D twin from the stack of images obtained. Compared with an individual 2D microsection, the quantitative microstructural analysis of this 3D twin will enable more accurate conclusions on the shape, size and distribution of pores. This paper will detail the key steps in 3D microstructural analysis, including the metallographic preparation routine, the imaging technique, image alignment as well as the segmentation of pores. After the methodology has been described, the results of the quantitative microstructural analysis will be presented and the validity of quantitative parameters of 3D and 2D images will be compared and discussed. The analysis of more than 10,000 pores revealed a correlation between pore shape and pore size. It was also found that a 2D representation of the material surface is insufficient for a precise quantitative characterization of porosity. N2 - In der 3D-Gefügeanalyse eines digitalen Zwillings von Poren in einem Sinterstahl des Typs Astaloy CrA werden sowohl die Porenform als auch die durchschnittliche Porengröße und -verteilung analysiert. Die Porosität spielt in pulvermetallurgischen Werkstoffen eine große Rolle, da sie erheblich die mechanischen Eigenschaften beeinflusst und daher bei der Charakterisierung dieser Werkstoffe ein wichtiger Parameter ist. Basierend auf der Verwendung des Robot-Assisted Automated Serial-Sectioning and Imaging (RASI)-Systems der Bundesanstalt für Materialforschung und Prüfung (BAM) in Berlin, wird das metallographische Serienschnittverfahren genutzt, um das Gefüge aufzunehmen und aus dem Bildstapel einen digitalen 3D-Zwilling zu rekonstruieren. Verglichen zu einem 2D-Einzelschliff ermöglicht die quantitative Gefügeanalyse dieses 3D-Zwillings präzisere Aussagen zu Porenform, -größe und -verteilung. Diese Arbeit beschreibt die wesentlichen Schritte, die für eine 3D-Gefügeanalyse nötig sind, darunter die metallografische Präparationsroutine, das Bildgebungs-Verfahren, das Alignment der Bilder sowie die Segmentierung der Poren. Im Anschluss an die methodische Darstellung werden die Ergebnisse der quantitativen Gefügeanalyse präsentiert und ein Vergleich zwischen der Aussagekraft der quantitativen Parameter von 3D- und 2D-Abbildungen diskutiert. Bei der Analyse von über 10.000 Poren konnte eine Korrelation zwischen der Form und der Porengröße aufgezeigt werden. Weiterhin konnte aufgezeigt werden, dass eine 2D-Abbildung der Werkstoffoberfläche nicht ausreichend für eine eindeutige quantitative Beschreibung der Porosität ist. KW - 3D Metallographie KW - RASI KW - Porenstruktur PY - 2025 DO - https://doi.org/10.1515/pm-2025-0049 SN - 2195-8599 VL - 62 IS - 8 SP - 516 EP - 535 PB - De Gruyter Brill AN - OPUS4-63930 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk T1 - Fraktographie mit Hilfe von klassischen Methoden und Machine Learning – bisherige Erfahrungen und Anwendung auf weitere Fragestellungen N2 - In der Schadensanalyse und bei der Bewertung von mechanischen Experimenten liefert die Fraktographie Informationen über die vorliegenden Bruchmerkmale und den Bruchmechanismus eines Bauteils oder einer Probe. Im Rahmen des DGM AK Fraktographie werden an metallischen Werkstoffen Vergleichsexperimente durchgeführt und die Ergebnisse in einer Datenbank zur Verfügung gestellt. In einem Vorhaben wurde die Analyse von Bruchmerkmalen mittels Topographie-Daten und Machine Learning erprobt. Die gewonnenen Erfahrungen könnten auf weitere Anwendungsfälle wie z.B. Schweißverbindungen angewendet werden. T2 - Erfahrungsaustausch Werkstoff- und Bauteilprüfung CY - Halle, Germany DA - 04.09.2025 KW - Fraktographie KW - Machine Learning KW - Schadensanalyse KW - Schweißverbindungen PY - 2025 AN - OPUS4-64032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Colombo, Marta A1 - Mostoni, Silvia A1 - Fredi, Giulia A1 - Rodricks, Carol A1 - Kalinka, Gerhard A1 - Riva, Massimiliano A1 - Vassallo, Andrea A1 - Di Credico, Barbara A1 - Scotti, Roberto A1 - Zappalorto, Michele A1 - D'Arienzo, Massimiliano T1 - Interfacial Chemistry Behind Damage Monitoring in Glass Fiber‐Reinforced Composites: Attempts and Perspectives N2 - Glass Fiber Reinforced Polymers (GFRPs) are widely used in structural applications but degrade over time due to internal damage. Structural Health Monitoring (SHM) enables early damage detection, improving reliability and reducing maintenance costs. Traditional SHM methods are often invasive and expensive. An emerging solution involves the embedding of carbon‐based filler like carbon nanotubes and reduced graphene oxide into GFRPs, forming conductive networks that detect damage through resistance changes. However, poor adhesion among GF, filler, and matrix can reduce mechanical performance. Therefore, tailoring GF and filler surface chemistry is essential to enhance durability and enable effective self‐sensing properties. This review summarizes the most recent efforts in modifying GF with carbon‐based filler to design GFRP with improved sensing ability and mechanical performance. After a brief introduction on the role of SHM solutions in early damage detection, an overview of the common GF and filler used in GFRPs will be provided. Then, the most relevant GF modification strategies exploited to incorporate carbon‐based filler in GFRPs will be described, focusing on the chemical grafting approach, which allows a careful optimization of the fiber/matrix interface. Last, a concise summary of the key mechanical and electrical tests to evaluate interfacial adhesion and self‐sensing will be supplied. KW - Review KW - Interface KW - Micromechanics KW - Polymer matrix composites KW - Glass fibre reinforced composites PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639934 DO - https://doi.org/10.1002/pc.70332 SN - 0272-8397 SP - 1 EP - 30 PB - Wiley AN - OPUS4-63993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmusto, Juho T1 - Initial oxidation of the refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr N2 - In contrast to traditional alloys, which are typically based on a single dominant element, high-entropy alloys (HEAs) consist of five or more principal elements in roughly equal proportions. These complex alloys often exhibit superior characteristics compared to conventional alloys, including enhanced strength and hardness, exceptional wear resistance, high structural stability, and strong resistance to oxidation. Despite these promising characteristics, the vast compositional space of HEAs means that only a limited number have been thoroughly investigated for their mechanical and chemical behavior. One notable example is the refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, which represents a newly emerging class of materials. This alloy features a nanoscale microstructure composed of B2 and bcc phases, resulting in compressive strength at elevated temperatures that surpasses that of conventional Ni-based superalloys. Such performance offers potential benefits for improving turbine efficiency in aerospace and energy generation applications. However, the alloy’s microstructure is known to be sensitive to annealing. Specifically, its mechanical properties deteriorate when intragranular hexagonal Al-Zr-based intermetallic compounds form, likely due to issues with phase stability. On the other hand, the inclusion of Al has been shown to enhance oxidation resistance. Nevertheless, HEAs are also known to develop pronounced internal aging zones caused by diffusion during oxidation processes. These findings indicate a need for further investigation into the thermodynamic stability of this alloy. In addition, its oxidation behavior—both at the surface and within the material—remains incompletely understood. This ongoing research explores the oxidation behavior of the AlMo0.5NbTa0.5TiZr alloy at temperatures ranging from 800 °C to 1000 °C. The influence of water vapor on the oxidation process is also examined. Ultimately, the goal is to integrate insights into the alloy’s structural, mechanical, and chemical characteristics at high temperatures. T2 - Gordon Research Conference - High Temperature Corrosion CY - New London, United States DA - 16.07.2023 KW - High-Entropy superalloy KW - Phase stability KW - Microstructural evolution KW - Oxidation behavior KW - High-Temperature Performance PY - 2023 AN - OPUS4-63851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Relation of craze to crack length during slow crack growth phenomena in high‐density polyethylene N2 - The craze‐crack mechanism occurring in high‐density polyethylene (HDPE) causing slow crack growth and environmental stress cracking is investigated in detail with respect to the relation of crack length and the related craze zone. This is essential for the understanding of the resulting features of the formed fracture surface and their interpretation in the context of the transition from crack propagation to ductile shear deformation. It turns out that an already formed craze zone does not inevitably result in formation of a propagating crack, but could also undergo ductile failure. For the examination, the full notch creep test (FNCT) was employed with a subsequent advanced fracture surface analysis that was performed using various imaging techniques: light microscopy, laser scanning microscopy, scanning electron microscopy, and X‐ray micro computed tomography scan. FNCT specimens were progressively damaged for increasing durations under standard test conditions applying Arkopal, the standard surfactant solution, and biodiesel as test media were used to analyze the stepwise growth of cracks and crazes. From considerations based on well‐established fracture mechanics approaches, a theoretical correlation between the length of the actual crack and the length of the preceding craze zone was established that could be evidenced and affirmed by FNCT fracture surface analysis. Moreover, the yield strength of a HDPE material exposed to a certain medium as detected by a classic tensile test was found to be the crucial value of true stress to induce the transition from crack propagation due to the craze‐crack mechanism to shear deformation during FNCT measurements. Highlights - Progress of crack formation in high‐density polyethylene is analyzed by different imaging techniques - Determined growth rates depend on distinction between craze zone and crack - The ratio of the present crack to the anteceding craze zone is validated theoretically - The transition from crack propagation to ductile shear deformation is identified - An already formed craze zone may still fail by ductile mechanisms KW - Craze-crack mechanism KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Slow crack growth (SCG) KW - X-ray computed tomography (CT) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601831 DO - https://doi.org/10.1002/pen.26698 SN - 1548-2634 VL - 64 IS - 6 SP - 2387 EP - 2403 PB - Wiley AN - OPUS4-60183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Damaging effect of admixtures used in crop protection products on high density polyethylene packaging material N2 - The phenomenon of environmental stress cracking is still a major issue in materials engineering as well as from a scientific perspective. Especially in the case of packaging materials made of high-density polyethylene, assessing the potential of premature damage due to environmental stress cracking is complex because of the large number of components in possible liquid filling goods. As a first guideline, the well-known effect of detergents and dispersants is usually considered, but the interplay with other components, such as organic solvents is often unknown. Particularly challenging in this respect are crop protection products, consisting of several different admixtures in addition to the biologically active ingredients. This study is based on two model liquids representing these admixtures that were established for testing in this context. The model liquids as well as their constituting components were used as liquid media in the Full Notch Creep Test to characterize the environmental stress cracking behavior of a typical high-density polyethylene. Complementary to the time-to failure of a notched specimen obtained from these tests, the crack opening was monitored optically, and the fracture surface was analyzed post-failure by laser scanning microscopy as well as scanning electron microscopy. Based on the results, the effect of various surfactants as well as the influence of organic solvents on environmental stress cracking are discussed. KW - Environmental stress cracking KW - High-density polyethylene KW - Crop protection products KW - Full notch creep test KW - Fracture surface analysis KW - Crack opening displacement PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554631 DO - https://doi.org/10.1016/j.polymertesting.2022.107672 SN - 0142-9418 VL - 114 SP - 1 EP - 16 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-55463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Evaluation of the damaging effect of crop protection formulations on high density polyethylene using the Full Notch Creep Test N2 - Four typical high-density polyethylene container materials were used to investigate damage or stress cracking behavior in contact with model liquids for crop protection products. These model liquids are established in German regulations for the approval of dangerous goods containers and consist of typical admixtures used for crop protection products but without biological active ingredients. This study is performed with the standardized method of Full Notch Creep Test, adapting the media temperature to 40 °C according to the usual conditions where these test liquids are applied. The two model liquids differ into a water-based solution and a composition based on different organic solvents which are absorbed by the material up to significant levels. Therefore, extensive sorption measurements are performed. The fracture surfaces obtained are analyzed in detail not only by light microscopy, but also by laser scanning microscopy as well as scanning electron microscopy. Influence of pre-saturation and applied stress are addressed by respective systematic series of experiments. KW - Polyethylene KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Fracture PY - 2021 DO - https://doi.org/10.1016/j.polymer.2021.123853 SN - 0032-3861 VL - 228 SP - 123853 PB - Elsevier Ltd. AN - OPUS4-52686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin T1 - Environmental Stress Cracking in PE-HD – Assessment of Crack Propagation and Mechanisms by Optical Methods N2 - Slow crack growth (SCG) under the influence of external fluid media, usually termed environmental stress cracking (ESC), is still one of the most frequent origins of severe damage and failure of polymeric materials. For polyethylene (PE) this is relevant for mass products, like bottles for consumer products, but also for high-performance materials for pipes or industrial packaging, including containers for chemicals and other dangerous goods. Especially for high-density polyethylene (PE-HD) the susceptibility to SGC and ESC is depending on the complex interplay between molecular weight and architecture and the resulting semicrystalline morphology, especially the formation of tie-molecules. A reliable assessment of the resistance against this damage phenomenon is essential for demanding as well as safety-critical applications and has to take into account suitable testing methodologies and conditions in combination with environmental media reflecting the properties representative for typical fillings and relevant components causing ESC. In this context a better understanding of different influencing factors, such as sorption, swelling or surface activity is necessary together with a detailed characterization of different stages of crack propagation and underlying mechanisms. Therefor well-established testing methods, such as the Full Notch Creep Test (FNCT), were complemented by detailed fracture surface analysis using e.g. LSM and SEM in combination with a time-dependent optical monitoring of the progressing crack growth. For the crack growth also the ratio of fibrillated craze zone to crack opening is important for the deeper understanding of crack propagation and related material parameters which can be additionally addressed by X-ray computed tomography. T2 - 34th Polymer Degradation Disscussion Group (PDDG) Conference CY - Dubrovnik, Croatia DA - 12.06.2023 KW - Polyethylen KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Fracture Surface Analysis PY - 2023 AN - OPUS4-57711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina T1 - An overview of structural, physical and thermal properties of low melting zinc and lead borate glasses N2 - Low melting zinc borate glasses awake interest to replace lead borate glasses in the silver metallization pastes for solar cells or microelectronics. In the current study, characteristic properties of alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) were compared to an earth alkali zinc borate glass (CaO-ZnO-B2O3). Additionally, zinc oxide is partially substituted by lead oxide or cooper oxide in the borate glasses (Li2O-PbO-B2O3, Na2O ZnO CuO-B2O3). The alkali zinc borate glasses indicate less differences in Raman spectra, and thus in structural properties, in comparison to the Ca and Pb ions influence. LPbB (Tg = 401 °C) has a lower viscosity than LZB (Tg = 468 °C) and CaZB has the highest glass transition temperature (Tg = 580 °C). The Angell plot for the alkali zinc borate glasses shows a high fragility m = 80. Besides Tg, the density measured by means of the Archimedean principle, molar volume, and coefficient of thermal expansion (CTE) of the glasses were investigated. Trends could be found according to alkali ions or intermediate oxides. The density increases with decreasing alkali ion size from KZB (2.632 g/cm3) to LZB (2.829 g/cm3) and increases from LZB to LPbB (3.764 g/cm3). CTE ranges between 7.09 10-6 K-1 for CaZB and 11.5 10 6 K 1 for KZB and RZB. The differential thermal analysis (DTA) and X ray diffraction (XRD) indicate crystallization of various crystalline phases during heating with 5 K/min in most cases. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Borate glasses KW - Glass structure KW - Viscosity KW - Young´s Modulus KW - Alkali ions PY - 2021 AN - OPUS4-52867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Knobloch, Tim A1 - Altenburg, Simon A1 - Recknagel, Sebastian A1 - Bettge, Dirk A1 - Hilgenberg, Kai T1 - Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts N2 - Undetected and undesired microstructural variations in components produced by laser powder bed fusion are a major challenge, especially for safety-critical components. In this study, an in-depth analysis of the microstructural features of 316L specimens produced by laser powder bed fusion at different levels of volumetric energy density and different levels of inter layer time is reported. The study has been conducted on specimens with an application relevant build height (>100 mm). Furthermore, the evolution of the intrinsic preheating temperature during the build-up of specimens was monitored using a thermographic in-situ monitoring set-up. By applying recently determined emissivity values of 316L powder layers, real temperatures could be quantified. Heat accumulation led to preheating temperatures of up to about 600 °C. Significant differences in the preheating temperatures were discussed with respect to the individual process parameter combinations, including the build height. A strong effect of the inter layer time on the heat accumulation was observed. A shorter inter layer time resulted in an increase of the preheating temperature by more than a factor of 2 in the upper part of the specimens compared to longer inter layer times. This, in turn, resulted in heterogeneity of the microstructure and differences in material properties within individual specimens. The resulting differences in the microstructure were analyzed using electron back scatter diffraction and scanning electron microscopy. Results from chemical analysis as well as electron back scatter diffraction measurements indicated stable conditions in terms of chemical alloy composition and austenite phase content for the used set of parameter combinations. However, an increase of the average grain size by more than a factor of 2.5 could be revealed within individual specimens. Additionally, differences in feature size of the solidification cellular substructure were examined and a trend of increasing cell sizes was observed. This trend was attributed to differences in solidification rate and thermal gradients induced by differences in scanning velocity and preheating temperature. A change of the thermal history due to intrinsic preheating could be identified as the main cause of this heterogeneity. It was induced by critical combinations of the energy input and differences in heat transfer conditions by variations of the inter layer time. The microstructural variations were directly correlated to differences in hardness. KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Heat accumulation KW - Inter layer time KW - Cellular substructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529240 DO - https://doi.org/10.3390/met11071063 VL - 11 IS - 7 SP - 1063 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria A1 - Schneider, M. A1 - Laplanche, G. T1 - Welding of high-entropy alloys and compositionally complex alloys - an overview N2 - High-entropy alloys (HEAs) and compositionally complex alloys (CCAs) represent new classes of materials containing five or more alloying elements (concentration of each element ranging from 5 to 35 at. %). In the present study, HEAs are defined as single-phase solid solutions; CCAs contain at least two phases. The alloy concept of HEAs/CCAs is fundamentally different from most conventional alloys and promises interesting properties for industrial applications (e.g., to overcome the strength-ductility trade-off). To date, little attention has been paid to the weldability of HEAs/CCAs encompassing effects on the welding metallurgy. It remains open whether welding of HEAs/CCAs may lead to the formation of brittle intermetallics and promote elemental segregation at crystalline defects. The effect on the weld joint properties (strength, corrosion resistance) must be investigated. The weld metal and heat-affected zone in conventional alloys are characterized by non-equilibrium microstructural evolutions that most probably occur in HEAs/CCAs. The corresponding weldability has not yet been studied in detail in the literature, and the existing information is not documented in a comprehensive way. Therefore, this study summarizes the most important results on the welding of HEAs/CCAs and their weld joint properties, classified by HEA/CCA type (focused on CoCrFeMnNi and AlxCoCrCuyFeNi system) and welding process. KW - High-entropy alloy KW - Compositionally complex alloy KW - Welding KW - Properties KW - Review PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527068 DO - https://doi.org/10.1007/s40194-021-01110-6 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-52706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, M. A1 - Diercks, P. A1 - Manzoni, Anna Maria A1 - Čížek, J. A1 - Ramamurty, U. A1 - Banhart, J. T1 - Positron annihilation investigation of thermal cycling induced martensitic transformation in NiTi shape memory alloy N2 - Thermal cycling of a Ni-excess NiTi alloy was conducted between 50 °C and liquid nitrogen temperature to induce martensitic transformations and to reverse them after. The starting point was an annealed and slowly cooled state, the end point a sample thermally cycled 1500 times. Positron annihilation lifetime spectra and Coincidence Doppler Broadening profiles were obtained in various states and at various tem- peratures. It was found that the initial state was low in defects with positron lifetimes close to that of bulk NiTi. Cycling lead to a continuous build-up of a defect structure up to 20 0 −50 0 cycles after which saturation was reached. Two types of defects created during cycling were identified, namely pure dislo- cations and vacancies attached to dislocations. KW - Shape memory alloy KW - Thermal Cycling KW - Defects KW - Positron annihilation spectroscopy KW - Austenite-to-martensite phase transformation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533641 DO - https://doi.org/10.1016/j.actamat.2021.117298 VL - 220 SP - 117298 PB - Elsevier Ltd. AN - OPUS4-53364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547295 DO - https://doi.org/10.1002/adem.202101699 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Inui, H. A1 - Kishida, K. A1 - Li, L. A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Glatzel, U. T1 - Uniaxial mechanical properties of face‑centered cubic singleand multiphase high‑entropy alloys N2 - Since the high entropy concept was proposed at the beginning of the millennium, the research focus of this alloy family has been wide ranging. The initial search for single-phase alloys has expanded with the aim of improving mechanical properties. This can be achieved by several strengthening mechanisms such as solid-solution hardening, hot and cold working and precipitation hardening. Both single- and multiphase high- and medium-entropy alloys can be optimized for mechanical strength via several processing routes, as is the case for conventional alloys with only one base element, such as steels or Ni-based superalloys. KW - High entropy alloy KW - Compositionally complex alloys KW - Tensile properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543955 DO - https://doi.org/10.1557/s43577-022-00280-y VL - 47 IS - 2 SP - 168 EP - 174 PB - Springer AN - OPUS4-54395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haas, S. A1 - Manzoni, Anna Maria A1 - Holzinger, M. A1 - Glatzel, U. T1 - Influence of high melting elements on microstructure, tensile strength and creep resistance of the compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 N2 - Due to its matrix/γ′ structure, the compositionally complex alloy (CCA) Al10Co25Cr8Fe15Ni36Ti6 has excellent properties that fulfill the requirements for a high-temperature material. This base alloy is alloyed with small amounts of high melting elements to a further improvement of its properties, which results in different shapes, fractions and sizes of the two phases γ′ and Heusler after various homogenization and annealing steps. By correlating this microstructure with time independent and dependent mechanical properties, conclusions can be drawn about the effects of the individual phases. The needle-shaped Heusler-phase leads to bad mechanical behavior if its phase fraction is too high. A fraction below 3 vol% is not critical in tensile tests, but it reduces the creep resistance compared to a purely two-phase matrix/γ′-alloy. Sharp-edged cubic γ′-particles and a coarse Heusler-phase without sharp edges in case of the base alloy with 0.5 at.% hafnium lead to the best tensile and creep properties in the high temperature range. At 750 °C, the Hf-containing alloy clearly outperforms two commercially used alloys in the targeted area of application when it comes to creep resistance. KW - High entropy alloy KW - Creep KW - Microstructure PY - 2021 DO - https://doi.org/10.1016/j.matchemphys.2021.125163 SN - 0254-0584 VL - 274 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-53175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pu, Y. A1 - Lawrence, M. J. A1 - Celorrio, V. A1 - Wang, Q. A1 - Gu, M. A1 - Sun, Z. A1 - Agudo Jácome, Leonardo A1 - Russell, A. E. A1 - Huang, L. A1 - Rodriguez, P. T1 - Nickel confined in 2D earth-abundant oxide layers for highly efficient and durable oxygen evolution catalysts N2 - Low cost, high-efficiency catalysts towards water splitting are urgently required to fulfil the increasing demand for energy. In this work, low-loading (<20 wt%) Ni-confined in layered metal oxide anode catalysts (birnessite and lepidocrocite titanate) have been synthesized by facile ion exchange methodology and subjected to systematic electrochemical studies. It was found that Ni-intercalated on K-rich birnessite (Ni-KMO) presents an onset overpotential (ηonset) as low as 100 mV and overpotential at 10 mA cm−2 (η10) of 206 mV in pH = 14 electrolyte. By combining electrochemical methods and X-ray absorption and emission spectroscopies (XAS and XES), we demonstrate Ni sites are the active sites for OER catalysis and that the Mn3+ sites facilitate Ni intercalation during the ion-exchange process, but display no observable contribution towards OER activity. The effect of the pH and the nature of the supporting electrolyte on the electrochemical performance was also evaluated. KW - Confined catalyst KW - Low-loading KW - Layered manganese oxide KW - Oxygen evolution reaction KW - Transmission electron microscopy (TEM) PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515027 DO - https://doi.org/10.1039/D0TA04031B SN - 2050-7496 SN - 2050-7488 VL - 8 IS - 26 SP - 13340 EP - 13350 PB - Royal Society of Chemistry CY - London AN - OPUS4-51502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gadelmeier, C. A1 - Haas, S. A1 - Lienig, T. A1 - Manzoni, Anna Maria A1 - Feuerbacher, M. A1 - Glatzel, U. T1 - Temperature Dependent Solid Solution Strengthening in the High Entropy Alloy CrMnFeCoNi in Single Crystalline State N2 - The main difference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which shifts from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Face-centered cubic, equiatomic, and single crystalline high entropy alloy CrMnFeCoNi was pre-alloyed by arc-melting and cast as a single Crystal using the Bridgman process. Mechanical characterization by creep testing were performed at temperatures of 700, 980, 1100, and 1200°C at different loads under vacuum and compared to single-crystalline pure nickel. The results allow a direct assessment of the influence of the chemical composition without any disturbance by grain boundary sliding or diffusion. The results indicate different behaviors of single crystalline pure nickel and CrMnFeCoNi. At 700°C CrMnFeCoNi is more creep-resistant than Ni, but at 980°C both alloys show a nearly similar creep strength. Above 980°C the creep behavior is identical and the solid solution strengthening effect of the CrMnFeCoNi alloy disappears. KW - High entropy alloys KW - Single crystal PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514572 DO - https://doi.org/10.3390/met10111412 VL - 10 IS - 11 SP - 1412 PB - MDPI AN - OPUS4-51457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohring, Wencke A1 - Karafiludis, Stephanos A1 - Manzoni, Anna Maria A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, Christiane T1 - High-Temperature Corrosion of High- and Medium-Entropy Alloys CrMnFeCoNi and CrCoNi Exposed to a Multi-Oxidant Atmosphere H2O–O2–SO2 N2 - AbstractThe high-temperature corrosion behaviors of the equimolar CrCoNi medium-entropy alloy and CrMnFeCoNi high-entropy alloy were studied in a gas atmosphere consisting of a volumetric mixture of 10% H2O, 2% O2, 0.5% SO2, and 87.5% Ar at 800 °C for up to 96 h. Both alloys were initially single-phase fcc with a mean grain size of ~ 50 μm and a homogeneous chemical composition. The oxide layer thickness of CrMnFeCoNi increased linearly with exposure time while it remained constant at ~ 1 μm for CrCoNi. A Cr2O3 layer and minor amounts of (Co,Ni)Cr2O4 developed on the latter while three oxide layers were detected on the former, i.e., a thin and continuous chromium rich oxide layer at the oxide/alloy interface, a dense (Mn,Cr)3O4 layer in the center and a thick and porous layer of Mn3O4 and MnSO4 at the gas/oxide interface. Additionally, a few metal sulfides were observed in the CrMnFeCoNi matrix. These results were found to be in reasonable agreement with thermodynamic calculations. KW - high entropy alloys KW - corrosion KW - oxidation KW - scanning electron microscopy KW - sulfidation KW - CrMnFeCoNi PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594189 DO - https://doi.org/10.1007/s44210-023-00026-8 SP - 1 EP - 17 PB - Springer Science and Business Media LLC AN - OPUS4-59418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Manzoni, Anna Maria A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Laplanche, G. A1 - Agudo Jácome, Leonardo T1 - Influence of cooling rate on the microstructure and room temperature mechanical properties in the refractory AlMo0.5NbTa0.5TiZr superalloy N2 - Refractory chemically complex alloys with bcc-based microstructures show great potential for high-temperature applications but most of them exhibit limited room-temperature ductility, which remains a challenge. One such example is the AlMo0.5NbTa0.5TiZr alloy, mainly consisting of a nano-scaled structure with an ordered B2 matrix and a high-volume fraction of aligned cuboidal and coherently embedded A2 precipitates. This work aims to investigate how the cooling rate after hot isostatic pressing of the AlMo0.5NbTa0.5TiZr alloy affects its microstructure and its resulting hardness and fracture toughness at room temperature. A slow cooling rate of 5 °C/min leads to a coarse microstructure consisting of aligned slabs (mean A2 precipitate ≈ 25 nm) with a nanohardness of about 8 GPa. In contrast, after the fastest cooling rate (30 °C/min), the A2 precipitates become more cubic with an edge length of ≈ 16 nm, resulting in an increase in nanohardness by 10 %. The fracture toughness is roughly independent of the cooling rate and its mean value (≈ 4.2 MPa∙m1/2) resembles that of some B2 intermetallics and other A2/B2 alloys. As the lattice misfit between the A2 and B2 phases is known to play a key role in microstructure formation and evolution, its temperature dependence between 20 and 900 °C was investigated. These findings offer insights into the evolution of the microstructure and room-temperature mechanical properties of the AlMo0.5NbTa0.5TiZr alloy, which could help the development of advanced chemically complex alloys. KW - High entropy alloy KW - Lattice misfit KW - Scanning electron microscopy KW - Transmission electron microscopy KW - X-ray diffraction KW - Refractory alloy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572809 DO - https://doi.org/10.1016/j.jallcom.2023.169871 SN - 0925-8388 VL - 949 SP - 169871 PB - Elsevier B.V. AN - OPUS4-57280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fantin, Andrea A1 - Lepore, G. O. A1 - Widom, M. A1 - Kasatikov, S. A1 - Manzoni, Anna Maria T1 - How Atomic Bonding Plays the Hardness Behavior in the Al–Co–Cr–Cu–Fe–Ni High Entropy Family N2 - A systematic study on a face‐centered cubic‐based compositionally complex alloy system Al–Co–Cr–Cu–Fe–Ni in its single‐phase state is carried out, where a mother senary compound Al₈Co₁₇Cr₁₇Cu₈Fe₁₇Ni₃₃ and five of its suballoys, obtained by removing one element at a time, are investigated and exhaustively analyzed determining the contribution of each alloying element in the solid solution. The senary and the quinaries are compared using experimental techniques including X‐ray absorption spectroscopy, X‐ray diffraction, transmission electron microscopy, and first principles hybrid Monte Carlo/molecular dynamics simulations. Chemical short‐range order and bond length distances have been determined both at the experimental and computational level. Electronic structure and local atomic distortions up to 5.2 Å have been correlated to the microhardness values. A linear regression model connecting hardness with local lattice distortions is presented. KW - High entropy alloys KW - EXAFS KW - Short-range order KW - Microhardness KW - Alloy design KW - Transmission electron microscopy KW - Lattice distortion PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593333 DO - https://doi.org/https://doi.org/10.1002/smsc.202300225 SN - 2688-4046 SP - 1 EP - 12 PB - Wiley CY - Weinheim AN - OPUS4-59333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gonzalez-Martinez, I. A1 - Weinel, Kristina A1 - Feng, W. A1 - Agudo Jácome, Leonardo A1 - Gemming, T. A1 - Büchner, B. T1 - Hybrid tungsten-carbon 2D nanostructures via in-situ gasification of carbon substrates driven by ebeam irradiation of WO2.9 microparticles N2 - Since the TEM has the capacity to observe the atomic structure of materials, in-situ TEM synthesis methods are uniquely suited to advance our fundamental understanding of the bottom-up dynamics that drive the formation of nanostructures. E-beam induced fragmentation (potentially identified as a manifestation of Coulomb explosion) and electron stimulated desorption (ESD) are phenomena that have received attention because they trigger chemical and physical reactions that can lead to the production of various nanostructures. Here we report a simple TEM protocol implemented on WO2.9 microparticles supported on thin amorphous carbon substrates. The method produces various nanostructures such as WC nanoparticles, WC supported films and others. Nevertheless, we focus on the gradual graphitization and gasification of the C substrate as it interacts with the material expelled from the WO2.9 microparticles. The progressive gasification transforms the substrate from amorphous C down to hybrid graphitic nanoribbons incorporating W nanoparticles. We think these observations open interesting possibilities for the synthesis of 2D nanomaterials in the TEM. KW - Transmission electron microscope (TEM) KW - in-situ synthesis KW - Tungsten carbide KW - Nanoribbons KW - Coulomb explosion PY - 2023 DO - https://doi.org/10.1088/1361-6528/acf584 SN - 0957-4484 VL - 34 IS - 49 SP - 1 EP - 15 PB - IOP Publishing AN - OPUS4-58279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Famy, A. A1 - Agudo Jácome, Leonardo A1 - Schönhals, Andreas T1 - Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly(acrylic acid) Thin Films N2 - For the first time, structure−electrochemical relationships of thin films of a plasma-polymerized acrylic acid/carbon dioxide AA/CO2 (75/25%) copolymer modified by implanted silver nanoparticles are discussed. The pulsed plasma polymerization of AA/CO2 was utilized and adjusted to obtain a maximal amount of COOH Groups forming an almost uncross-linked polymer structure. The prepared polymer layer is rinsed by a silver nitrate solution to impregnate Ag+ ions. This step is followed by its reduction of Ag+ with NaBH4 as a chemical route in comparison to the reduction by sunlight as an ecofriendly photoreduction method. The chemical composition and morphology of the topmost surface layer of the AA/CO2 polymer thin film were investigated by X-ray photoelectron spectroscopy and atomic force microscopy. Moreover, the molecular mobility, conductivity, and thermal stability of the polymer layer were analyzed using broadband dielectric spectroscopy. The dielectric properties of the AA/ CO2 polymer thin film were studied in the presence of Ag+ ions or Ag0. It was found that a cross-linked polymer layer with a smooth surface and high conductivity was obtained in the presence of Ag+/ Ag0. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c06712 SN - 1932-7447 VL - 124 IS - 41 SP - 22817 EP - 22826 PB - ACS AN - OPUS4-51468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gadelmeier, C. A1 - Agudo Jácome, Leonardo A1 - Suárez Ocano, Patricia A1 - Glatzel, U. T1 - Effect of stacking fault energy (SFE) of single crystal, equiatomic CrCoNi and Cantor alloy on creep resistance N2 - Compared to mechanisms like solid solution strengthening, the stacking fault energy (SFE) should be considered as a further factor that influences the material properties. The effect of SFE of alloys or individual elements on strength and resistance can vary considerably. In the high-temperature regime above 700 ◦C, there are still significant gaps in the knowledge about the effect of the SFE on the mechanical properties of single-phase alloys. The effect of SFE on creep resistance of two face-entered cubic equiatomic medium and high entropy alloys, CrCoNi and CrMnFeCoNi, respectively, is evaluated to fill parts of these gaps. Using the Bridgman solidification process, the alloys were produced as single crystals and crept under vacuum at 700 ◦C up to 1100 ◦C. This work shows a significant impact of the lower SFE of CrCoNi on the creep behavior compared to the results of previous investigations of CrMnFeCoNi. The creep resistance of the former is higher over the complete temperature range. At very high temperatures, the strengthening effect of the stacking faults is significantly present. The formation of tetragonal stacking faults and extended dislocation nodes can be identified as the reason for this effect. KW - Medium entropy alloy KW - MEA KW - HEA KW - Single crystal KW - CrCoNi PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602620 DO - https://doi.org/10.1016/j.msea.2024.146779 SN - 0921-5093 VL - A 908 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-60262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Weinel, Kristina A1 - Hahn, Marc Benjamin A1 - Lubk, Axel A1 - Feng, Wen A1 - Martinez, Ignacio Gonzalez A1 - Büchner, Bernd A1 - Agudo Jácome, Leonardo T1 - Electron-beam-induced modification of gold microparticles in an SEM N2 - Electron-beam-induced conversion of materials in a transmission electron microscope uses the high power density of a localized electron beam of acceleration voltages above 100 kV as an energy source to transform matter at the sub-micron scale. Here, the e-beam-induced transformation of precursor microparticles employing a low-energy e-beam with an acceleration voltage of 30 kV in a scanning electron microscope is developed to increase the versatility and efficiency of the technique. Under these conditions, the technique can be classified between e-beam lithography, where the e-beam is used to mill holes in or grow some different material onto a substrate, and e-beam welding, where matter can be welded together when overcoming the melting phase. Modifying gold microparticles on an amorphous SiOx substrate reveals the dominant role of inelastic electron-matter interaction and subsequent localized heating for the observed melting and vaporization of the precursor microparticles under the electron beam. Monte-Carlo scattering simulations and thermodynamic modeling further support the findings. KW - Scanning electron microscopy KW - Electron-beam-induced modification KW - Heat transfer KW - Gold microparticles KW - Nanoparticles synthesis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609513 UR - https://arxiv.org/html/2408.02409v1 SP - 1 EP - 9 AN - OPUS4-60951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, P. A1 - Manzoni, Anna Maria A1 - Suárez Ocano, Patricia A1 - Többens, D. M. A1 - Stephan-Scherb, C. T1 - High‐temperature KCl‐induced corrosion of high Cr and Ni alloys investigated by in‐situ diffraction N2 - High‐temperature KCl‐induced corrosion in laboratory air was observed in situ utilizing X‐ray diffraction. High Cr‐containing model alloys (Fe‐13Cr, Fe‐18Cr‐12Ni, and Fe‐25Cr‐20Ni) were coated with KCl and exposed to dry air at 560°C. KCl‐free alloys were studied in the equivalent atmosphere as a reference. After exposure to KCl‐free environments, all alloys showed the formation of very thin oxide layers, indicating good corrosion resistance. In contrast, KCl‐bearing alloys showed distinct damage after exposure. KW - Corrosion KW - In-situ diffraction KW - High-temperature corrosion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600831 DO - https://doi.org/10.1002/maco.202314224 SN - 0947-5117 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-60083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feng, Wen A1 - Gemming, Thomas A1 - Giebeler, Lars A1 - Qu, Jiang A1 - Weinel, Kristina A1 - Agudo Jácome, Leonardo A1 - Büchner, Bernd A1 - González-Martínez, Ignacio T1 - Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopy N2 - In this work we instigated the fragmentation of Au microparticles supported on a thin amorphous carbon film by irradiating them with a gradually convergent electron beam inside the Transmission Electron Microscope. This phenomenon has been generically labeled as “electron beam-induced fragmentation” or EBIF and its physical origin remains contested. On the one hand, EBIF has been primarily characterized as a consequence of beam-induced heating. On the other, EBIF has been attributed to beam-induced charging eventually leading to Coulomb explosion. To test the feasibility of the charging framework for EBIF, we instigated the fragmentation of Au particles under two different experimental conditions. First, with the magnetic objective lens of the microscope operating at full capacity, i.e. background magnetic field B = 2 T, and with the magnetic objective lens switched off (Lorenz mode), i.e. B = 0 T. We observe that the presence or absence of the magnetic field noticeably affects the critical current density at which EBIF occurs. This strongly suggests that magnetic field effects play a crucial role in instigating EBIF on the microparticles. The dependence of the value of the critical current density on the absence or presence of an ambient magnetic field cannot be accounted for by the beam-induced heating model. Consequently, this work presents robust experimental evidence suggesting that Coulomb explosion driven by electrostatic charging is the root cause of EBIF. KW - Electron beam-induced fragmentation KW - Coulomb explosion KW - X-ray diffraction KW - Lorenz transmission electron microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600247 DO - https://doi.org/10.1016/j.ultramic.2024.113978 SN - 1879-2723 VL - 262 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-60024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prabhakara, Prathik T1 - Ein synergistischer Ansatz zur Charakterisierung anisotroper Materialien mit Hilfe von Ultraschall und Mikrostrukturanalyse N2 - Es wird eine Studie zur Charakterisierung eines anisotropen Stahls vorgestellt, bei der Ultraschalluntersuchungen mit Mikrostrukturanalysen verbunden werden. Das Material weist hohe Festigkeit und Korrosionsbeständigkeit auf, zugleich ist mit anisotropen Eigenschaften die mechanischen und betrieblichen Eigenschaften beeinflussen zu rechnen. Vorläufige Ergebnisse lassen vermuten, dass weitere Untersuchungen notwendig sind, um die Fähigkeiten und Grenzen des Materials genau zu bestimmen. Es wird ein systematischer Ansatz mit Array- Prüfköpfen, Time-of-Flight Diffraction (TOFD) Technik und mikrostrukturellen Untersuchungen angewendet, um die Wechselwirkung zwischen Anisotropie und Mikrostruktur des Stahls zu analysieren. Ultraschallprüfungen mit der TOFD-Technik und in Tauchtechnik liefern Einblicke in das anisotrope Verhalten des Werkstoffes, einschließlich entsprechenden Kornorientierung, Dämpfung und Schallgeschwindigkeitsvariation. Diese Messungen führen in Verbindung mit mikrostrukturellen Analysen zu einem tieferen Verständnis des Materialverhaltens. Unser Hauptziel ist es, ein Framework zu erstellen, welches die Ultraschallantwort anisotroper Materialien mit ihren mikroskopischen Struktureigenschaften verbindet. Die vorgestellte Methodik ermöglicht eine zerstörungsfreie und zügige Bewertung der Materialintegrität, was besonders bei der Anwendung von Hochleistungsmaterialien relevant ist. Durch diesen integrativen Ansatz werden verschiedener Charakterisierungsmethoden kombiniert, um ein umfassenderes Materialverständnis zu erreichen. T2 - DGZfP-Jahrestagung 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Ultrasonic Testing KW - Time-offlight Diffraction (TOFD) KW - Microstructure Analysis KW - Non-Destructive Testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600122 UR - https://www.ndt.net/?id=29535 AN - OPUS4-60012 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Roving-Alterung und mechanische Eigenschaften N2 - Im statistischen Mittel steht eine Windkraftanlage (WKA) in Deutschland alle 6 Jahre wegen eines Schadens an den Rotorblättern und verursacht Kosten von 20k€-40k€ infolge Ertragsausfall und Reparaturkosten. Bei über 30.000 WKA in Deutschland verursacht dies jährlichen Kosten von 100-200 Mio. €. Zu 70% sind die Ursachen Fertigungsfehler. Diesem Themenkomplex widmet sich FB-5.3 in Kooperation mit FBs der Zerstörungsfreien Prüfung (Abt. 8) schon seit Jahren. Im aktuellen Projekt geht es um einen vorzeitigen Verschleiß der Rotorblätter infolge der Verwendung gealterter Glasfaser-Rovings. (GF). Die Entwicklung moderner Windkraftanlagen hatte in Europa seinen Ursprung in den 90er Jahren. OEMs und GF-Hersteller waren dicht beisammen. Die Globalisierung des Marktes führt heute zu einer weltweiten Verschiffung der GF in feucht-warmen Containern. Je nach Beschaffenheit (Chemie) der Schlichten (Oberflächenbehandlung) von GF können diese stark altern (Hydrolyse-Effekte) und die Festigkeit kann im Bauteil um bis zu 50% abgemindert sein. In einer Kooperation mit der Rotorblattallianz, einem Zusammenschluss der OEMs, Halbzeugherstellern und Forschungsinstituten, wurden schon vor 5 Jahren in einem Forschungsprojekt (FB-5.3; VH 5538) die chemischen Mechanismen der Alterung exemplarisch für eine Glasfaser-Roving-Type aufgeklärt. Im aktuellen Projekt (FB-5.3; VH 5304) wird ein beschleunigtes Alterungsverfahren (erhöhte Temperatur und Feuchte) am Roving im un-impregnierten Zustand entwickelt und die Festigkeit nachfolgend nach Einbettung in eine Epoxid-Harz-Matrix bestimmt. Je nach Alterungszustand zeigt sich eine Abnahme der Zwischenfaserbruchfestigkeit von bis zu 50%. Nicht alle Glasfaser-Roving-Typen zeigen diesen Effekt. Es ist gelungen für OEMs und Halbzeughersteller ein handhabbares Verfahren zur innerbetrieblichen Qualitätssicherung zu entwickeln, da die wenigsten Firmen über komplexe Analyseverfahren, wie an der BAM, verfügen. T2 - Composite United - AG Faserverbund in der Windenergie CY - Braunschweig, Germany DA - 09.05.2023 KW - Faserkunststoffverbunde KW - Windenergie KW - Alterung PY - 2023 AN - OPUS4-58409 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Experimentelle Ermittlung zyklischer R-Kurven in additiv gefertigtem AISI 316L Stahl N2 - Diese Untersuchung beschäftigt sich mit der Charakterisierung von Kurzrisswachstum in mittels Laser-Pulverbett-Verschmelzen (LPBF - Laser Powder Bed Fusion) hergestelltem rostfreien austenitischen Stahl. Spezifischer wird die Ermittlung zyklischer R-Kurven untersucht. Diese beschreiben den Aufbau des Widerstands gegen Ermüdungsrisswachstum - d.h. des Schwellenwertes - aufgrund von Rissschließeffekten bei physikalisch kurzen Rissen. Mit Hilfe der zyklischen R-Kurven kann die Fähigkeit eines Bauteils, physikalisch kurze Risse zu arretieren, charakterisiert werden. Wir verfügen damit über eine Schnittstelle zwischen klassischer Ermüdung und Bruchmechanik. Das ist gerade auch für additiv gefertigte (AM – Additive Manufacturing) Materialien von Interesse. Diese weisen prozessintrinsische Defekte auf, die als Initiierungsstellen kurzer Ermüdungsrisse agieren. Im Rahmen der experimentellen Untersuchungen wurden zyklische R-Kurven für konventionellen und LPBF AISI-316L-Stahl ermittelt. Insbesondere wurde der Einfluss verschiedener Wärmebehandlungen (WB1: 450°C, WB2: 800°C und WB3: 900°C) auf das Wachstumsverhalten physikalisch kurzer Risse im LPBF-Material untersucht. Aufgrund hoher Eigenspannungen war die Ermittlung des Kurzrisswachstumsverhaltens bei WB1 nicht möglich. Für WB2 und WB3 ergaben sich sehr unterschiedliche zyklische R-Kurven. Untersuchungen der Eigenspannungen, der Bruchfläche (insbesondere der Rauheit) und der Mikrostruktur sollen die Ursachen für das unterschiedliche Verhalten erklären. Die Ergebnisse werden mit den Verhältnissen in konventionellem Material verglichen. T2 - Tagung des Arbeitskreises Bruchmechanik und Bauteilsicherheit CY - Online meeting DA - 18.02.2021 KW - Additive Manufacturing KW - Zyklische R-Kurve KW - Ermüdungsriss KW - L-PBF KW - 316L PY - 2021 AN - OPUS4-52250 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Water-based additive manufacturing of ceramics by Laser-Induced Slip Casting (LIS) N2 - The Laser-Induced Slip Casting is an additive manufacturing technology specifically developed for ceramic materials using water-based ceramic slurries. The process takes place layer-by-layer in a similar fashion as top-down vat photopolymerization, selectively consolidating each layer by means of a laser energy source positioned on the top. Contrary to vat photopolymerization, in which the consolidation is achieved by selectively cross-linking a ceramic-filled resin, LIS uses water-based slurries with a low amount of organic additives (typically < 5 wt%) as feedstocks. In LIS, a green body is formed by local evaporation of water which causes the suspension to collapse forming a cast, following a mechanism similar to slip casting. Only a small content of organic additives is needed to effectively disperse the ceramic particles and to increase the green strength. The technology is very versatile and can be applied to all ceramic systems that can be dispersed in water. One of the main advantages is that even dark materials such as silicon carbide can be processed without issues related to light scattering and absorption. The presentation will discuss strengths and limitations of LIS compared to other AM technologies and will highlight the latest results for alumina and for silicon carbide ceramics. T2 - 48th International Conference and Expo on Advanced Ceramics and Composites (ICACC2024) CY - Daytona, FL, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Ceramic KW - Water-based KW - Slurry KW - Laser PY - 2024 AN - OPUS4-60054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin T1 - Fully automated and decentralized fused filament fabrication of ceramics for remote applications N2 - Manufacturing of ceramic components in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of ceramic components with complex geometries. Parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. This poster presents an innovative approach: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the ceramic filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering of the ceramic parts and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic components in remote environments with increased efficiency and minimal human handling. T2 - yCAM 2024 CY - Tampere, Finnland DA - 06.05.2024 KW - Fused Filament Fabrication PY - 2024 AN - OPUS4-60057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Data-Driven Materials Science: Reproducibility and Standardization N2 - Advancing development and digitalization in materials science requires to focus on quality assurance, interoperability, and compliance with FAIR principles. Semantic technologies offer effective solutions for these challenges by enabling the storage, processing, and contextualization of data in machine-actionable and human-readable formats – essential for robust data management. This presentation highlights the PMD Core Ontology 3.0 (PMDco 3.0), developed specifically for the field of materials science and engineering, and its implementation within generic knowledge representation frameworks. Demonstrators such as standardized mechanical testing, material processing workflows, and the Orowan Demonstrator exemplify the ontology’s practical applications. The use of graph patterns, able to be compiled into rule-based semantic shapes, supports a unified and automated approach to managing heterogeneous experimental data across domains. T2 - Persson Group Seminar CY - Berkeley, CA, USA DA - 23.06.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology KW - Graph Patterns PY - 2025 AN - OPUS4-63484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Additive manufacturing of ceramics from water-based feedstocks with low binder content N2 - A major challenge in the current ceramic additive manufacturing is the debinding of the printed parts, which is often associated with long process times and limitations in size and wall thickness. Binder jetting, a powder-based AM technology, can in principle generate thick-walled parts with a low amount of organics and with high productivity. However, this technology is often not capable of handling the fine powders required as raw materials for most technical ceramics. In this context, the "layerwise slurry deposition" (LSD-print) has been developed as a layer deposition method using water-based ceramic slurry feedstocks, enabling binder jetting also for advanced ceramic materials. LSD-print thus combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality technical ceramics. Perspectives and limitations of the LSD-print will be presented, with focus on achieving short debinding cycles and high productivity. T2 - MS&T CY - Pittsburgh, PA, USA DA - 06.10.2024 KW - Additive Manufacturing KW - Ceramic KW - Binder KW - Slurry KW - Water-based PY - 2024 AN - OPUS4-61882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Rosalie, Julian T1 - Small-angle scattering data analysis round robin - Anonymized results, figures and Jupyter notebook N2 - The intent of this round robin was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. This zip file contains the anonymized results and the jupyter notebook used to do the data processing, analysis and visualisation. Additionally, TEM images of the samples are included. KW - Round robin KW - Small-angle scattering KW - Data analysis PY - 2023 DO - https://doi.org/10.5281/zenodo.7509710 PB - Zenodo CY - Geneva AN - OPUS4-56803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella T1 - Monitoring additive manufacturing N2 - Additive manufacturing (AM) processes allow a high level of freedom in designing and producing components for complex structures. They offer the possibility of a significant reduction of the process chain. However, the large number of process parameters influence the structure and the behavior of AM parts. A thorough understanding of the interdependent mechanisms is necessary for the reliable design and production of safe AM parts. In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - Conaendi&IEV 2021 CY - Online meeting DA - 10.03.2021 KW - Additive Fertigung PY - 2021 AN - OPUS4-52241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous crack healing in soda–lime–magnesium–silicate–ZrO2 glass matrix composites N2 - AbstractThe present study investigates the influence of the crystal volume content on viscous crack healing in glass ceramic glass sealants. To ensure constant microstructure during healing, soda–lime–magnesium silicate glass matrix composites with varied volume fractions of ZrO2 filler particles were used. Crack healing was studied on radial cracks induced by Vickers indentation, which were stepwise annealed to monitor the healing progress by confocal laser scanning microscopy. Confirming previous studies, healing of radial cracks in pure glass was found delayed by global flow phenomena like crack widening and crack edge and tip rounding to minimize the sample surface. With increasing ZrO2 filler content, these global flow phenomena were progressively inhibited whereas local flow phenomena like sharp crack tip healing could still occur. As a result, crack healing was even accelerated by filler particles up to a maximum filler content of 17 vol% whereas crack healing was fully suppressed only at 33 vol% filler content. KW - Crack healing KW - Glass matrix composite KW - Solid oxide fuell cell KW - Vickers identation KW - Viscosity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607860 DO - https://doi.org/10.1111/jace.20002 SN - 0002-7820 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gogula, Shravya A1 - Bornhöft, H. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Diegeler, A. A1 - Müller, Ralf A1 - Deubener, J. T1 - Optical Real-Time Castability Evaluation for High-Throughput Glass Melting N2 - A novel optical real-time method for evaluating the castability of glass forming melts for laboratory furnaces is presented. The method is based on the analysis of top view images of the melt surface inside the crucible during melting after being subjected to a small mechanical impulse. In this way, the melt surface is excited to oscillate. The difference in contrast between two images taken in quick succession scales with the viscosity, with a larger diffe­rence occurring at lower viscosities. The method is designed as an instrument for the in-line evaluation of the castability for a high-throughput glass melting system as part of the joint project “GlasDigital” in the framework of the German Platform Material Digital initiative but is applicable to other laboratory furnaces as well. KW - Optical Real-Time Castability Check KW - Image Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618659 DO - https://doi.org/10.52825/glass-europe.v2i.1359 VL - 2 SP - 83 EP - 93 AN - OPUS4-61865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moschetti, Michael T1 - Capabilities and Applications of the Robot-Assisted Serial-Sectioning and Imaging (RASI) System N2 - The Robot-Assisted Serial-sectioning and Imaging (RASI) system at BAM provides automated, high-resolution 3D microstructural characterization for diverse materials. Integrating robotics with precision sectioning, etching, and optical microscopy, RASI reconstructs large volumes (approaching 15 × 15 × 15 mm³) with sub-micron detail. This presentation showcases RASI’s versatility through case studies on cast irons, sintered and additively manufactured steels, and ceramic-metallic packages. We demonstrate how RASI reveals true 3D architectures of features like graphite networks, pores, melt pools, and defects, often missed by 2D analysis. These quantitative datasets elucidate process-microstructure-property relationships and provide crucial 'ground truth' for validating computational models and developing digital twins. Ongoing RASI enhancements will also be highlighted. T2 - The 7th International Congress on 3D Materials Science (3DMS 2025) CY - Anaheim, CA, USA DA - 15.06.2025 KW - 3D microstructural characterization KW - Deep learning image segmentation KW - High-throughput materials analysis KW - Advanced materials’ development PY - 2025 AN - OPUS4-63693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Boccaccini, A. R. A1 - Müller, Ralf T1 - Sintering and Crystallization of Fluoride-Containing Bioactive Glass F3 N2 - The fluoride-containing bioactive glass F3 with nominal composition (mol%) 44.8 SiO2 - 2.5 P2O3 - 36.5 CaO - 6.6 Na2O - 6.6 K2O - 3.0 CaF2 is a highly promising candidate for bone replacement applications. Its strong crystallization tendency, however, requires a thorough understanding of the interplay between glass powder particle size, surface crystallization, and sintering. Therefore, this study characterizes the sintering and crystallization of bulk specimens and various particle size fractions by differential thermal-analysis, laser scanning, electron microscopy, X-ray diffraction, and Infrared spectroscopy. Particle size fractions < 56 µm were found to fully densify, while crystals growing from the glass particle surface retard sintering of coarser fractions. Small amounts of a non-stoichiometrically calcium phosphosilicate (Ca14.92(PO4)2.35(SiO4)5.65) occurs as the primary crystal phase followed by combeite (Na4Ca4[Si6O18]) as a temporarily dominating phase. The surface crystallization of both pha­ses was found to be mainly responsible for sinter retardation. During later stages of crystallization, additional phases such as cuspidine (Ca4F2Si2O7) and silicorhenanite (Na2Ca4(PO4)2SiO4) occur, but finally monoclinic wollastonite (CaSiO3) forms as the dominant phase. KW - Bioactive Glass KW - Sintering KW - Crystallization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632482 DO - https://doi.org/10.52825/glass-europe.v3i.2564 SN - 2940-8830 VL - 3 SP - 105 EP - 124 AN - OPUS4-63248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Deubener, J. A1 - Müller, Ralf T1 - Internal friction and energy dissipation during fracture in silicate glasses N2 - To obtain a deeper insight into the nature of energy dissipation during fracture, the internal friction of 13 borosilicate, aluminosilicate, soda-lime, and lead-containing glasses, for which inert crack growth data are known, was measured using dynamic mechanical thermal analysis. For asymmetrically bent glass beams, the loss tangent, tan δ, was determined between 0.2 and 50 Hz at temperatures between 273 K and the glass transition temperature, Tg. It was found that the area under the tan δ vs T·Tg−1 curve correlates with the crack growth exponent, n, in the empirical v = v0·KIn relation between crack growth velocity, v, and stress intensity, KI, which indicates that n correlates with the degree of energy dissipation of sub-Tg relaxation phenomena. KW - Glass KW - Internal friction KW - Crack growth PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631582 DO - https://doi.org/10.1063/5.0255432 SN - 0021-9606 VL - 162 IS - 19 SP - 1 EP - 9 PB - AIP Publishing AN - OPUS4-63158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pan, Z. A1 - Waurischk, Tina A1 - Duval, A. A1 - Müller, Ralf A1 - Deubener, J. A1 - Krishnan, N. M. A. A1 - Wondraczek, K. A1 - Wondraczek, L. T1 - Precise Real‐Time Measurement of Liquid Viscosity Using Digital Video Data N2 - Quantitative knowledge of liquid viscosity is of fundamental importance in many areas of materials synthesis and processing. However, the determination of viscosity often relies on specialized experimental equipment, offline experimentation, or invasive procedures, in particular when required in extreme conditions such as at high temperature, high pressure, and in confined or corrosive environments. Here, this study proposes and validates a fast and simple method that mimics the intuitive perception of liquid flow within a quantitative framework. For this, this study employs digital video observation to derive quantitative values of the shear viscosity of liquids, with high precision and rapid acquisition rates. The technique involves capturing liquid dynamics after minor mechanical stimulation. Processed imaging data are indexed by similarity and referenced to a digital database generated with a finite element model, from which values of viscosity are obtained in line. The approach is tested on water at room temperature and on a high‐temperature glass melt. Covering a viscosity range of four orders of magnitude, both yield convincing agreement with tabulated reference data at low computational cost. KW - Image analyses KW - Liquids KW - Materials discovery KW - Similarity analyses KW - Viscosities PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634606 DO - https://doi.org/10.1002/aisy.202500297 SN - 2640-4567 SP - 1 EP - 12 PB - Wiley AN - OPUS4-63460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. T1 - Crack Growth in Hydrous Soda-Lime Silicate Glass N2 - Stable crack growth was measured for nominal dry and water-bearing (6 wt%) soda-lime silicate glasses in double cantilever beam geometry and combined with DMA studies on the effects of dissolved water on internal friction and glass transition, respectively. In vacuum, a decreased slope of logarithmic crack growth velocity versus stress intensity factor is evident for the hydrous glass in line with an increase of b-relaxation intensity indicating more energy Dissipation during fracture. Further, inert crack growth in hydrous glass is found to be divided into sections of different slope, which indicates different water related crack propagation mechanism. In ambient air, a largely extended region II is observed for the hydrous glass, which indicates that crack growth is more sensitive to ambient water. KW - Internal friction KW - Soda-lime silicate glass KW - Water content KW - Stable crack growth KW - DCB geometry KW - Stress intensity factor PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506829 DO - https://doi.org/10.3389/fmats.2020.00066 VL - 7 SP - Articel 66 AN - OPUS4-50682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Maiwald, M. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Automated Analysis of Slow Crack Growth in Hydrous Soda-Lime Silicate Glasses N2 - To explore the impact of ambient and structural water on static fatigue, the initiation and growth of 3279 Vickers induced median radial cracks were automatically recorded and analyzed. We find that humidity is more efficient in initiating cracks and promoting their growth than water, which is dissolved in the glass structure. In particular for slow crack growth (< 3x10-6 m s-1), tests in dry nitrogen showed a considerable decrease in the crack growth exponent with increasing water content of the glasses. On the other hand, if tests were performed in humid air, the crack growth exponent was independent of the water content of the hydrous glasses, while stress intensity decreased slightly. These observations indicate that water promotes the processes at the crack-tip regardless of its origin. However, ambient water is more efficient. KW - Indentation fracture toughness KW - Slow crack growth KW - Automated analysis KW - Hydrous glass KW - Vickers indentation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513085 DO - https://doi.org/10.3389/fmats.2020.00268 VL - 7 SP - 268 AN - OPUS4-51308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. A1 - Marzok, Ulrich A1 - Reinsch, Stefan T1 - Hydrogen Permeation Through Glass N2 - Physical storage of gaseous hydrogen under high-pressure in glassy micro-containers such as spheres and capillaries is a promising concept for enhancing safety and the volumetric capacity of mobile hydrogen storage systems. As very low permeation through the container wall is required for storage of compressed hydrogen, development of glasses of minimal hydrogen permeability is needed. For this purpose, one has to understand better the dependence of hydrogen permeability on glass structure. The paper points out that minimizing the accessible free volume is as one strategy to minimize hydrogen permeability. Based on previously measured and comprehensive literature data, it is shown that permeation is independently controlled by ionic porosity and network modifier content. Thus, ionic porosity in modified and fully polymerized networks can be decreased equally to the lowest hydrogen permeability among the glasses under study. Applying this concept, a drop of up to 30,000 with respect to the permeation of hydrogen molecules through silica glass is attainable. KW - Ionic porosity KW - hydrogen storage KW - Glass KW - Permeability KW - Solubility KW - Diffusivity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513927 DO - https://doi.org/10.3389/fmats.2019.00342 VL - 6 SP - Article 342 AN - OPUS4-51392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf T1 - Alkali and alkaline earth zinc and lead borate glasses: Sintering and crystallization N2 - Glasses in the systems Me2O-ZnO-B2O3 with Me = Li, Na, K, Rb (MeZB), Na2O-ZnO-CuO-B2O3 (NZCuB), CaO-ZnO-B2O3 (CaZB), and Li2O-PbO-B2O3 (LPbB) as a reference, were studied by differential thermal analysis, dilatometry, rotational viscometry, and heating microscopy. A decrease of viscosity and sintering range was found with decreasing number of fourfold coordinated boron. The viscosity of the alkali zinc borate glasses varies only slightly. LPbB and CaZB stand out by their reduced and increased viscosities, respectively. Sodium, potassium, and calcium zinc borate glasses possess a fragility above 76. All glasses were sintered to full density before crystallization. Mostly binary zinc borate phases govern crystallization. A ternary crystalline phase was detected only in the potassium containing sample. The Weinberg glass stability parameter ranges between 0.07 and 0.12. This is caused by the presence of several crystalline phases and varying melting points of even the same crystalline phase in different glass matrices. KW - Alkali zinc borate glasses KW - Lead borate glasses KW - Viscosity KW - Sintering KW - Crystallization KW - Fragility PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556128 DO - https://doi.org/10.1016/j.nocx.2022.100116 SN - 2590-1591 VL - 15 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-55612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Sintering and foaming of bioactive glasses N2 - Sintering, crystallization, and foaming of 44.8SiO2–2.5P2O3–36.5CaO–6.6Na2O–6.6K2O–3.0CaF2 (F3) and 54.6SiO2–1.7P2O3–22.1CaO–6.0Na2O–7.9K2O–7.7MgO (13–93) bioactive glass powders milled in isopropanol and CO2 were studied via heating microscopy, differential thermal analysis, vacuum hot extraction (VHE), Infrared spectroscopy, and time-of-flight secondary ion mass spectrometry. Full densification was reached in any case and followed by significant foaming. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750◦C, which hints on a thermally very stable species or mechanical trapping. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. KW - Bioactive Glass KW - Crystallization KW - Foaming KW - Sintering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552454 DO - https://doi.org/10.1111/jace.18626 SN - 0002-7820 SP - 1 EP - 11 PB - Wiley online library AN - OPUS4-55245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf T1 - An overview on the effect of dissolved water on the viscosity of soda lime silicate melts N2 - In this review article, the impact of dissolved water on the viscous properties of soda lime silicate melts is addressed against the background of the upcoming switch from natural gas to hydrogen combustion. This change will lead to an increase in the total water content of the glasses by up to 0.4 mol%. In order to better define possible influences of water speciation, water-rich glasses were synthesised under increasing pressure up to the kbar range. It is shown that a distinction must be made between the influence of dissolved OH-groups and H2Omolecules in order to accurately reflect the dependence of isokom temperatures on water content. In addition, an increase of one order of magnitude in the tolerance to higher deformation rates was observed for the range of expected increased water contents during isothermal deformation processes, which is based on the timetemperature superposition principle, i.e. congruent flow curves were determined under isokomal conditions. KW - Water in glass KW - Viscosity KW - Soda lime silicate glass KW - Shear thinning KW - Nydrogen melting PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587276 DO - https://doi.org/10.1016/j.nocx.2023.100195 VL - 19 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gomes Fernandes, Roger A1 - Al-Mukadam, Raschid A1 - Bornhöft, Hansjörg A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Selle, Susanne A1 - Deubener, Joachim T1 - Viscous Sintering of Acid Leached Glass Powders N2 - The process of viscous flow sintering is a phenomenon that is closely linked to the surface properties of the glass particles. In this work, we studied the extreme case of acid-leaching of soda-lime-silicate glass beads of two different particle size distributions and its effects on non-isothermal viscous sintering of powder compacts. Depth profiling of the chemical composition after leaching revealed a near-surface layer depleted in alkali and alkaline earth ions, associated with concurrent hydration as mass loss was detected by thermogravimetry. Heating microscopy showed that acid treatment of glasses shifted the sinter curves to higher temperatures with increasing leaching time. Modelling of the shrinkage with the cluster model predicted a higher viscosity of the altered surface layer, while analysis of the time scales of mass transport of mobile species (Na+, Ca2+ and H2O) during isochronous sintering revealed that diffusion of Na+ can compensate for concentration gradients before sintering begins. Also, exchanged water species can diffuse out of the altered layer, but the depletion of Ca2+ in the altered surface layer persists during the sinter interval, resulting in a glass with higher viscosity, which causes sintering to slow down. KW - Glass powder KW - Viscous sintering KW - Acid-leaching KW - Sinter retardation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589008 DO - https://doi.org/10.52825/glass-europe.v1i.681 VL - 1 SP - 37 EP - 53 AN - OPUS4-58900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous healing of Vickers indentation–induced cracks in glass N2 - AbstractViscous healing of cracks induced by the Vickers indentation in a soda lime magnesium silicate, a soda borosilicate, and a soda aluminosilicate glass (NAS) was studied by laser scanning microscopy. Plots of the crack length, width, and depth normalized to the initial crack length versus time over viscosity merge into single master curves of each of these quantities for each glass. Despite glass properties do not differ strikingly from each other, however, these master curves strongly differ among the glasses. This finding was attributed to a different interplay of various crack healing phenomena. Lateral cracks were found to be responsible for the bulging of the sample surface around the Vickers imprint, which in turn promotes radial crack widening as the main cause of healing delay. The most rapid healing of lateral cracks was observed in NAS in which bulging and crack widening were least pronounced. KW - Crack healing KW - Glass KW - Vickers indentation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587295 DO - https://doi.org/10.1111/jace.19245 SN - 0002-7820 VL - 106 IS - 10 SP - 5795 EP - 5805 PB - Wiley AN - OPUS4-58729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. T1 - Hydrogen Permeability of Tectosilicate Glasses for Tank Barrier Liners N2 - The permeation of hydrogen gas was studied in meta-aluminous (tectosilicate) glass powders of Li2O×Al2O3×SiO2 (LAS), Na2O×Al2O3×SiO2 (NAS) and MgO×Al2O3×SiO2 (MAS) systems by pressure loading and vacuum extraction in the temperatures range 210–310 °C. With this method, both the solubility S and the diffusivity D were determined, while the permeability was given by the product SD. For all glasses, S was found to decrease with temperature, while D increased. Since the activation energy of diffusion of H2 molecules exceeded that of dissolution, permeation increased slightly with temperature. When extrapolated to standard conditions (25 °C), the permeability of tectosilicate glasses was found to be only 10-22–10-24 mol H2 (m s Pa)-1, which is 8–10 magnitudes lower than most polymers. Thin glass liners of these compositions are expected to be the most effective barrier for tanks of pressurised hydrogen. KW - Hydrogen permeation KW - Aluminosilicate glasses KW - Hydrogen storage tank KW - Glass liner PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587284 DO - https://doi.org/10.52825/glass-europe.v1i.425 VL - 1 SP - 1 EP - 11 AN - OPUS4-58728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheffler, Franziska A1 - Fleck, Mirjam A1 - Busch, Richard A1 - Casado, Santiago A1 - Gnecco, Enrico A1 - Tielemann, Christopher A1 - Brauer, Delia S. A1 - Müller, Ralf T1 - Surface Crystallization of Barium Fresnoite Glass: Annealing Atmosphere, Crystal Morphology and Orientation N2 - Controlled oriented crystallization of glass surfaces is desired for high precision applications, since the uppermost crystal layer significantly influences the properties of the material. In contrast to previous studies, the data presented here deal with separated crystals growing at defect-free surfaces in four atmospheres with different degrees of humidity (ambient/dry air, argon and vacuum). A glass with the composition 2 BaO–TiO2–2.75 SiO2 was heat-treated at 825 °C until fresnoite (Ba2TiSi2O8) grew to a significant size. The crystal growth rate is found to increase with increasing humidity. The morphology of the crystals changes from highly distorted dendrites in the driest atmosphere (vacuum) to circular/spear-head-shaped crystals in the wettest atmosphere (ambient air), which we attribute to a decrease in viscosity of the glass surface due to water uptake. The least distorted crystals appear in the form of depressions of up to 6 µm. This has an influence on the observed crystal orientation, as measured by electron backscatter diffraction (EBSD). The pulled-in crystals change the orientation during growth relative to the flat glass surface due to an enrichment in SiO2 at the crystal fronts. This confirms that the orientation of crystals is not fixed following nucleation. KW - Fresnoite KW - Surface crystallization KW - Crystal growth KW - Crystal morphology KW - Crystal orientation KW - EBSD PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587230 DO - https://doi.org/10.3390/cryst13030475 VL - 13 IS - 3 SP - 1 EP - 17 PB - MDPI AG CY - Basel AN - OPUS4-58723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531227 DO - https://doi.org/10.1002/adem.202100445 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Silver dissolution and precipitation in an Na2O–ZnO–B2O3 metallization paste glass N2 - Thermally stimulated interactions between silver and glass, that is, silver dissolution as Ag+ and precipitation as Ag0 were studied in two glass series of molar target composition xAg2O–(19 − x)Na2O–28ZnO–53B2O3 with x = 0, 0.1, 0.5, 5 and (19Na2O–28ZnO–53B2O3)+yAg2O with y = 0.01, 0.05. These act as model for low-melting borate glasses being part of metallization pastes. The occurrence of metallic silver precipitates in melt-quenched glass ingots demonstrated that silver dissolved only in traces (< 0.01 mol%) in the glasses. The dissolved silver was detected by means of Raman spectroscopy and energy-dispersive X-ray spectroscopy. Increasing x in the batch could not lead to a significant increase of the silver ion fraction in the glass as possible in binary silver borate glasses. In situ observation of heated AgNO3 mixed with the base glass frit in a hot stage microscope showed that Ag0 precipitation occurs already at the solid state. At higher temperatures, small droplets of liquid silver were found to move freely within the melt, whereas coalescence caused a stepwise increase of their size. These results contribute to the understanding of formation of silver precipitates in metallization pastes described in the literature. KW - Silver metallization paste KW - Batch reactions KW - Borate KW - Glass forming melts KW - Glass manufacturing KW - Raman spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559433 DO - https://doi.org/10.1111/ijag.16613 SN - 2041-1286 SP - 1 EP - 11 PB - Wiley Online Library AN - OPUS4-55943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina T1 - Silver - alkali borate glass pastes N2 - Network modifier ions can decisively influence properties and structure of low melting alkali-zinc-borate glasses and thus cause complex effects on the liquid phase sintering of silver-glass metallization pastes. This effect was studied for X2O-ZnO-B2O3 (X = Li, Na, Rb) glasses for silver-glass metallization pastes. Viscosity and the glass transition temperature, Tg, were measured with rotational viscometry and dilatometry. Dried model pastes with 30 vol% LZB, NZB or RZB glass were prepared for sintering studies by means of heating microscopy measuring the silhouette area shrinkage of uniaxially pressed powder compacts during heating at 5 K/min. For comparison, the silhouette area shrinkage of pure glass and silver powder compacts were determined. Glass-silver wetting was investigated during heating of bulk glass cylinders placed on silver substrates. Glass RZB turned out to have the lowest viscosity among the glasses under study. Its glass transformation temperature, Tg, was found at 444 °C and it caused the lowest sintering onset for its glass and paste powder compacts. Slightly increased values of Tg were found for NZB and LZB (468 °C and 466 °C, respectively) and a slightly retarded sintering was found for both paste powder compacts. These results indicate that liquid phase sintering of silver-glass pastes under air atmosphere is mainly influenced by glass viscosity. T2 - GLASS MEETING 2020 CY - Online meeting DA - 07.12.2020 KW - Silver-glass metallization paste KW - Sintering KW - Alkali ions KW - Viscosity KW - Silver precipitates PY - 2020 AN - OPUS4-52871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - GlasDigital: Data-driven workflow for accelerated glass development N2 - lasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. As part of the German research initiative MaterialDigital, the joint project GlasDigital takes first steps in this direction. The project consortium involves the Fraunhofer ISC in Würzburg, the Friedrich Schiller University Jena (OSIM), the Clausthal University of Technology (INW), and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) and aims to combine all main basic components required for accelerated data driven glass development. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design, including software tools for data mining as well as property and process modelling. The talk gives an overview how all these tools are interconnected and illustrates their usability with some examples. T2 - HVG-DGG Fachausschuss I CY - Jena, Germany DA - 03.11.2023 KW - Glass KW - Robotic melting KW - Ontologie KW - Simulation KW - Workflow KW - Data Space PY - 2023 AN - OPUS4-60383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Ya‐Fan A1 - Arendt, Felix A1 - Bornhöft, Hansjörg A1 - de Camargo, Andréa S. S. A1 - Deubener, Joachim A1 - Diegeler, Andreas A1 - Gogula, Shravya A1 - Contreras Jaimes, Altair T. A1 - Kempf, Sebastian A1 - Kilo, Martin A1 - Limbach, René A1 - Müller, Ralf A1 - Niebergall, Rick A1 - Pan, Zhiwen A1 - Puppe, Frank A1 - Reinsch, Stefan A1 - Schottner, Gerhard A1 - Stier, Simon A1 - Waurischk, Tina A1 - Wondraczek, Lothar A1 - Sierka, Marek T1 - Ontology‐Based Digital Infrastructure for Data‐Driven Glass Development N2 - The development of new glasses is often hampered by inefficient trial‐and‐error approaches. The traditional glass manufacturing process is not only time‐consuming, but also difficult to reproduce with inevitable variations in process parameters. These challenges are addressed by implementing an ontology‐based digital infrastructure coupled with a robotic melting system. This system facilitates high‐throughput glass synthesis and ensures the collection of consistent process data. In addition, the digital infrastructure includes machine learning models for predicting glass properties and a tool for extracting patent information. Current glass databases have significant gaps in the relationships between compositions, process parameters, and properties due to inconsistent studies and nonconforming units. In addition, process parameters are often omitted, and even original literature references provide limited information. By continuously expanding the database with consistent, high‐quality data, it is aimed to fill these gaps and accelerate the glass development process. KW - Digitalisation KW - Data-driven glass development KW - Ontology PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625844 DO - https://doi.org/10.1002/adem.202401560 SN - 1527-2648 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-62584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Fast crack healing in glass-matrix composites with rigid filler percolation frameworks N2 - To ensure the durability of solid oxide fuel cell sealants, the understanding of the microstructural influence on viscous crack healing is essential. To this end, the effect of microstructure with respect to the spatial distribution of filler particles on viscous crack healing was studied with confocal laser scanning microscopy in glass-matrix composites (GMCs) made by mix-milling and sintering of sodalime magnesium silicate glass and Φ ≈ 6 vol% ZrO2 chemically inert rigid filler particles. This way, no change in Φ occurred during the crack healing treatments studied on Vickers indentation-induced radial cracks in polished GMC surfaces. Different microstructures were mimicked using different ZrO2 particle sizes for mix-milling. Unlike coarse ZrO2 particles, similar in size to the glass particle, fine ZrO2 particles, much smaller than the glass particles, form a rigid percolation framework (RPF) of ZrO2 filler particles around the former glass particles or glass particle agglomerates. For this RPF microstructure, crack healing was observed more readily as crack healing retardation phenomena like large-scale crack widening and crack tip rounding were strongly reduced, whereas narrow cracks could still heal locally within the glassy regions. KW - Crack healing KW - Glass matrix composite KW - Rigid percolation frameworks KW - Vickers indentation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625921 DO - https://doi.org/10.1111/jace.20386 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley AN - OPUS4-62592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509497 DO - https://doi.org/10.3389/fmats.2020.00085 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocaño, Patricia A1 - Agudo Jácome, Leonardo T1 - Oxidation Behavior of the AlMo0.5NbTa0.5TiZr Chemically Complex Alloy N2 - The chemically complex alloys that contain mostly refractory elements (rCCAs), may be highly resistant to heat and load, which makes them attractive candidates for use at extremely high temperatures associated with technological applications such as aeroengine turbines. However, the oxidation behavior remains an emerging field within the CCA community. The fully heat treated AlMo0.5NbTa0.5TiZr rCCA contains a dual-phase microstructure that resembles the γ/ γ’ pattern of the well-known Ni-base superalloys, however with a continuous Al-Zr-Ti-rich B2 ordered matrix embedding Mo-Nb-Ta-rach bcc precipitates. The question thus arises what is the oxidation behavior of this rCCA alloy? In this study, this question is addressed via in situ and ex situ X-ray diffraction (XRD) in dry and humid air in the 800–1000 °C regime. Electron microscopic investigations complement the findings. In situ synchrotron experiments were carried out at the KMC2 beamline of the Helmholtz Zentrum Berlin (HZB), with a wavelength of 1.5418 Å at 800 and 950 °C under dry and humid (≈ 40% rH, laboratory air) air for 12 h. Scanning and transmission electron microscopy was performed before and after exposure to spatially resolve the scale development ex situ. In general, 12 h exposure led to an oxide scale which internal oxidation reaches several tens of microns, and which is dominated by Zr-, Ti- and Mo-containing oxides although aluminum oxide was also always present. Main differences are observed between temperatures, while the humidity played a lesser role. T2 - International Conference on High Entropy Materials (ICHEM) 2023 CY - Knoxville, TN, USA DA - 18.06.2023 KW - High entropy superalloy KW - High temperature oxidation KW - In situ synchrotron diffraction KW - Electron microscopy PY - 2023 AN - OPUS4-63857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaiser, E. A1 - Fantin, Andrea A1 - Manzoni, Anna Maria A1 - Hesse, René A1 - Többens, D. M. A1 - Hsu, W.-C. A1 - Murakami, H. A1 - Yeh, A.-C. A1 - Pavel, M. J. A1 - Weaver, M. L. A1 - Zhu, H. A1 - Wu, Y. A1 - Vogel, F. T1 - Elucidating hierarchical microstructures in high entropy superalloys: An integrated multiscale study N2 - In this study, we examine a high entropy superalloy (HESA-Y1: Ni49.37Co20Cr7Fe4Al11.6Ti6Re1Mo0.5W0.5Hf0.03 at%), focusing on hierarchical microstructure formation and its effects on mechanical properties. Thermodynamic modeling using Thermo-Calc predicts equilibrium phase fractions, compositions, and transition temperatures,which are validated by experimental data from differential scanning calorimetry (DSC). Transmission electronmicroscopy (TEM) reveals that secondary aging induces nanometer-sized γ particles within γ’ precipitates, forming a hierarchical γ/γ’ microstructure. Atom probe tomography (APT) confirms supersaturation of γ’ precipitates with γ-forming elements (Co, Cr, Fe), driving γ particle formation, and measures interfacial widths between γ’ and γ phases. Partitioning coefficients derived from APT align with Thermo-Calc predictions for most elements. Vickers microhardness testing shows an increase of about 50 HV in the hierarchical microstructure compared to the conventional one. In situ synchrotron X-ray diffraction (XRD) from 25 to 750 ◦C determines a small, negative lattice misfit δ between γ and γ’ phases, suggesting enhanced microstructural stability, consistent with Thermo-Calc calculations. Our methodological approach enables measurement of the unconstrained lattice parameter of phase-extracted γ’ in a single-crystal XRD setup. Due to their small size and low volume fraction, γ particles do not produce distinct reflections in the X-ray diffractogram. Elucidating hierarchical microstructures across multiple scales, we establish that the presence of Re and Hf and controlled aging processes lead to enhanced mechanical properties, offering valuable insights for the design of advanced high entropy superalloys. KW - High entropy alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Superalloy PY - 2025 DO - https://doi.org/10.1016/j.matchar.2024.114642 VL - 220 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-62348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Mohring, Wencke A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early material damage in equimolar CrMnFeCoNi in mixed oxidizing/sulfiding hot gas atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials toward a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. Herein, oxidation/sulfidation of an equimolar CrMnFeCoNi high-entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of X-ray diffraction, scanning and transmission electron microscopy, and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Submicrometer scaled Cr–S–O-rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe-, Mn-, and Cr-based spinels and other oxides. KW - High entropy alloy KW - Sulfiding KW - Corrosion KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543495 DO - https://doi.org/10.1002/adem.202101573 SN - 1527-2648 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria T1 - Effect of a mixed atmosphere H2O-O2-SO2 on the oxidation kinetics and phase formation on CrMnFeCoNi and CrCoNi N2 - The high-temperature corrosion behaviors of the equimolar CrCoNi medium- and CrMnFeCoNi high-entropy alloy were studied in a gas atmosphere consisting of a volumetric mixture of 10% H2O, 2% O2, 0.5% SO2, and 87.5% Ar at 800 °C for up to 96 h. Both alloys were initially single-phase fcc structured and showed a mean grain size of ~50 µm and a homogeneous chemical composition. The oxide layer thickness of the Cantor alloy CrMnFeCoNi increased linearly with exposure time while it remained constant at ~1 µm for CrCoNi. A Cr2O3 layer and minor amounts of (Co,Ni)Cr2O4 developed on CrCoNi while three layers were detected on the Cantor alloy. These layers were a thin and continuous chromium rich oxide layer at the oxide/alloy interface, a dense (Mn,Cr)3O4 layer in the center and a thick and porous layer of Mn3O4 and MnSO4 at the gas/oxide interface. Additionally, a few metal sulfides were observed in the CrMnFeCoNi matrix. These results were found to be in reasonable agreement with thermodynamic calculations. T2 - ICHEM 2023 CY - Knoxville, TN, USA DA - 18.06.2023 KW - High entropy alloys KW - Chemically complex alloys KW - Corrosion KW - Mixed gas atmosphere PY - 2023 AN - OPUS4-57776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials towards a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. In this work oxidation/sulfidation of an equimolar CrMnFeCoNi high entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of x-ray diffraction, scanning and transmission electron microscopy and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Sub-micrometer scaled Cr-S-O rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe, Mn and Cr based spinels and other oxides. T2 - Priority Programme (Schwerpunktprogramm) Compositionally Complex Alloys - High Entropy Alloys (SPP CCA - HEA) CY - Bayreuth, Germany DA - 12.07.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Cantor alloy KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmusto, Juho T1 - The effect of humidity on the initial oxidation of the refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr N2 - Unlike conventional alloys, which typically consist of one main element, high-entropy alloys (HEAs) contain five or more principal elements. When compared with conventional alloys, HEAs may possess desirable properties such as improved strength/hardness, remarkable wear resistance, high structural stability, and notable oxidation resistance. However, due to the numerous possibilities of alloy composition, only a small fraction of HEAs has been characterized in terms of their mechanical and chemical properties. A refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, with its superalloy-like microstructure, belongs to the first group of a subclass of such Al-containing refractory HEAs that has recently drawn attention. The alloy has a nanoscale microstructure consisting of B2 and bcc phases, enabling high-temperature compressive strengths beyond conventional Ni-based alloys. This feature could improve turbine efficiency in the aerospace and power production industries. However, the microstructure has been reported to be sensitive to heat treatment after which it loses mechanical performance when the intragranular hexagonal Al-Zr-based intermetallic forms. This might be connected with the phase stability in the material. Then again, the addition of Al has been reported to improve the oxidation resistance of the material, but also that HEA materials tend to show pronounced zones of internal aging caused by diffusion during oxidation. These previous results imply that further research on the thermodynamic stability of the alloy is required. Furthermore, the oxidation behavior (both external and internal) and the role of humidity in the process are not fully understood. With such a multi-component material, the grain boundaries are expected to play a key role in the oxidation process, serving as short-circuit pathways for diffusion. To shed more light on the oxidation behavior of the AlMo0.5NbTa0.5TiZr alloy, experiments were carried out for 24 hours at 800 °C under both dry (21% O2 + 79% N2) and humid (8% O2 + 74% N2 + 18% H2O) atmospheres. After the experiments, the samples were characterized with XRD, SEM-EDS, and EPMA. The alloy oxidized rapidly under both studied atmospheres, resulting in a visibly oxidized region with a thickness of around 1.5 microns (dry) and 3.8 microns (humid). The porosity of the oxidized regions differs from one another: a thin layer of pores was detected in the outermost part of the oxidized zone under dry conditions, whereas the pores were distributed throughout the oxidized zone under humid conditions. Furthermore, the presence of humidity affected the phase formation. The grain boundaries, while still recognizable, differed visually from the grains in the as-received material, indicating the active role of grain boundaries during the oxidation. In addition, in the exposed samples, cracks along the grain boundaries were detected. Interestingly, cracks were also located within the grains. This could originate from the diffusion of species from the grains to the grain boundaries, which has changed the composition of grains. As a consequence, cracks formed most likely during cooling due to the Pilling-Bedworth effect. The formation of cracks suggested that the macro-scale homogeneity of the material may change during operation at high temperatures due to the active grain boundaries. T2 - High Temperature Corrosion and Oxidation 2023 Workshop CY - Marktheidenfeld, Germany DA - 25.09.2023 KW - High-Entropy superalloy KW - Oxidation behavior KW - Grain boundaries KW - Microstructure Evolution KW - High-Temperature Performance PY - 2023 AN - OPUS4-63850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehmann, N. A1 - Lenting, C. A1 - Stawski, T. M. A1 - Agudo Jácome, Leonardo T1 - Anhydrite formation in planetary surface environments - The case of the Atacama Desert N2 - Gypsum (CaSO4∙2H2O), bassanite (CaSO4∙0.5H2O), and anhydrite (CaSO4) are essential evaporite minerals for the evolution of hyper-arid surface environments on Earth and Mars (Voigt et al. 2019; Vaniman et al. 2018). The formation mechanism of especially anhydrite has been a matter of scientific debate for more than a century (van’t Hoff et al. 1903). To date, there exists no model that can reliably predict anhydrite formation at earth’s surface conditions. While thermodynamics favor its formation, it is hardly achieved on laboratory time scales at conditions fitting either the Atacama Desert on Earth, or the surface of Mars (Wehmann et al. 2023). In light of most recent developments (e.g. Stawski et al. 2016), that advocate for a complex, non-classical nucleation mechanism for all calcium sulphates, we present an analysis of natural samples from the Atacama Desert to identify key features that promote the nucleation and growth of anhydrite under planetary surface conditions. Our analyses reveal at least three distinct anhydrite facies, with differing mineralogy and micro- to nano-structures. The facies are (1) aeolian deposits with sub-μm grain sizes, (2) (sub-)surface nodules that formed from aeolian deposits and (3) selenites with secondary anhydrite rims. Possible mechanisms of their formation will be discussed. T2 - 10th Granada-Münster Discussion Meeting CY - Münster, Germany DA - 29.11.2023 KW - Calcium sulfates KW - Nucleation KW - Planetary surface KW - Hyper-arid PY - 2023 AN - OPUS4-59111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - Incipient Oxidation and Deformation Mechanisms of the Chemically Complex Alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime N2 - The development of refractory chemically complex alloys (rCCAs) has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy. It was named as “high entropy superalloy” as it resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. However, the continuous phase in Ni Base alloys is an fcc solution and the cuboidal γ’ precipitates present the L12 intermetallic structure. On the opposite, this CCA has a reversed microstructure where the continuous matrix is formed by an ordered B2 phase which contains cuboidal precipitates of a disordered BCC phase. Some of the most importat results of microstructural analysis, creep test and oxidation are presented in the following work. The as-cast sample shows a bcc/B2 structure with hexagonal phase precipitates in amorphous state whereas the annealed sample also shows a combination of these phases but with larger bcc precipitates and a fully crystallized hexagonal intermetallic. It was found that porosity was higher in the annealed samples (Kinkerdall effect) and the hardness was higher in samples with faster cooling rate due smaller nanostructure. Norton plots show both diffusion and dislocation controlled deformation, and it was found different kinetics between dry and humid air oxidation with the presence of spallation. T2 - CONVEMI 2021 (Venezuelan congress of microscopy and microanalysis) CY - Online meeting DA - 29.10.2021 KW - High entropy superalloys KW - Mechanical properties KW - Oxidation behavior KW - Microstructural analysis PY - 2021 AN - OPUS4-54382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina T1 - Heat-driven synthesis of gold nanoparticles from gold microparticles in an e-beam of an SEM N2 - The synthesis of gold nanoparticles from a microparticle precursor were done by illuminating the precursor with an e-beam in an SEM. To understand the driving physical mechanism, a model for thermodynamic calculation were set up and solved numerically. The results support not charging, but heat as the main mechanism. T2 - IFW annual PhD seminar CY - Görlitz, Germany DA - 22.10.2024 KW - Heat-driven synthesis KW - Scanning Electron Microscopy KW - Nanoparticle synthesis PY - 2024 AN - OPUS4-61834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Ngai, S. A1 - Zhou, X. Y. A1 - Zaiser, E. A1 - Manzoni, Anna Maria A1 - Wu, Y. A1 - Zheng, W. W. A1 - Zhang, P. A1 - Thompson, G. B. T1 - Tracking maze-like hierarchical phase separation behavior in a Fe-Si-V alloy N2 - Optimizing the properties of next-generation high-temperature and corrosion-resistant alloys is rooted in balancing structure-property relationships and phase chemistry. Here, we implement a complementary approach based on transmission electron microscopy (TEM) and atom probe tomography (APT) to ascertain aspects of hierarchical phase separation behavior, by understanding the microstructural evolution and the three-dimensional (3D) nanochemistry of a single crystal Fe79.5Si15.5V5.0 (at%) alloy. A maze-like hierarchical microstructure forms, in which a complex network of metastable disordered α plates (A2 phase) emerges within ordered α1 precipitates (D03 phase). The supersaturation in α1 (D03) precipitates with Fe and V drives the formation of α (A2) plates. The morphology of α (A2) plates is discussed concerning crystal structure, lattice misfit, and elastic strain. Phase compositions and a ternary phase diagram aid the thermodynamic assessment of the hierarchical phase separation mechanism via the Gibbs energy of mixing. A perspective on the stabilization of hierarchical microstructures beyond Fe79.5Si15.5V5.0 is elaborated by comparing hierarchical alloys. We find that the ratio of elastic anisotropy (Zener ratio) serves as a predictor of the hierarchical particles’ morphology. We suggest that the strengthening effect of hierarchical microstructures can be harnessed by improving the temporal and thermal stability of hierarchical particles. This can be achieved through phase-targeted alloying aiming at the hierarchical particles phase by considering the constituents partitioning behavior. Beyond Fe79.5Si15.5V5.0, our results demonstrate a potential pathway for improving the properties of high-temperature structural materials. KW - Atom probe tomography KW - Transmission electron microscopy KW - Hierarchical microstructure KW - Phase separation PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2023.172157 SN - 0925-8388 VL - 968 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-58343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Mohring, Wencke A1 - Schneider, Mike A1 - Laplanche, Guillaume A1 - Hagen, Sebastian Peter A1 - Stephan‐Scherb, Christiane T1 - High‐Temperature Oxidation of the CrFeNi Medium‐Entropy Alloy N2 - The isothermal high‐temperature oxidation behavior of the equiatomic CrFeNi medium‐entropy alloy is a key issue that determines whether this material is suited for high‐temperature application. In this view, the understanding of the long‐term behavior is even more crucial than short‐term corrosion effects. Herein, a single‐phase CrFeNi alloy of the face‐centered‐cubic structure is exposed to synthetic air at 1000, 1050, and 1100 °C for 24, 100, and 1000 h and its oxidation behavior is systematically compared to that of 316L steel, which shows a surprising initial oxidation stabilization during early stages. The oxidation rate of CrFeNi is parabolic at 1000 °C (with a parabolic constant kp = 1.4·10−5 mg−2 cm−4 s−1) and 1050 °C (kp = 2.7·10−5 mg−2 cm−4 s−1), but breakaway oxidation occurs at 1100 °C after 4 h of exposure. In all cases, the oxide scales are found to (at least) partially spall off. Chromium diffuses outward to form a Cr2O3 layer at the gas/oxide interface, and a thin layer of (Cr, Fe, Ni)3O4 is identified at the oxide/alloy interface. Unlike the 316L alloy, which contains more Mn and Fe, the CrFeNi alloy does not show any catastrophic oxidation behavior at the investigated conditions. KW - Corrosion KW - Medium-entropy alloy KW - Scanning electron microscopy PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-636672 DO - https://doi.org/10.1002/adem.202500400 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley VHC-Verlag AN - OPUS4-63667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Agudo Jácome, Leonardo A1 - Thompsom, Sean A1 - Schneider, Judy T1 - On the transferability of post-processing heat treatments designed for PBF-LB IN718 alloys to directed energy deposition specimens N2 - Many processes are being developed for metal additive manufacturing (AM) which vary by their heat source and feedstock. The use of directed energy deposition (DED) is growing due to its ability to build larger structures outside of a contained powder bed chamber. However, the only standard exclusively for post-build heat treatment of AM IN718 is ASTM standard F3055-14a, developed for powder bed fusion (PBF). This study evaluates the applicability of this current heat treatment standard to AM IN718 specimens produced using two methods of DED: laser-blown powder (LP)-DED and arc-wire (AW)-DED. Electron microscopy and X-ray diffraction techniques were used to characterize the specimens in the as-built condition and after the full heat treatment (FHT) specified in F3055. No evidence of remaining Laves phase was observed in the two DED specimens after the FHT. Yield strengths for the DED specimens were 1049 MPa for FHT AW-DED and 1096 MPa for LP-DED, higher than the minimum stated for PBF-LB IN718 of 920 MPa. The size, morphology, inter-spacing, and diffraction patterns of the γ´ and γ´´ strengthening precipitates are found to be similar for both DED processes. Differences were observed in the microstructure evolution where the F3055 heat treatments resulted in partial recrystallization of the grain structure, with a higher content of annealing twins observed in the AW-DED. These microstructural differences correlate with differences in the resulting elongation to failure. Thus, it is proposed that variations in heat treatments are needed for optimizing IN718 produced by different AM processes. KW - Additive manufacturing variants KW - Directed energy deposition (DED) KW - Post-process heat treatments KW - SEM-EBSD and TEM microscopy KW - XRD phase analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628165 DO - https://doi.org/10.1007/s00170-025-15386-1 SN - 1433-3015 VL - 137 IS - 7-8 SP - 3949 EP - 3965 PB - Springer Science and Business Media LLC AN - OPUS4-62816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weinel, Kristina A1 - Hahn, Marc Benjamin A1 - Lubk, Axel A1 - González Martínez, Ignacio Guillermo A1 - Büchner, Bernd A1 - Agudo Jácome, Leonardo T1 - Nanoparticle Synthesis by Precursor Irradiation with Low-Energy Electrons N2 - Nanoparticles (NPs) and their fabrication routes are intensely studied for their wide range of application in optics, chemistry, and medicine. Γ-ray and ion irradiation of precursor matter are established methods that facilitate tailored NP synthesis without complicated chemistry. Here, we develop and explore NP synthesis based on irradiating precursor microparticles with low-energy electron beams. We specifically demonstrate the fabrication of plasmonic gold nanoparticles of sizes between 3 and 350 nm on an amorphous SiOx substrate using a 30 kV electron beam. By detailed comparison with electron scattering simulations and thermodynamic modeling, we reveal the dominant role of inelastic electron–matter interaction and subsequent localized heating for the observed vaporization of the precursor gold microparticles. This general principle suggests the suitability of electron-beam irradiation for synthesizing NPs of a wide class of materials. KW - Gold Nanoparticle KW - Scanning Electron Microscopy KW - In situ irradiation KW - Thermodynamic modelling KW - Heat Transfer PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627609 DO - https://doi.org/10.1021/acsanm.4c06033 SN - 2574-0970 VL - 8 IS - 10 SP - 4980 EP - 4988 PB - ACS Publications CY - Washington, DC AN - OPUS4-62760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feng, Wen A1 - Schulz, Johannes A1 - Wolf, Daniel A1 - Pylypenko, Sergii A1 - Gemming, Thomas A1 - Weinel, Kristina A1 - Agudo Jácome, Leonardo A1 - Büchner, Bernd A1 - Lubk, Axel T1 - Secondary electron emission from gold microparticles in a transmission electron microscope: comparison of Monte Carlo simulations with experimental results N2 - We measure the electron beam-induced current to analyze the electron-induced secondary electron (SE) emission from micron-sized gold particles illuminated by 80 and 300 keV electrons in a transmission electron microscope. A direct comparison of the experimental and simulated SE emission (SEE) employing Monte Carlo scattering simulations based on the GEANT4 toolkit yields overall good agreement with a noticeable discrepancy arising from the shortcoming of the GEANT4 scattering cross sections in the low-loss regime. Thus, the electron beam-induced current analysis allows to quantify the inelastic scattering including SEE in the transmission electron microscope and provides further insight into the charging mechanisms. KW - Electron beam-induced current KW - Transmission electron microscopy KW - Secondary electron emission KW - Secondary electron yield KW - Gold micronoparticle PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-622557 DO - https://doi.org/10.1088/1361-6463/ad9840 VL - 58 IS - 8 SP - 1 EP - 7 PB - IOP Publishing CY - Bristol, GB AN - OPUS4-62255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weinel, Kristina A1 - Schultz, Johannes A1 - Kalady, Mohammed Fayis A1 - Wolf, Daniel A1 - Agudo Jácome, Leonardo A1 - Lubk, Axel T1 - Fabrication of 2-dimensional disordered assemblies of gold nanoparticles and investigation of localized surface plasmon resonances N2 - Interaction of electromagnetic waves, such as electron beams or light, with conductive material can lead to localized surface plasmon resonances (LSPRs) where the incoming energy can be deposited in a collective excitation of electrons of the conduction band, which in turn can result in coherent localized plasmon oscillations. LSPR in metallic nanostructures, such as nanoparticles (NPs), which are sensitive to geometry, material composition and environment, are currently utilized in a wide range of applications, such as surface-enhanced Raman spectroscopy, plasmonic wave guides, improved solar cells, on-chip particle accelerators and nanoantennas. A host of studies that focus on plasmonic NPs ranging from single NPs with several shapes (cubic, spherical, tetrahedral) over 1D assemblies of NPs such as chains, to ordered 2D assemblies of NPs show an increase of the complexity regarding the hybridization behavior of LSPRs eventually lead to delocalized Surface Plasmons. Furthermore, Anderson predicted in 1977 the absence of diffusion or delocalization of waves in disordered systems, which has been discussed as the underlying mechanism for LSPRs localization in disordered metallic thin films and ultrathin 2D networks. Our aim is to further develop these studies on the surface plasmon localization in disordered structures by (1) developing a novel NPs assembly fabrication method that allows fabricating disordered assemblies of NPs of a wide range of NPs sizes, and (2) probing the LSPR with high-resolution electron energy-loss spectroscopy (EELS). Moreover, the dominant dipolar interaction between the NPs, also facilitates an efficient numerical modeling of these systems, which in comparison with the experiments allows for an in-depth study of the impact of various geometric parameters as well as retardation and life-time damping on the observed localization behavior. To synthesize 2D disordered assemblies of gold NPs on a TEM transparent silicon oxide substrate, a new synthesis routine was developed. This procedure is based on sublimation and redeposition of a gold microparticle precursor induced by an electron beam in a scanning electron microscope (SEM) operated at 30 kV. To characterize the assembly of synthesized NPs in terms of size, shape and spreading over the substrate, TEM measurements were conducted subsequently. To study LSPRs experimentally, EELS in scanning transmission electron microscopy (STEM) mode was carried out. The numerical modelling of LSPRs was performed using a self-consistent dipole model. The synthesized 2D disordered gold NPs assemblies exhibit a gradient in the NPs mean size, which ranges from 100 nm close to the precursor location down to 2 nm at a distance of more than 20 µm from the precursor location. Additionally, the interparticle distance between the gold NPs increases with increasing distance to the precursor location. The experimental investigation as well as the numerical simulation of the LSPRs demonstrate a localization behavior that decreases toward larger energies, which is driven by the disorder of the NPs assembly (mainly the random particle distance). That localization behavior stays in contrast to what was found in ultrathin 2D gold networks showing increasing of localization towards higher LSPRs energies. By varying the geometric parameters of the NPs assembly in the simulation, we could identify the NPs thickness as the parameter, that determines the energy-dependence of the localization. Specifically, a critical thickness of approx. 10 nm separates the two localization regimes, which correlates to the energy of the dipole mode resonance crucially depending on the thickness of the NPs. 2D disordered assemblies of gold NPs of a wide range of NPs sizes and distances can be synthesized directly on thin substrates facilitating structural characterization and EELS measurements in a TEM. It could be shown that such assemblies exhibit LSPRs with a localization behavior that may be tuned by the NPs sizes (including thickness) and interparticle distances. The proposed synthesis of random NPs assemblies opens new avenues for fundamental studies on Anderson localization in disordered plasmonic structures as well as its applications such as surface-enhanced Raman spectroscopy where localization behavior must be tuned to specific wave lengths. T2 - 17th European Microscopy Congress (EMC 2024) CY - Copenhagen, Denmark DA - 26.08.2024 KW - Scanning electron microscopy KW - Gold nanoparticle synthesis KW - Disordered assemblies KW - Localized surface plasmon resonances KW - Transmission electron microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618330 DO - https://doi.org/10.1051/bioconf/202412932007 VL - 129 SP - 1 EP - 2 PB - EDP Sciences CY - Les Ulis AN - OPUS4-61833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocaño, Patricia A1 - Agudo Jácome, Leonardo T1 - Creep degradation of the high entropy superalloy AlMo0.5NbTa0.5TiZr N2 - The refractory high entropy superalloy (RSA) AlMo0.5NbTa0.5TiZr was the first of a class, with a dual-phase microstructure that resembles that of γ/γ’ in Ni-base superalloys), and the open question whether it performs better as structural alloy under high temperature (HT) applications. Here, we address the HT creep behavior and its associated microstructural degradation of this RSA. The material was produced by arc-melting, heat treatment in argon (24 h @ 1400 °C + 4 h hot isostatic pressure @ 1370 °C & 170 MPa). Interrupted vacuum creep tests were performed at 900-1100 °C and 30-120 MPa. Scanning (S) and transmission (T) electron microscopy (EM) were used to reveal degradation mechanisms. At 1100 °C (Fig.1, middle), the dual A2/B2 microstructure coarsens and partially transforms into a Zr-Al-rich phase (red arrow). An additional external load pronounces directional coarsening. Results are further discussed on the base dislocation and additional damage mechanisms. T2 - International Conferende on Strength of Materials (ICSMA) 2022 CY - Metz, France DA - 26.06.2022 KW - High entropy superalloy KW - Rrafting KW - Dislocation creep KW - Phase transformation PY - 2022 AN - OPUS4-63856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paulisch-Rinke, M. C. A1 - Manzoni, Anna Maria A1 - Agudo Jácome, Leonardo A1 - Vogel, F. A1 - Reimers, W. T1 - Influence of chemical composition on microstructure and mechanical properties in the extruded aluminum alloys 7021B and 7175 N2 - The aim of this study is to improve the mechanical properties of Al 7xxx series alloys by achieving the strengthening benefits typically provided by Cu while avoiding the formation of low-melting eutectic phases associated with excessive Cu content. This is accomplished through a tailored combination of alloying elements and optimized thermomechanical treatments. Alloys 7021B (high Zn content) and 7175 (high Cu and Mg content) are analyzed and optimized threefold in this study: the heat treatment, the microstructural evolution and the mechanical properties are investigated by several methods and compared with the aim of improving the process parameters for subsequent application. The peak-aging process is optimized via compression tests to overcome the strength-ductility trade-off. Microstructure and phase chemistry analyses by transmission electron microscopy and atom probe tomography enable a better understanding of the underlying morphological features such as the spatial distribution, and the chemical composition of the hardening phases. The mechanical properties of the peak-aged alloys are determined by compression and tensile tests. Both alloys exhibit very high strength – even by 7xxx series standards. It can be traced back to the dislocation movement: it is impeded both by homogeneously distributed cuttable Guinier–Preston zones in both alloys and by non-cuttable η’ precipitates. As a result, we demonstrate that alloy 7021B offers novel possibilities for processing and industrial application: high strength, typically associated with Cu containing alloys, can also be obtained in Cu free alloys, if the Zn content is sufficiently high. We can thus suggest new opportunities for processing and industrial applications by reducing the risk of forming low-melting eutectic phases. KW - Aluminium alloys KW - Transmission electron microscopy KW - Atom probe tomography KW - Extrusion KW - Mechanical properties PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640338 DO - https://doi.org/10.1016/j.matdes.2025.114649 SN - 0264-1275 VL - 258 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-64033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller-Elmau, Johanna A1 - Göbel, Artur A1 - Junge, Paul A1 - Müller, Julian A1 - Rousseau, Tom A1 - Görke, Oliver A1 - Nikasch, Christian A1 - Kiliani, Stefan T1 - Thermal cycling of YAG infiltration and plasma sprayed coatings as environmental barrier coating on ceramic heat shields for use in hydrogen operating gas turbines N2 - Environmental barrier coatings (EBC) are intended to protect alumina ceramic tiles in hot water vapor conditions, enabling gas turbines to operate with higher hydrogen content or even pure hydrogen. For these operating conditions, yttrium aluminum garnet (YAG) promises the highest protection against hydrolysis, which can be applied via atmospheric plasmaspraying (APS). To enhance the protection efficiency, the coating is combined with a prior infiltration of the base material. The obtained design acts as in-depth protection even if the coating exhibits cracks. KW - Thermal shock KW - Thermal cycles KW - Environmental barrier coating (EBC) KW - Water vapor corrosion PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639829 DO - https://doi.org/10.1016/j.oceram.2025.100837 VL - 23 SP - 1 EP - 7 PB - Elsevier Ltd. AN - OPUS4-63982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - In situ electron-beam 'melting' (sublimation) of gold microparticles in the SEM N2 - Gold micro particles have been modified in the past using the high power density of a localized electron beam of acceleration voltages above 100 kV as an energy source to transform matter at the sub-micron scale in a transmission electron microscope uses. Here, the e-beam-induced transformation of precursor microparticles employing a low-energy e-beam with an acceleration voltage of 30 kV in a scanning electron microscope is implemented. Under these conditions, the technique can be classified between e-beam lithography, where the e-beam is used to mill holes in or grow some different material onto a substrate, and e-beam welding, where matter can be welded together when overcoming the melting phase. Modifying gold microparticles on an amorphous SiOx substrate reveals the dominant role of inelastic electron-matter interaction and subsequent localized heating for the observed melting and vaporization of the precursor microparticles under the electron beam. Monte-Carlo scattering simulations and thermodynamic modeling further support the findings. T2 - IKZ International Fellowship Award & Summer School 2025 from May 5 to 7, 2025 CY - Berlin, Germany DA - 05.05.2025 KW - Gold Nanoparticle KW - Scanning Electron Microscopy KW - In situ irradiation KW - Thermodynamic modelling KW - Heat Transfer PY - 2025 AN - OPUS4-63256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Manzoni, Anna Maria T1 - Elementverteilung in Hochentropiewürfelchen N2 - Seit Beginn der Luftfahrt Anfang des letzten Jahrhunderts ist die Menschheit auf der Suche nach neuen Materialien, die das Abenteuer Fliegen sicherer, angenehmer, schneller und rentabler gestalten. Hochentropielegierungen sind solche vielversprechenden Materialien. Die richtige Analytik hilft dabei, besser zu verstehen, wie deren Zusammensetzung und atomare Anordnung die makroskopischen Eigenschaften beeinflusst. KW - Chemically complex alloy KW - Transmissionselektronenmikroskopie KW - Energiedisersive Röntgenspektroskopie PY - 2022 UR - https://www.gdch.de/fileadmin/downloads/Netzwerk_und_Strukturen/Fachgruppen/Analytische_Chemie/Mitteilungsblatt/Internet_AC04-2022.pdf SN - 0939-0065 IS - 4 SP - 12 EP - 14 PB - Gesellschaft Deutscher Chemiker CY - Frankfurt, Main AN - OPUS4-56699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Kropf, H. A1 - Duarte, J. A1 - Cakir, Cafer Tufan A1 - Dubois, F. A1 - Többens, D. A1 - Glatzel, U. T1 - Temperature evolution of lattice misfit in Hf and Mo variations of the Al 10 Co 25 Cr 8 Fe 15 Ni 36 Ti 6 compositionally complex alloy N2 - Misfits of γ- γ’ based Al10Co25Cr8Fe15Ni36Ti6 and its Mo- and Hf-variations are studied up to a temperature of 980 °C and compared with Ni- and Co-based superalloys. The trace elements decrease (Hf) or increase (Mo) the edge radii of the γ’ cuboids without changing their sizes. Atom probe measurements revealed that the Hf alloy prefers the γ’ phase while Mo prefers the γ matrix, leading to a lattice parameters enhancement of both phases, as could be revealed by synchrotron X-ray diffraction. The misfit is influenced in opposite ways: Hf increases the positive misfit, while Mo reduces it at all investigated temperatures. KW - Metal and alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Atom probe tomography KW - High entropy alloy PY - 2020 DO - https://doi.org/10.1016/j.scriptamat.2020.07.013 VL - 188 SP - 74 EP - 79 PB - Elsevier Ltd. AN - OPUS4-51025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cao, L. A1 - Thome, P. A1 - Agudo Jácome, Leonardo A1 - Somsen, C. A1 - Cailletaud, G. A1 - Eggeler, G. T1 - On the influence of crystallography on creep of circular notched single crystal superalloy specimens N2 - The present work contributes to a better understanding of the effect of stress multiaxiality on the creep behavior of single crystal Ni-base superalloys. For this purpose we studied the creep deformation and rupture behavior of double notched miniature creep tensile specimens loaded in three crystallographic directions [100], [110] and [111] (creep conditions: 950 °C and 400 MPa net section stress). Crystal plasticity finite element method (CPFEM) was used to analyze the creep stress and strain distributions during creep. Double notched specimens have the advantage that when one notch fails, the other is still intact and allows to study a material state which is close to rupture. No notch root cracking was observed, while microstructural damage (pores and micro cracks) were frequently observed in the center of the notch root region. This is in agreement with the FEM results (high axial stress and high hydrostatic stress in the center of the notched specimen). Twinning was observed in the notch regions of [110] and [111] specimens, and <112> {111} twins were detected and analyzed using orientation imaging scanning electron microscopy. The present work shows that high lattice rotations can be detected in SXs after creep fracture, but they are associated with the high strains accumulated in the final rupture event. KW - Single crystal Ni-Base superalloys KW - Double notched creep specimen KW - Stress distribution KW - Lattice rotation KW - Cracks PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506060 DO - https://doi.org/10.1016/j.msea.2020.139255 SN - 0921-5093 VL - 782 SP - 139255 PB - Elsevier B. V. AN - OPUS4-50606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Weber, Kathrin A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Elucidation of orientation relations between Fe-Cr alloys and corrosionproducts after high temperature SO2 corrosion N2 - The early stages of corrosion of Fe-Cr-model alloys (2 and 9 % Cr) were investigated after exposure at 650 °C in0.5 % SO2containing gas by electron backscattered diffraction (EBSD) and transmission electron microscopy(TEM). The impact of the grain orientation of the base alloy on the orientation relations of the corrosion productsis presented. After 2 min–5 min exposure the formation of a multi-layered corrosion zone was discovered. Aclear orientation relationship between ferrite and the (Fe,Cr)3O4 spinel could be demonstrated. The obtainedresults show the importance of the grain orientation on oxidation resistance. KW - Iron KW - TEM KW - SEM KW - High temperature corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508911 DO - https://doi.org/10.1016/j.corsci.2020.108809 VL - 174 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-50891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Cheng, J. A1 - Liang, S. B. A1 - Ke, C. B. A1 - Cao, S. S. A1 - Zhang, X. P. A1 - Zizak, I. A1 - Manzoni, Anna Maria A1 - Yu, J. M. A1 - Wanderka, N. A1 - Li, W. T1 - Formation and evolution of hierarchical microstructures in a Ni-based superalloy investigated by in situ high-temperature synchrotron X-ray diffraction N2 - Hierarchical microstructures are created when additional γ particles form in γ’ precipitates and they are linked to improved strength and creep properties in high-temperature alloys. Here, we follow the formation and evolution of a hierarchical microstructure in Ni86.1Al8.5Ti5.4 by in situ synchrotron X-ray diffraction at 1023 K up to 48 h to derive the lattice parameters of the γ matrix, γ’ precipitates and γ particles and misfits between phases. Finite element method-based computer simulations of hierarchical microstructures allow obtaining each phase's lattice parameter, thereby aiding peak identification in the in situ X-ray diffraction data. The simulations further give insight into the heterogeneous strain distribution between γ’ precipitates and γ particles, which gives rise to an anisotropic diffusion potential that drives the directional growth of γ particles. We rationalize a schematic model for the growth of γ particles, based on the Gibbs-Thomson effect of capillary and strain-induced anisotropic diffusion potentials. Our results highlight the importance of elastic properties, elastic anisotropy, lattice parameters, and diffusion potentials in controlling the behavior and stability of hierarchical microstructures. KW - XRD KW - Superalloy KW - Finite element method KW - Transmission electron microscopy PY - 2022 DO - https://doi.org/10.1016/j.jallcom.2022.165845 SN - 0925-8388 VL - 919 SP - 1 EP - 17 PB - Elsevier CY - Lausanne AN - OPUS4-55394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, Phillip A1 - Stephan-Scherb, Christiane T1 - Effect of KCl deposits in high‐temperature corrosion on chromium‐rich steels in SO2‐containing atmosphere N2 - High‐temperature corrosion was studied under multiple chemical loads on ferritic‐austenitic model alloys (Fe–13Cr, Fe–18Cr–12Ni, and Fe‐25Cr–20Ni) with KCl deposit under 0.5% SO2/99.5% Ar gas atmosphere at 560°C. Postexposure characterization was done by X‐ray diffraction and scanning electron microscopy. In a pure SO2/Ar environment a protective Cr2O3 scale was formed by all samples. The introduction of KCl deposits causes the scale to be nonprotective and multilayered, consisting of CrS, FeS, Cr2O3, Fe3O4, and Fe2O3. The impact of the microstructure and alloying elements is discussed. KW - High‐temperature corrosion KW - KCl KW - Microstructure KW - SO2 KW - Steel alloy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543056 DO - https://doi.org/10.1002/maco.202112901 VL - 73 IS - 5 SP - 758 EP - 770 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Dubois, F. A1 - Mousa, M. S. A1 - von Schlippenbach, C. A1 - Többens, D. M. A1 - Yesilcicek, Yasemin A1 - Zaiser, E. A1 - Hesse, René A1 - Haas, S. A1 - Glatzel, U. T1 - On the Formation of Eutectics in Variations of the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy N2 - Superalloy inspired Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy is known for its gamma-gamma' microstructure and the third Heusler phase. Variations of this alloy, gained by replacing 0.5 or 1 at. pct Al by the equivalent amount of Mo, W, Zr, Hf or B, can show more phases in addition to this three-phase morphology. When the homogenization temperature is chosen too high, a eutectic phase formation can take place at the grain boundaries, depending on the trace elements: Mo and W do not form eutectics while Hf, Zr and B do. In order to avoid the eutectic formation and the potential implied grain boundary weakening, the homogenization temperature must be chosen carefully by differential scanning calorimetry measurements. A too low homogenization temperature, however, could impede the misorientation alignment of the dendrites in the grain. The influence of grain boundary phases and incomplete dendrite re-orientation are compared and discussed. KW - High entropy alloy KW - Eutectic KW - Homogenization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543504 DO - https://doi.org/10.1007/s11661-020-06091-7 VL - 52 IS - 1 SP - 143 EP - 150 PB - Springer AN - OPUS4-54350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk T1 - Ergebnisse eines Ringversuchs zur quantitativen Analyse von Schwingstreifen auf Bruchflächen metallischer Werkstoffe N2 - Die Frage nach der Anzahl der Lastspiele bis zum Bruch eines Bauteils wird in der Schadensanalyse oft gestellt – und kann meistens gar nicht oder nicht mit befriedigender Sicherheit beantwortet werden. Selbst wenn ein duktiler Werkstoff vorliegt, der unter schwingender Beanspruchung prinzipiell Schwingstreifen ausbilden kann, ist nicht sicher, ob diese vollzählig erkannt werden können und ob jeder Schwingstreifen auf einem Lastspiel beruht. Im Arbeitskreis Fraktographie wurde ein Ringversuch durchgeführt, bei dem an Bruchflächen und an Bildern dieser Bruchflächen Schwingstreifenabstände bestimmt werden sollten. Insgesamt 70 Teilnehmer/innen aus Industrie und Forschung haben daran teilgenommen. Die aufgebrachten Lastspielzahlen und Rissfortschritte lagen vor, waren den Teilnehmern aber nicht bekannt. Obwohl diese überwiegend erfahrene Fachkräfte sind, waren die Streuungen der Ergebnisse unerwartet groß. Es wird diskutiert, woran das liegt und wie die Situation verbessert werden kann. T2 - DGM Metallographietagung 2025 CY - Bochum, Germany DA - 08.10.2025 KW - Fraktographie PY - 2025 AN - OPUS4-64344 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - On Shared Vocabulary, Ontologies, Semantic Data and Prototype Applications N2 - The advancement of development and digitalization in materials science necessitates rigorous quality assurance, interoperability, and adherence to FAIR principles. Semantic technologies contribute to these objectives by facilitating the structured storage, processing, and contextualization of data, yielding machine-actionable and human-interpretable knowledge representations vital for modern data management. This presentation showcases the prototypical application of generic approaches of knowledge representation in materials science. It includes the design and documentation of graph patterns that may be compiled into rule-based semantic shapes. The development and application of the PMD Core Ontology 3.0 (PMDco 3.0) tailored for materials science is highlighted. Its integration into daily lab life is demonstrated through its functional incorporation into electronic lab notebooks (ELN). In this respect, a possible integration of semantic technologies into openBIS is presented. The openBIS system is usable as a central data storage system that may be complimented by semantic annotation of data to enhance data contextualization and automation. Graph-based knowledge representations and rule-based semantic shapes are shown which were developed alongside the PMD Core Ontology 3.0 (PMDco 3.0) and can enrich openBIS functionalities. Practical examples from material processing and mechanical testing illustrate how semantic extensions of openBIS enable machine-actionable, interoperable, and reusable research data, paving the way for a unified, ontology-driven laboratory data ecosystem. T2 - openBIS User Group Meeting (openBIS UGM) CY - Berlin, Germany DA - 22.09.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - OpenBIS KW - Ontologies KW - Graph Patterns PY - 2025 AN - OPUS4-64307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -