TY - GEN A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Fliegener, S. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. T1 - PMD Core Ontology (PMDco) N2 - The PMD Core Ontology (PMDco) is a comprehensive framework for representing knowledge that encompasses fundamental concepts from the domains of materials science and engineering (MSE). The PMDco has been designed as a mid-level ontology to establish a connection between specific MSE application ontologies and the domain neutral concepts found in established top-level ontologies. The primary goal of the PMDco is to promote interoperability between diverse domains. PMDco's class structure is both understandable and extensible, making it an efficient tool for organizing MSE knowledge. It serves as a semantic intermediate layer that unifies MSE knowledge representations, enabling data and metadata to be systematically integrated on key terms within the MSE domain. With PMDco, it is possible to seamlessly trace data generation. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the generation, derivation, and attribution of resources. By building on this foundation, PMDco facilitates the integration of data from various sources and the creation of complex workflows. In summary, PMDco is a valuable tool for researchers and practitioners in the MSE domains. It provides a common language for representing and sharing knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless traceability of data generation. Overall, PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain. PMDco at GitHub: https://github.com/materialdigital/core-ontology KW - Ontology KW - Semantic Web technologies KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology PY - 2023 UR - https://github.com/materialdigital/core-ontology/blob/f2bd420348b276583fad6fa0fb4225f17b893c78/pmd_core.ttl PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-59352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 2: Microstructural evolution during cyclic loading and its representation in a physically-based micromechanical model N2 - The current competitive situation on electricity markets forces conventional power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 45. MPA-Seminar CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - P92 KW - TEM KW - EBSD KW - Micromechanical model PY - 2019 SP - 80 EP - 85 PB - MPA (Materialprüfungsanstalt Universität Stuttgart) CY - Stuttgart AN - OPUS4-50052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Han, Ying A1 - Kruse, Julius A1 - Rosalie, Julian A1 - Radners, J. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Influence of mean stress and overaging on fatigue life of aluminum alloy EN AW-2618A N2 - Fatigue tests were performed on the forged aluminum alloy EN AW-2618A in the T61 state. Different stress ratios (R = -1, R = 0.1) were selected to study the influence of mean stress on fatigue life. Two overaged states (10 h/230 ◦C, 1000 h/230 ◦C) were also tested to investigate the influence of overaging on fatigue life. Transmission electron microscopy (TEM) was used to characterize the precipitates (S-phase), which are mainly responsible for the strength of the alloy. A fractographic analysis was also performed to determine the failure mode. Overaging reduces the fatigue life compared to the T61 state. The longer the aging time, the lower the fatigue resistance. The reason is the decrease in (yield) strength, which correlates with the radius of the S-phase: the precipitate radius increases by a factor of approximately two for the overaged states compared to the initial state. The analysis of the fracture surfaces showed crack initiation occurs predominantly on the outer surface and is associated with the primary phases. KW - Aluminum alloys KW - Aging KW - Fatigue KW - Microstructure KW - Electron microscopy KW - S-Phase PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583708 DO - https://doi.org/10.1016/j.msea.2023.145660 SN - 0921-5093 VL - 886 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Birkholz, H. A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Grundmann, J. A1 - Hanke, T. A1 - Waitelonis, J. A1 - Sack, H. A1 - Mädler, L. T1 - PMD Core Ontology: A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Semantic Interioerability KW - Mid-Level Ontology for MSE KW - FAIR Data Management PY - 2023 AN - OPUS4-58201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Hanke, T. A1 - Eisenbart, M. A1 - Skrotzki, Birgit T1 - Materials Mechanical Testing Ontology (MTO) N2 - The materials mechanical testing ontology (MTO) was developed by collecting the mechanical testing vocabulary from ISO 23718 standard, as well as the standardized testing processes described for various mechanical testing of materials like tensile testing, Brinell hardness test, Vickers hardness test, stress relaxation test, and fatigue testing. Confirming the ISO/IEC 21838-2 standard, MTO utilizes the Basic Formal Ontology (BFO), Common Core Ontology (CCO), Industrial Ontologies Foundry (IOF), Quantities, Units, Dimensions, and data Types ontologies (QUDT), and Material Science and Engineering Ontology (MSEO) as the upper-level ontologies. Reusing these upper-level ontologies and materials testing standards not only makes MTO highly interoperable with other ontologies but also ensures its acceptance and applicability in the industry. MTO represents the mechanical testing entities in the 230 classes and four main parts: i) Mechanical testing experiments entities like tensile, hardness, creep, and fatigue tests as the subclasses of mseo:Experiment, ii) Mechanical testing quantity concepts such as toughness, elongation, and fatigue strength in the appropriate hierarchies of bfo:Disposition and bfo:Quality classes, iii) Mechanical testing artifacts like indenter as the subclasses of cco:Artifact, and iv) mechanical testing data like the stress-strain, S-N, or creep curves as the subclasses of cco:InformationContentEntity. MTO is publicly available via the KupferDigital GitLab repository. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Mechanical testing KW - Ontology KW - Standard PY - 2023 AN - OPUS4-58270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, H. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Mädler, L. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology N2 - The PMD Core Ontology (PMDco) is a comprehensive set of building blocks produced via consensus building. The ontological building blocks provide a framework representing knowledge about fundamental concepts used in Materials Science and Engineering (MSE) today. The PMDco is a mid-level ontology that establishes connections between narrower MSE application ontologies and domain neutral concepts used in already established broader (top-level) ontologies. The primary goal of the PMDco design is to enable interoperability between various other MSE-related ontologies and other common ontologies. PMDco’s class structure is both comprehensive and extensible, rendering it an efficient tool to structure MSE knowledge. The PMDco serves as a semantic middle-layer unifying common MSE concepts via semantic mapping to other semantic representations using well-known key terms used in the MSE domain. The PMDco enables straight-forward documentation and tracking of science data generation and in consequence enables high-quality FAIR data that allows for precise reproducibility of scientific experiments. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the production, derivation, and attribution of resources. Via this foundation, the PMDco enables the integration of data from various data origins and the representation of complex workflows. In summary, the PMDco is a valuable advancement for researchers and practitioners in MSE domains. It provides a common MSE vocabulary to represent and share knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless tracing of science data. Overall, the PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain in general. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Ontology KW - Semantic Interoperability KW - FAIR KW - Automation PY - 2023 AN - OPUS4-58197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Z.-Jan, G.-A. A1 - Hanke, T. A1 - v. Hartrott, P. A1 - Fliegener, S. A1 - Kryeziu, J. A1 - Waitelonis, J. A1 - Sack, H. A1 - Skrotzki, Birgit T1 - Adopting FAIR data practices in materials science: Semantic representation of a quantitative precipitation analysis N2 - Many metallic materials gain better mechanical properties through controlled heat treatments. For example, in age-hardenable aluminium alloys, the strengthening mechanism is based on the controlled formation of nanometre-sized precipitates, which represent obstacles to dislocation movement and consequently increase the strength. Precise tuning of the material microstructure is thus crucial for optimal mechanical behaviour under service condition of a component. Therefore, analysis of the microstructure, especially the precipitates, is essential to determine the optimum parameters for the interplay of material and heat treatment. Transmission electron microscopy (TEM) is utilized to identify precipitate types and orientations in the first step. Dark-field imaging (DF-TEM) is often used to image the precipitates and thereafter quantify their relevant dimensions. Often, these evaluations are still performed by manual image analysis, which is very time-consuming and to some extent also poses reproducibility problems. Our work aims at a semantic representation of an automatable digital approach for this material specific characterization method under adaption of FAIR data practices. Based on DF-TEM images of different precipitation states of a wrought aluminium alloy, the modularizable, digital workflow of quantitative analysis of precipitate dimensions is described. The integration of this workflow into a data pipeline concept will also be discussed. Using ontologies, the raw image data, their respective contextual information, and the resulting output data of the quantitative image analysis can be linked in a triplestore. Publishing the digital workflow and the ontologies will ensure data reproducibility. In addition, the semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Semantic Representation KW - FAIR data management KW - Quantitative Precipitation Analysis KW - Knowledge graph and ontologies PY - 2023 AN - OPUS4-58199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading performance and related microstructure evolution of ferritic-martensitic 9-12% Cr steels N2 - The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Cyclic loading KW - Microstructure evolution PY - 2018 SP - 259 EP - 265 AN - OPUS4-47118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Pittner, Andreas A1 - Werner, Daniel A1 - Wimpory, R. A1 - Boin, M. A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Influence of the microstructure on magnetic stray fields of low-carbon steel welds N2 - This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields. KW - TIG-welding KW - GMR sensors KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel PY - 2018 DO - https://doi.org/10.1007/s10921-018-0522-0 SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 66,1 EP - 18 PB - Springer US CY - New York AN - OPUS4-45855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eggeler, G. A1 - Wieczorek, N. A1 - Fox, F. A1 - Berglund, S. A1 - Bürger, D. A1 - Dlouhý, A. A1 - Wollgramm, P. A1 - Neuking, K. A1 - Schreuer, J. A1 - Agudo Jácome, Leonardo A1 - Gao, S. A1 - Hartmaier, A. A1 - Laplanche, G. T1 - On shear testing of single crystal Ni-base superalloys N2 - Shear testing can contribute to a better understanding of the plastic deformation of Ni-base superalloy single crystals. In the present study, shear testing is discussed with special emphasis placed on its strengths and weaknesses. Key mechanical and microstructural results which were obtained for the high-temperature (T ≈ 1000 °C) and low-stress (τ ≈ 200 MPa) creep regime are briefly reviewed. New 3D stereo STEM images of dislocation substructures which form during shear creep deformation in this regime are presented. It is then shown which new aspects need to be considered when performing double shear creep testing at lower temperatures (T < 800 °C) and higher stresses (τ > 600 MPa). In this creep regime, the macroscopic crystallographic [11−2](111) shear system deforms significantly faster than the [01−1](111) system. This represents direct mechanical evidence for a new planar fault nucleation scenario, which was recently suggested (Wu et al. in Acta Mater 144:642–655, 2018). The double shear creep specimen geometry inspired a micro-mechanical in-situ shear test specimen. Moreover, the in-situ SEM shear specimen can be FIB micro-machined from prior dendritic and interdendritic regions. Dendritic regions, which have a lower γ′ volume fraction, show a lower critical resolved shear stress. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Superalloy single crystals KW - Shear testing KW - Creep mechanisms KW - In-situ SEM micro shear deformation KW - Transmission electron microscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456591 DO - https://doi.org/10.1007/s11661-018-4726-9 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3951 EP - 3962 PB - Springer US CY - New York AN - OPUS4-45659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Materials applications of iron aluminide (FeAl), (WAFEAL) T1 - Werkstoffanwendungen für Eisenaluminide (FeAl), (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. N2 - Die zunehmende geopolitische Bedeutung der Ressourcenverfügbarkeit sowie die Anforderungen an einen geschlossenen Materialkreislauf treiben die Materialforschung voran, um konventionelle Werkstoffe mit weniger kritischen Zusätzen zu legieren oder sogar vollständig mit nachhaltigeren Alternativen zu substituieren. Eine potenzielle Alternative stellen die intermetallischen Eisenaluminid-Legierungen (FeAl) dar. Im Labormaßstab wurden bereits viele Legierungskonzepte für verbesserte Hochtemperatureigenschaften oder Duktilität erfolgreich gießtechnisch umgesetzt. Eine erfolgreiche Erprobung von FeAl-Legierungen im industriellen Maßstab stand zu Beginn des Projekts aber weiterhin aus. Ziel des Vorhabens war daher die Entwicklung von simulationsgestützten Gießkonzepten in industrienahe Gießprozesse anhand der Modelllegierung Fe-26Al-4Mo-0,5Ti-1B und die Eingrenzung der prozesstechnischen Verfahrensgrenzen durch Warmrissversuche. Erkenntnisse hieraus wurden in einen praxisorientierten, für zukünftige Anwender in KMUs zugänglichen Handlungskatalog für die gießgerechte Auslegung von Bauteilen aus Eisenaluminiden überführt. Fokus wurde insbesondere auf das Feinguss- und Kokillengussverfahren im Schleuderguss gesetzt. Neben zahlreicher Konstruktions- und Gießprozessparameter wurden auch Wärmebehandlungen und Legierungszusätze (Al, Mo, B) variiert, um den Einfluss von Legierungselementen auf Gießbarkeit, Mikrostruktur und mechanische Kennwerte zu bestimmen. Eine umfangreiche Basis an Daten aus Mikrostrukturanalysen (Mikroskopische Bildgebung, Bestimmung von Korngrößen sowie Phasenzusammensetzungen und -anteilen, Fraktographie), mechanischen Tests (Härtemessungen, Druckversuch, Zugversuch, Warmzugversuch, Kriechversuch) sowie Messungen thermophysikalischer Eigenschaften konnte für die Modelllegierung erzeugt werden. Korrelationen dieser Informationen mit Prozessvariablen erlaubten Schlussfolgerungen zu Härtungsmechanismen und Duktilität in der Legierung und wie sie prozesstechnisch in Gieß- und Bauteilauslegung gesteuert werden können. Der erfolgreiche Abguss von hochkomplexen Bauteilgeometrien mit dünnen Wandstärken sowie optimierte Legierungszusammensetzungen zeigen Perspektiven auf neue Anwendungsfelder auf. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 VL - R604 SP - 1 EP - 32 PB - FVV e. V. CY - Frankfurt a.M. AN - OPUS4-57247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Skrotzki, Birgit T1 - Materials Applications FeAl (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation-based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 AN - OPUS4-57248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Shakeel, Yusra A1 - Olbricht, Jürgen A1 - Aversa, Rossella A1 - Skrotzki, Birgit T1 - NFDI-MatWerk PP18 / IUC02 Reference Data: Creep Data of a single crystalline Ni-Base Alloy N2 - Reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) aims to develop, together with BAM and other Participant Projects (PP), a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for identifying reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Syngle Crystal alloy KW - Metadata schema PY - 2023 AN - OPUS4-57146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Portella, Pedro Dolabella A1 - Hartrott, P. A1 - Hadzic, N. A1 - Todor, A. A1 - Birkholz, H. A1 - Grundmann, J. T1 - Digitalisierung der Materialien in PMD & Mat-o-Lab - Eine normkonforme Anwendungsontologie des Zugversuchs N2 - Zur Bewältigung der Herausforderung bei der Digitalisierung von Materialien und Prozessen ist eine mit allen Stakeholdern konsistente Kontextualisierung von Materialdaten anzustreben, d.h. alle erforderlichen Informationen über den Zustand des Materials einschließlich produktions- und anwendungsbezogener Änderungen müssen über eine einheitliche, maschinenlesbare Beschreibung verfügbar gemacht werden. Dazu werden Wissensrepräsentationen und Konzeptualisierungen ermöglichende Ontologien verwendet. Erste Bemühungen in den beiden Projekten Plattform Material Digital und Materials-open-Laboratory führten zur Erstellung von Anwendungsontologien, die Prozesse und Testmethoden explizit beschreiben. Dabei wurde u.a. der Zugversuch an Metallen bei Raumtemperatur nach DIN EN ISO 6892-1 ontologisch beschrieben. Diese als Beispiel dienende Ontologieentwicklung wird in dieser Präsentation vorgestellt. T2 - Werkstoffprüfung 2021 CY - Online meeting DA - 02.12.2021 KW - Ontologie KW - Semantisches Web KW - Wissensrepräsentation KW - Digitalisierung KW - Zugversuch PY - 2021 AN - OPUS4-53929 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Glatzel, U. T1 - Tuning high entropy alloys towards superalloy applications N2 - The discovery of the high entropy concept at the beginning of the 3rd millennium lead to a worldwide increase in metallurgical research, as the possible element combinations seemed nearly endless and the range of applications wide. In the early years of research, one of the main goals was the discovery of a single-phase high entropy alloy. As research evolved, it was found that properties could be enhanced by opening the HE-concept towards multiphase alloys, and from the wide area of possibilities our group chose a tuning of the properties towards high temperature application. Compositionally complex Al10Co25Cr8Fe15Ni36Ti6 alloy, which is single-phase at high temperature, around 1200°C, shows a three phase morphology at intermediate temperatures, around 800°C. A high temperature homogenization procedure has to be applied in order to decrease the segregation induced by the dendritic growth. Subsequent annealing promotes the formation of the strengthening γ' precipitates. The alloy shows a positive lattice misfit between the γ and the γ' phase, which can be an indicator for good creep properties. The microstructure can be optimized by adding trace elements such as Mo and Hf, known as γ and γ' strengtheners in Ni-based superalloys, respectively. Atom probe measurements show that Mo segregates into the γ matrix, and Hf prefers the γ' precipitates, where it increases the lattice parameter and thus also the lattice misfit, by about 50%. The alloy family shows interesting mechanical properties, especially the Al9.5Co25Cr8Fe15Ni36Ti6Hf0,5 alloy – its tensile properties are better than those of commercial Alloy 800H and IN617 at temperatures up to 700°C. T2 - BAM Abteilungsseminar CY - Online meeting DA - 21.01.2021 KW - High entropy alloys KW - Compositionally complex alloys KW - Superalloys KW - Hochentropie-Legierung KW - Legierung mit komplexer Zusammensetzung KW - Superlegierung PY - 2021 AN - OPUS4-52442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Weinberger, Katharina A1 - Schilling, Markus T1 - Innovations- Plattform Material Digital N2 - Mit der Initiative MaterialDigital fördert das BMBF seit dem letzten Jahr ein wichtiges Instrument zur Digitalisierung der Materialwissenschaft und Werkstofftechnik in Deutschland. In der ersten Phase dieser Initiative wird seit Juli 2019 die Plattform MaterialDigital von einem Konsortium aufgestellt. Ziel dieser Plattform ist der Aufbau eines virtuellen Materialdatenraums, um zusammen mit allen Interessenten die Systematisierung des Umgangs mit Werkstoffdaten voranzutreiben. In einer zweiten Phase werden akademische F&E-Projekte voraussichtlich Anfang 2021 gefördert. In jedem dieser Projekte wird an einer konkreten Fragestellung das Themenfeld „Digitalisierung der Materialwissenschaft und Werkstofftechnik“ adressiert und multidisziplinär bearbeitet. In einer dritten Phase werden im Rahmen industriegeführter vorwettbewerblicher Verbundprojekte mit der gleichen Zielsetzung gefördert. T2 - Workshop - “Datenmanagement in der Additiven Fertigung” CY - Online meeting DA - 27.10.2020 KW - Digitalisierung KW - Plattform Material Digital KW - Virtueller Materialdatenraum KW - Vernetzung KW - Ontologien PY - 2020 AN - OPUS4-51609 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus T1 - Tensile Test Ontology (TTO) N2 - This is the stable version 2.0.1 of the PMD ontology module of the tensile test (Tensile Test Ontology - TTO) as developed on the basis of the 2019 standard ISO 6892-1: Metallic materials - Tensile Testing - Part 1: Method of test at room temperature. The TTO was developed in the frame of the PMD project. The TTO provides conceptualizations valid for the description of tensile test and corresponding data in accordance with the respective standard. By using TTO for storing tensile test data, all data will be well structured and based on a common vocabulary agreed on by an expert group (generation of FAIR data) which will lead to enhanced data interoperability. This comprises several data categories such as primary data, secondary data and metadata. Data will be human and machine readable. The usage of TTO facilitates data retrieval and downstream usage. Due to a close connection to the mid-level PMD core ontology (PMDco), the interoperability of tensile test data is enhanced and data querying in combination with other aspects and data within the broad field of material science and engineering (MSE) is facilitated. The TTO class structure forms a comprehensible and semantic layer for unified storage of data generated in a tensile test including the possibility to record data from analysis, re-evaluation and re-use. Furthermore, extensive metadata allows to assess data quality and reproduce experiments. Following the open world assumption, object properties are deliberately low restrictive and sparse. KW - Ontology KW - Tensile Test KW - Digitalization KW - Plattform MaterialDigital KW - Structured Data PY - 2023 UR - https://github.com/MarkusSchilling/application-ontologies/blob/479311832819af695a2c64fa8eb772f2da398061/tensile_test_ontology_TTO/pmd_tto.ttl UR - https://github.com/materialdigital/core-ontology/blob/59f5727b0437ceea5e3d9fcb8fcd0ac211e92cc3/pmd_tto.ttl PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-57935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Interoperabilität und Wiederverwendung von Materialdaten: Der Weg zu Daten- und Wissensrepräsentationen in der PMD N2 - Die Integration und Wiederverwendung von Wissen und Daten aus der Herstellung, Bearbeitung und Charakterisierung von Materialien wird im Zuge der digitalen Transformation in der Materialwissenschaft und Werkstofftechnologie in verschiedenen Projekten behandelt. Dabei liegt der Fokus auf der Interoperabilität von Daten und Anwendungen, die nach den FAIR-Prinzipien erstellt und veröffentlicht werden. Zur Umsetzung eines komplexen Datenmanagements und der Digitalisierung im Bereich der Materialwissenschaften gewinnen Ontologien zunehmend an Bedeutung. Sie ermöglichen sowohl menschenlesbare als auch maschinenverständliche und -interpretierbare Wissensrepräsentationen durch semantische Konzeptualisierungen. Im Rahmen des Projektes Plattform MaterialDigital (PMD, materialdigital.de), welches in dieser Präsentation vorgestellt wird, werden Ontologien verschiedener Ebenen entwickelt (verbindende mid-level sowie Domänen-Ontologien). Die PMD-Kernontologie (PMD Core Ontology - PMDco) ist eine Ontologie der mittleren Ebene, die Verbindungen zwischen spezifischeren MSE-Anwendungsontologien und domänenneutralen Konzepten herstellt, die in bereits etablierten Ontologien höherer Ebenen (top-level Ontology) verwendet werden. Sie stellt somit einen umfassenden Satz von durch Konsensbildung in der Gemeinschaft (geteiltes Vokabular) entstanden Bausteinen grundlegender Konzepte aus der Materialwissenschaft und Werkstofftechnik (MSE) dar. In dieser Präsentation wird die PMDco adressiert. Weiterhin wird eine auf die PMDco bezogene normenkonforme ontologische Repräsentation zur Speicherung und Weiterverarbeitung von Zugversuchsdaten – die Tensile Test Ontology (TTO) – präsentiert, die in enger Zusammenarbeit mit dem zugehörigen DIN-Standardisierungsgremium NA 062-01-42 AA erstellt wurde. Dies umfasst den Weg von der Entwicklung einer Ontologie nach Norm, der Konvertierung von Daten aus Standardtests in das interoperable RDF-Format bis hin zur Verbindung von Ontologie und Daten. Auf Grundlage der dabei entwickelten Struktur und Vorgehensweise können weitere Materialcharakterisierungsmethoden semantisch beschrieben werden, woraus sich in diesem Zusammenhang Kooperationsmöglichkeiten ergeben. T2 - 20. Sitzung des NA 062-01-43 AA CY - Online meeting DA - 28.05.2024 KW - Semantische Daten KW - Plattform Material Digital KW - Ontologie KW - Normung KW - Wissensrepräsentation PY - 2024 AN - OPUS4-60178 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Relation of craze to crack length during slow crack growth phenomena in high‐density polyethylene N2 - The craze‐crack mechanism occurring in high‐density polyethylene (HDPE) causing slow crack growth and environmental stress cracking is investigated in detail with respect to the relation of crack length and the related craze zone. This is essential for the understanding of the resulting features of the formed fracture surface and their interpretation in the context of the transition from crack propagation to ductile shear deformation. It turns out that an already formed craze zone does not inevitably result in formation of a propagating crack, but could also undergo ductile failure. For the examination, the full notch creep test (FNCT) was employed with a subsequent advanced fracture surface analysis that was performed using various imaging techniques: light microscopy, laser scanning microscopy, scanning electron microscopy, and X‐ray micro computed tomography scan. FNCT specimens were progressively damaged for increasing durations under standard test conditions applying Arkopal, the standard surfactant solution, and biodiesel as test media were used to analyze the stepwise growth of cracks and crazes. From considerations based on well‐established fracture mechanics approaches, a theoretical correlation between the length of the actual crack and the length of the preceding craze zone was established that could be evidenced and affirmed by FNCT fracture surface analysis. Moreover, the yield strength of a HDPE material exposed to a certain medium as detected by a classic tensile test was found to be the crucial value of true stress to induce the transition from crack propagation due to the craze‐crack mechanism to shear deformation during FNCT measurements. Highlights - Progress of crack formation in high‐density polyethylene is analyzed by different imaging techniques - Determined growth rates depend on distinction between craze zone and crack - The ratio of the present crack to the anteceding craze zone is validated theoretically - The transition from crack propagation to ductile shear deformation is identified - An already formed craze zone may still fail by ductile mechanisms KW - Craze-crack mechanism KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Slow crack growth (SCG) KW - X-ray computed tomography (CT) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601831 DO - https://doi.org/10.1002/pen.26698 SN - 1548-2634 VL - 64 IS - 6 SP - 2387 EP - 2403 PB - Wiley AN - OPUS4-60183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzugan, J. A1 - Lucon, E. A1 - Koukolikova, M. A1 - Li, Y. A1 - Rzepa, S. A1 - Yasin, M.S. A1 - Shao, S. A1 - Shamsaei, N. A1 - Seifi, M. A1 - Lodeiro, M. A1 - Lefebvre, F. A1 - Mayer, U. A1 - Olbricht, J. A1 - Houska, M. A1 - Mentl, V. A1 - You, Z. T1 - ASTM interlaboratory study on tensile testing of AM deposited and wrought steel using miniature specimens N2 - An interlaboratory study, involving eigth international laboratories and coordinated by COMTES FHT (Czech Republic), was conducted to validate tensile measurements obtained using miniature specimens on additively manufactured (AM) components and artifacts. In addition to AM 316L stainless steel (316L SS), a wrought highstrength steel (34CrNiMo6V, equivalent to AISI 4340) was also used. Based on the results, a precision statement in accordance with ASTM E691 standard practice was developed, intended for inclusion in a proposed annex to the ASTM E8/E8M tension testing method. The primary outcomes of the study highlighted the agreement between yield and tensile strength measured from miniature and standard-sized tensile specimens. Furthermore, most tensile properties exhibited similar standard deviations, offering users insight into the efficacy of miniature specimen applications. KW - 316L stainless steel KW - Additive manufacturing KW - High-strength steel KW - Miniature specimens KW - Tensile tests PY - 2024 DO - https://doi.org/10.1016/j.tafmec.2024.104410 SN - 0167-8442 VL - 131 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, P. A1 - Manzoni, Anna M. A1 - Suarez Ocaño, Patricia A1 - Többens, D. M. A1 - Stephan‐Scherb, C. T1 - High‐temperature KCl‐induced corrosion of high Cr and Ni alloys investigated by in‐situ diffraction N2 - High‐temperature KCl‐induced corrosion in laboratory air was observed in situ utilizing X‐ray diffraction. High Cr‐containing model alloys (Fe‐13Cr, Fe‐18Cr‐12Ni, and Fe‐25Cr‐20Ni) were coated with KCl and exposed to dry air at 560°C. KCl‐free alloys were studied in the equivalent atmosphere as a reference. After exposure to KCl‐free environments, all alloys showed the formation of very thin oxide layers, indicating good corrosion resistance. In contrast, KCl‐bearing alloys showed distinct damage after exposure. KW - Corrosion KW - In-situ diffraction KW - High-temperature corrosion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600831 DO - https://doi.org/10.1002/maco.202314224 SN - 0947-5117 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-60083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Čapek, J. A1 - Polatidis, E. A1 - Bruno, Giovanni T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Waitelonis, Jörg A1 - v. Hartrott, Phillip A1 - Hanke, Thomas A1 - Birkholz, Henk A1 - Lau, June A1 - Skrotzki, Birgit T1 - Adapting FAIR Practices in Materials Science: Digital Representation of Material-Specific Characterization Methods N2 - Age-hardenable aluminum alloys undergo precise heat treatments to yield nanometer-sized precipitates that increase their strength and durability by hindering the dislocation mobility. Tensile tests provide mechanical properties, while microstructure evaluation relies on transmission electron microscopy (TEM), specifically the use of dark-field TEM images for precise dimensional analysis of the precipitates. However, this manual process is time consuming, skill dependent, and prone to errors and reproducibility issues. Our primary goal is to digitally represent these processes while adhering to FAIR principles. Ontologies play a critical role in facilitating semantic annotation of (meta)data and form the basis for advanced data management. Publishing raw data, digital workflows, and ontologies ensures reproducibility. This work introduces innovative solutions to traditional bottlenecks and offers new perspectives on digitalization challenges in materials science. We support advanced data management by leveraging knowledge graphs and foster collaborative and open data ecosystems that potentially revolutionize materials research and discovery. T2 - TMS - Specialty Congress 2024 CY - Cleveland, Ohio, US DA - 16.06.2024 KW - FAIR KW - Research Data Management KW - Semantic Interoperability KW - Ontologies KW - Materials and Processes Data Reusability PY - 2024 AN - OPUS4-60375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, Henk T1 - Digital Transformation in Materials Science: Insights From the Platform MaterialDigital (PMD) N2 - The digital era has led to a significant increase in innovation in scientific research across diverse fields and sectors. Evolution of data-driven methodologies lead to a number of paradigm shifts how data, information, and knowledge is produced, understood, and analyzed. High profile paradigm shifts in the field of materials science (MS) include exploitative usage of computational tools, machine learning algorithms, and high-performance computing, which unlock novel avenues for investigating materials. In these presentations, we highlight prototype solutions developed in the context of the Platform MaterialDigital (PMD) project that addresses digitalization challenges. As part of the Material Digital Initiative, the PMD supports the establishment of a virtual materials data space and a systematic handling of hierarchical processes and materials data using a developed ontological framework as high priority work items. In particular, the mid-level ontology PMDco and its augmentation through application-specific ontologies are illustrated. As part of the conclusion, a discussion encompasses the evolutionary path of the ontological framework, taking into account standardization efforts and the integration of modern AI methodologies such as natural language processing (NLP). Moreover, demonstrators illustrated in these presentations highlight: The integration and interconnection of tools, such as digital workflows and ontologies, Semantic integration of diverse data as proof of concept for semantic interoperability, Improved reproducibility in image processing and analysis, and Seamless data acquisition pipelines supported by an ontological framework. In this context, concepts regarding the application of modern research data management tools, such as electronic laboratory notebooks (ELN) and laboratory information management systems (LIMS), are presented and elaborated on. Furthermore, the growing relevance of a standardized adoption of such technologies in the future landscape of digital initiatives is addressed. This is supposed to provide an additional basis for discussion with respect to possible collaborations. T2 - NIST Seminar on Digital Transformation CY - Gaithersburg, MD, USA DA - 11.06.2024 KW - Digital Transformation KW - Research Data Management KW - Ontology KW - Reusability KW - FAIR PY - 2024 AN - OPUS4-60381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, Henk A1 - Jung, Matthias A1 - Waitelonis, Jörg A1 - Mädler, Lutz A1 - Sack, Harald T1 - PMD core ontology: Building Bridges at the Mid-Level – A Community Effort for Achieving Semantic Interoperability in Materials Science N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. This poster presents an approach to create and maintain a comprehensive and intuitive MSE-centric terminology by developing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - TMS - Specialty Congress 2024 CY - Cleveland, Ohio, US DA - 16.06.2024 KW - Interoperability KW - Semantic Interoperability KW - Digtial Representation KW - Knowledge graph and ontologies PY - 2024 AN - OPUS4-60378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Bruns, S. A1 - Birkholz, H. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Lau, J. W. A1 - Skrotzki, Birgit T1 - Transforming Materials Science with ontologies, ELN, and LIMS: Semantic Web Solutions for Digitalization and Data Excellence N2 - Following the new paradigm of materials development, design and optimization, digitalization is the main goal in materials sciences (MS) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web Technologies (SWT) are used since they allow for machine-understandable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) is part of an initiative that aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific added values in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are ontologically represented which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this presentation shows the efforts taken within the PMD project to store data in accordance with a testing standard compliant ontological representation of a tensile test of metals at room temperature (ISO 6892-1:2019-11). This includes the path from developing an ontology in accordance with the respective standard up to connecting the ontology and data. The semantic connection of the ontology and data leads to interoperability and an enhanced ability of querying. For further enhanced reusability of data and knowledge from synthesis, production, and characterization of materials, the PMD core ontology (PMDco) was developed as mid-level ontology in the field of MSE. The semantic connection of the tensile test ontology (TTO) to the PMDco leads to enhanced expressivity and interoperability. Moreover, as a best practice example, generation and acquisition of test data semantically connected to the ontology (data mapping) was realized by applying an electronic laboratory notebook (ELN). Corresponding tensile tests were performed by materials science students at university. This enabled a fully digitally integrated experimental procedure that can be transferred to other test series and experiments. In addition to facilitating the acquisition, analysis, processing, and (re)usability of data, this also raises the awareness of students with respect to data structuring and semantic technologies in the sense of education and training. The entire data pipeline is further seamlessly integrable in a laboratory information management system (LIMS). More specifically, the integration of semantic conceptualization and knowledge graphs may become essential parts in LIMS as this would be very beneficial. Therefore, some first approaches of SWT integration in LIMS will also be presented briefly. T2 - TMS Specialty Congress 2024 CY - Cleveland, OH, USA DA - 16.06.2024 KW - Semantic Data KW - Plattform Material Digital KW - Tensile Test Ontology KW - Electronic Lab Notebook KW - Material Life Cycle PY - 2024 AN - OPUS4-60394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. T1 - Digital Transformation in Materials Science: Insights from Platform MaterialDigital (PMD), Tensile Test Ontology (TTO), Electronic Lab Notebooks (ELN) N2 - The digital era has led to a significant increase in innovation in scientific research across diverse fields and sectors. Evolution of data-driven methodologies lead to a number of paradigm shifts how data, information, and knowledge is produced, understood, and analyzed. High profile paradigm shifts in the field of materials science (MS) include exploitative usage of computational tools, machine learning algorithms, and high-performance computing, which unlock novel avenues for investigating materials. In these presentations, we highlight prototype solutions developed in the context of the Platform MaterialDigital (PMD) project that addresses digitalization challenges. As part of the Material Digital Initiative, the PMD supports the establishment of a virtual materials data space and a systematic handling of hierarchical processes and materials data using a developed ontological framework as high priority work items. In particular, the mid-level ontology PMDco and its augmentation through application-specific ontologies are illustrated. As part of the conclusion, a discussion encompasses the evolutionary path of the ontological framework, taking into account standardization efforts and the integration of modern AI methodologies such as natural language processing (NLP). Moreover, demonstrators illustrated in these presentations highlight: The integration and interconnection of tools, such as digital workflows and ontologies, Semantic integration of diverse data as proof of concept for semantic interoperability, Improved reproducibility in image processing and analysis, and Seamless data acquisition pipelines supported by an ontological framework. In this context, concepts regarding the application of modern research data management tools, such as electronic laboratory notebooks (ELN) and laboratory information management systems (LIMS), are presented and elaborated on. Furthermore, the growing relevance of a standardized adoption of such technologies in the future landscape of digital initiatives is addressed. This is supposed to provide an additional basis for discussion with respect to possible collaborations. T2 - NIST Seminar Series CY - Gaithersburg, MD, USA DA - 11.06.2024 KW - Semantic Data KW - Plattform Material Digital KW - Digitalization KW - Data Interoperability KW - NIST KW - Tensile Test Ontology KW - Elctronic Lab Notebook PY - 2024 AN - OPUS4-60392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. KW - Creep KW - Computed Tomography KW - PBF-LB/M/316L KW - Laser Powder Bed Fusion KW - Microstructure KW - AISI 316L KW - Additive Manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574127 DO - https://doi.org/10.1002/adem.202201581 SP - 1 EP - 9 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Capek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Texture Dependent Micromechanical Anisotropy of Laser Powder Bed Fused Inconel 718 N2 - Additive manufacturing methods such as laser powder bed fusion (LPBF) allow geometrically complex parts to be manufactured within a single step. However, as an aftereffect of the localized heat input, the rapid cooling rates are the origin of the large residual stress (RS) retained in as-manufactured parts. With a view on the microstructure, the rapid directional cooling leads to a cellular solidification mode which is accompanied by columnar grown grains possessing crystallographic texture. The solidification conditions can be controlled by the processing parameters and the scanning strategy. Thus, the process allows one to tailor the microstructure and the texture to the specific needs. Yet, such microstructures are not only the origin of the mechanical anisotropy but also pose metrological challenges for the diffraction-based RS determination. In that context the micromechanical elastic anisotropy plays an important role: it translates the measured microscopic strain to macroscopic stress. Therefore, it is of uttermost importance to understand the influence of the hierarchical microstructures and the texture on the elastic anisotropy of LPBF manufactured materials. This study reveals the influence of the build orientation and the texture on the micro-mechanical anisotropy of as-built Inconel 718. Through variations of the build orientation and the scanning strategy, we manufactured specimens possessing [001]/[011]-, [001]-, and [011]/[111]-type textures. The resulting microstructures lead to differences in the macroscopic mechanical properties. Even further, tensile in-situ loading experiments during neutron diffraction measurements along the different texture components revealed differences in the microstrain response of multiple crystal lattice planes. In particular, the load partitioning and the residual strain accumulation among the [011]/[111] textured specimen displayed distinct differences measured up to a macroscopic strain of 10 %. However, the behavior of the specimens possessing [001]/[011]-and [001]-type texture was only minorly affected. The consequences on the metrology of RS analysis by diffraction-based methods are discussed. T2 - International Conference on Additive Manufacturing ICAM 2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Laser powder bed fusion KW - Neutron diffraction KW - Electron backscatter diffraction KW - Mechanical behavior PY - 2022 AN - OPUS4-56376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718 N2 - The manufacturability of metallic alloys using laser-based additive manufacturing methods such as laser powder bed fusion has substantially improved within the last decade. However, local melting and solidification cause hierarchically structured and crystallographically textured microstructures possessing large residual stress. Such microstructures are not only the origin of mechanical anisotropy but also pose metrological challenges for the diffraction-based residual stress determination. Here we demonstrate the influence of the build orientation and the texture on the microstructure and consequently the mechanical anisotropy of as-built Inconel 718. For this purpose, we manufactured specimens with [001]/[011]-, [001]- and [011]/[111]-type textures along their loading direction. In addition to changes in the Young’s moduli, the differences in the crystallographic textures result in variations of the yield and ultimate tensile strengths. With this in mind, we studied the anisotropy on the micromechanical scale by subjecting the specimens to tensile loads along the different texture directions during in situ neutron diffraction experiments. In this context, the response of multiple lattice planes up to a tensile strain of 10% displayed differences in the load partitioning and the residual strain accumulation for the specimen with [011]/[111]-type texture. However, the relative behavior of the specimens possessing an [001]/[011]- and [001]-type texture remained qualitatively similar. The consequences on the metrology of residual stress determination methods are discussed. KW - Laser powder bed fusion KW - Additive manufacturing KW - Electron backscatter diffraction KW - Tensile testing KW - Diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555840 DO - https://doi.org/10.1007/s10853-022-07499-9 SN - 1573-4803 VL - 2022 IS - 57 SP - 15036 EP - 15058 PB - Springer Science + Business Media B.V. CY - Dordrecht AN - OPUS4-55584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Ávila Calderón, Luis A. A1 - Rehmer, Birgit A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Effect of heat treatment on the hierarchical microstructure and properties of 316L stainless steel produced by Laser Powder Bed Fusion (PBF-LB/M). N2 - Laser Powder Bed Fusion (PBF-LB/M) of AISI 316L stainless steel has gained popularity due to its exceptional capacity to produce complex geometries and hierarchical microstructures, which can increase the yield strength while maintaining good ductility. Nevertheless, owing to high thermal gradients encountered during the process, the as printed 316L stainless steel often exhibit microstructural heterogeneities and residual stresses, which can limit its performance in demanding environments. Hence, employing heat treatments which balance the reduction of residual stresses while retaining improved static strength may be beneficial in various scenarios and applications. This study investigates the impact of post-processing heat treatments on the microstructure of 316L stainless steel manufactured via PBF-LB/M, along with its correlation with micro-hardness properties. To this end, 6 different heat treatments, i.e., 450 °C for 4h, 700 °C for 1h, 700 °C for 3h, 800 °C for 1h, 800 °C for 3h, and 900 °C for 1h, were applied to different specimens and Vickers hardness measurements (HV1) were performed in all states. At 800 °C, although the cellular structure appears to be retained, there is an observable increase in cellular size. However, while treatments exceeding 900 °C indicate no significant grain growth compared to other conditions, the cellular structure is entirely dissolved, which leads to a reduced Vickers hardness. The effect of the heat treatments on other microstructural features such as grain size and morphology, melt pool boundaries (MPB), crystallographic texture, chemical segregation, dispersoids and phase stability are also discussed in the present work T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Heat treatment KW - Microstructure PY - 2024 AN - OPUS4-60304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Ávila Calderón, Luis Alexander A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Formation of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2024 AN - OPUS4-60295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718 N2 - The elastic properties (Young's modulus, shear modulus) of Ni-based alloy Inconel IN718 were investigated between room temperature and 800 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - IN718 PY - 2023 DO - https://doi.org/10.5281/zenodo.7813824 PB - Zenodo CY - Geneva AN - OPUS4-57287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This study presents a thorough characterization of the creep properties of austenitic stainless steel 316L produced by laser powder bed fusion (LPBF 316L) contributing to the sparse available data to date. Experimental results (mechanical tests, microscopy, X-ray computed tomography) concerning the creep deformation and damage mechanisms are presented and discussed. The tested LPBF material exhibits a low defect population, which allows for the isolation and improved understanding of the effect of other typical aspects of an LPBF microstructure on the creep behavior. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant of 316L was also tested. To characterize the creep properties, hot tensile tests and constant force creep tests at 600 °C and 650 °C are performed. The creep stress exponents of the LPBF material are smaller than that of the conventional variant. The primary and secondary creep stages and the times to rupture of the LPBF material are shorter than the hot rolled 316L. Overall the creep damage is more extensive in the LPBF material. The creep damage of the LPBF material is overall mainly intergranular. It is presumably caused and accelerated by both the appearance of precipitates at the grain boundaries and the unfavorable orientation of the grain boundaries. Neither the melt pool boundaries nor entrapped gas pores show a significant influence on the creep damage mechanism. KW - 316L KW - Laser Powder Bed Fusion (LPBF) KW - Creep behavior KW - Additive Manufacturing KW - AGIL PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539373 DO - https://doi.org/10.1016/j.msea.2021.142223 SN - 0921-5093 VL - 830 SP - 142223 PB - Elsevier B.V. AN - OPUS4-53937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Ávila, Luis A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited near full density and the detected defects were spherical. Furthermore, the residual stresses in the loading direction were between −74 ± 24 MPa and 137 ± 20 MPa, and the EBSD measurements showed a preferential ⟨110⟩ orientation parallel to the build direction. A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. KW - Mechanical anisotropy KW - Residual stress KW - Crystal plasticity KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511719 DO - https://doi.org/10.1016/j.msea.2020.140154 SN - 0921-5093 VL - 799 SP - 140154 PB - Elsevier B.V. AN - OPUS4-51171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L N2 - This article reports temperature-dependent elastic properties (Young’s modulus, shear modulus) of three alloys measured by the dynamic resonance method. The alloys Ti-6Al-4V, Inconel IN718, and AISI 316 L were each investigated in a variant produced by an additive manufacturing processing route and by a conventional manufacturing processing route. The datasets include information on processing routes and parameters, heat treatments, grain size, specimen dimensions, and weight, as well as Young’s and shear modulus along with their measurement uncertainty. The process routes and methods are described in detail. The datasets were generated in an accredited testing lab, audited as BAM reference data, and are hosted in the open data repository Zenodo. Possible data usages include the verification of the correctness of the test setup via Young’s modulus comparison in low-cycle fatigue (LCF) or thermo-mechanical fatigue (TMF) testing campaigns, the design auf VHCF specimens and the use as input data for simulation purposes. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L KW - IN 718 KW - Ti-6Al-4V KW - Reference data KW - Temperature dependence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579716 DO - https://doi.org/10.1038/s41597-023-02387-6 VL - 10 IS - 1 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-57971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Luzin, V. A1 - Bruno, Giovanni T1 - Fundamentals of diffraction-based residual stress and texture analysis of PBF-LB Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer wise additive manufacturing process which provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative strain-free reference for the material of interest. In this presentation advancements in the field of diffraction-based residual stress analysis of L-PBF Inconel 718 will be presented. The choice of an appropriate set of diffraction-elastic constants depending on the underlying microstructure will be described. T2 - MLZ User Meeting 2022 CY - Munich, Germany DA - 08.12.2022 KW - Diffraction KW - Residual Stress KW - Microstructure KW - Texture KW - Mechanical behavior PY - 2022 AN - OPUS4-56804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - The effect of dwell times on the thermomechanical fatigue life performance of grade P92 steel at intermediate and low strain amplitudes N2 - Results of an extended TMF test program on grade P92 steel in the temperature range of 620 °C - 300 °C, comprising in-phase (IP) and out-of-phase (OP) tests, partly performed with symmetric dwells at Tmax/Tmin, are presented. In contrast to previous studies, the low-strain regime is also illuminated, which approaches flexible operation in a power plant with start/stop cycles. At all strain amplitudes, the material performance is characterized by continuous cyclic softening, which is retarded in tests at lower strains but reaches similar magnitudes in the course of testing. In the investigated temperature range, the phase angle does not affect fatigue life in continuous experiments, whereas the IP condition is more detrimental in tests with dwells. Fractographic analyses indicate creep-dominated and fatigue-dominated damage for IP and OP, respectively. Analyses of the (micro)hardness distribution in the tested specimens suggest an enhanced microstructural softening in tests with dwell times for the low- but not for the high-strain regime. To rationalize the obtained fatigue data, the fracture-mechanics-based D_TMF concept, which was developed for TMF life assessment of ductile alloys, was applied. It is found that the D_TMF parameter correlates well with the measured fatigue lives, suggesting that subcritical growth of cracks (with sizes from a few microns to a few millimeters) governs failure in the investigated range of strain amplitudes. KW - 9-12%Cr steel KW - Thermomechanical fatigue KW - Symmetric dwell periods KW - Low strain KW - Parametric modeling PY - 2021 DO - https://doi.org/10.1016/j.msea.2020.140593 VL - 805 SP - 140593 PB - Elsevier B.V. AN - OPUS4-52374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 1: Cyclic mechanical behavior under fatigue and creep-fatigue loading N2 - The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach, both of which are presented in “Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based Micromechanical Model“. T2 - 45. MPA-Seminar CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - P92 KW - Low Cycle Fatigue KW - Thermo-Mechanical Fatigue KW - Creep-Fatigue PY - 2019 SP - 75 EP - 79 PB - MPA (Materialprüfungsanstalt Universität Stuttgart) CY - Stuttgart AN - OPUS4-50051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Nolze, Gert A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Uhlemann, Patrick A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Experimental data from service-like creep-fatigue experiments on grade P92 steel N2 - This article refers to the research article entitled “Creep-Fatigue of P92 in Service-Like Tests with Combined Stress- and Strain-Controlled Dwell Times” [1]. It presents experimental mechanical data from complex service-like creep-fatigue experiments performed isothermally at 620 °C and a low strain amplitude of 0.2 % on tempered martensite-ferritic grade P92 steel. The data sets in text file format provide cyclic deformation (min. and max. stresses) and the total (hysteresis) data of all recorded fatigue cycles for three different creep-fatigue experiments: 1) a standard relaxation fatigue (RF) test with symmetrical dwell times of three minutes introduced at minimum and maximum strain, 2) a fully strain-controlled service-like relaxation (SLR) test combining these three-minute peak strain dwells with a 30-minute dwell in between at zero strain, and 3) a partly stress-controlled service-like creep (SLC) test combining the three-minute peak strain dwells with 30-minute dwells at constant stress. Such service-like (SL) tests with additional long-term stress- and strain-controlled dwell times are non-standard, rare, and expensive, making these data very valuable. They may be used to approximate cyclic softening in the technically relevant range, for the design of complex SL experiments, or for detailed analyses of stress-strain hystereses (e.g., for stress or strain partitioning methods, for the determination of hysteresis energies (work), inelastic strain components, etc.). In addition, the latter analyses may supply important input for advanced parametric lifetime modeling of components under creep-fatigue loading or model calibration parameters. KW - Tempered martensite-ferritic steel KW - Creep KW - Stress relaxation KW - Creep-fatigue KW - Dwell times PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578407 DO - https://doi.org/10.1016/j.dib.2023.109333 SN - 2352-3409 VL - 49 SP - 1 EP - 9 PB - Elsevier Inc. AN - OPUS4-57840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ti-6Al-4V N2 - The elastic properties (Young's modulus, shear modulus) of titanium alloy Ti-6Al-4V were investigated between room temperature and 400 °C in an additively manufactured variant (laser-based directed energy deposition with powder as feedstock, DED-LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, microstructure, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - Ti-6Al-4V PY - 2023 DO - https://doi.org/10.5281/zenodo.7813732 PB - Zenodo CY - Geneva AN - OPUS4-57286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of austenitic stainless steel AISI 316L N2 - The elastic properties (Young's modulus, shear modulus) of austenitic stainless steel AISI 316L were investigated between room temperature and 900 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled sheet). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L PY - 2023 DO - https://doi.org/10.5281/zenodo.7813835 PB - Zenodo CY - Geneva AN - OPUS4-57288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Jürgens, Maria T1 - Verhalten des hochwarmfesten Stahles P92 unter zyklischen thermo-mechanischen Bedingungen in lastflexiblen Dampfkraftwerken N2 - Die Erzeugung von Erneuerbaren Energien unterliegt starken Schwankungen, die von konventionellen Kraftwerken ausgeglichen werden müssen, um das Stromnetz stabil zu halten. Für die konventionellen Kraftwerke bedeutet dies eine zunehmend zyklische Fahrweise, die zu häufigeren Last- und Temperaturwechseln führt. Von den eingesetzten Werkstoffen fehlen Daten zum Verhalten unter zyklischer Fahrweise. Ziel dieser Arbeit ist es daher, für P92, einen als Rohrleitungswerkstoff eingesetzten hochwarmfesten Stahl, zu untersuchen, welche Auswirkungen zyklische Fahrweisen auf die Schädigungsprozesse und Lebensdauern haben. Da durch den zyklischen Betrieb eine verstärkte Schädigung durch Ermüdungsprozesse zu erwarten ist, wurden dehnungskontrollierte isotherme (LCF) und nicht-isotherme (TMF) Ermüdungsversuche mit und ohne Haltezeit bei verschiedenen Temperaturen bzw. Temperaturintervallen durchgeführt. Mit den Haltezeitversuchen soll dabei das Kriech-Ermüdungs-Verhalten untersucht werden. Bei den TMF-Versuchen wurde zusätzlich die Temperaturrate variiert, um näher an den realen Lastwechselgeschwindigkeiten zu prüfen. Schließlich wurden auf Basis der durchgeführten LCF- und TMF-Versuche betriebsnahe Versuchsprozeduren entwickelt, um unterschiedliche Betriebsmodi in einem Versuch abzubilden. Die durchgeführten mechanischen Versuche stellen eine umfangreiche Basis zu Ermüdungsdaten an P92 dar. Neben der Abhängigkeit der Lebensdauer von Temperatur, Temperaturintervall und –rate, sowie Dehnung und Haltezeit, konnte auch das Entfestigungsverhalten genauer charakterisiert werden. Sowohl Haltezeiten als auch das Reduzieren der Temperaturrate können die Lebensdauer erheblich verringern. Dabei kommt es gerade bei vermeintlich kleinen Dehnungen, bei denen die Streckgrenze nur leicht überschritten wird, zu einer Lebensdauerreduzierung. Haltezeiten verstärken zudem die zyklische Entfestigung. Die fraktographische Analyse der Proben hat ergeben, dass es keinen direkten Zusammenhang zwischen der Entfestigung und der Bildung von Nebenrissen gibt. Stattdessen zeigen EBSD- und TEM-Untersuchungen, dass es zur Bildung einer Subkornstruktur kommt und die Entfestigung auf dem Verschwinden von Kleinwinkelkorngrenzen beruht. Während bei den LCF-Proben eine reine Ermüdungsschädigung vorliegt, konnte bei einigen TMF-Proben eine kriechdominierende Schädigung nachgewiesen werden. Die betriebsnahen Zyklen zeigen, dass sich mit den durchgeführten Versuchen das reale Betriebsverhalten gut abschätzen lässt. Da es jedoch auch Parameterkombinationen gibt, bei denen keine Änderung des Entfestigungs- und Lebensdauerverhaltens auftritt, sollte genau bekannt sein, welche Belastungen in einem Bauteil auftreten. KW - P92 KW - LCF KW - TMF KW - Energiewende KW - Kriechermüdung KW - Energy transition KW - Creep-fatigue PY - 2020 DO - https://doi.org/10.14279/depositonce-10538 SP - 1 EP - 144 CY - Berlin AN - OPUS4-51571 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Creep-fatigue of P92 in service-like tests with combined stress- and strain-controlled dwell times N2 - Complex service-like relaxation- and creep-fatigue tests with strain- and stress-controlled dwells and fatigue cycle durations of approx. 2200 s were performed exemplarily on a grade P92 steel at 620 ◦C in this study. The results indicate deviations in the prevailing creep mechanisms of long-term relaxation and creep dwells, affecting subsequent dwells, load shifts, and the macroscopic softening behavior quite differently. In addition, fracture surfaces and longitudinal metallographic sections reveal intergranular crack growth for complex loading with stress-controlled dwells, whereas complex strain-controlled tests enhance oxidation and transgranular crack propagation. These findings substantiate the limited transferability of relaxation-fatigue to creep-fatigue conditions. KW - Tempered martensite-ferritic steel KW - P92 KW - Dwell periods KW - Creep-fatigue interaction KW - Stress relaxation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564239 DO - https://doi.org/10.1016/j.ijfatigue.2022.107381 SN - 0142-1123 VL - 168 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-56423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9 -12% cr ferritic martensitic steels part 1: cyclic mechanical behavior under fatigue and creep fatigue loading N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing share of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In the present first part of our contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain) to different degrees of softening at temperatures up to 620 °C. The test results will be presented and discussed with a focus on the impact of hold periods (i.e. combined creep-fatigue conditions) on mechanical softening, lifetime and crack formation. Details on the microstructural evolution and their representation in a micromechanical model will be given in a second, complementary contribution to this conference. T2 - 45. MPA-Seminar CY - Stuttgart, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - Low Cycle Fatigue KW - Creep-Fatigue KW - Thermo-Mechanical Fatigue KW - P92 PY - 2019 AN - OPUS4-50050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sonntag, Nadja T1 - Untersuchung magnetischer Streufelder in einem inhomogen verformten Baustahl mittels passiv-magnetischer Prüfverfahren N2 - Die Metal Magnetic Memory (MMM) Methode ist ein standardisiertes, zerstörungsfreies Prüfverfahren, das für die Detektion von lokal geschädigten Materialbereichen in ferromagnetischen Bauteilen oder Proben verwendet wird. Es basiert auf der Annahme lokaler magnetoelastischer Wechselwirkungen an Spannungskonzentrationsstellen, die schwache magnetische Streufelder an den geschädigten Prüfkörperoberflächen hervorrufen. Die MMM-Methode überträgt dabei die für einachsige und elastische Verformungen entwickelten magnetoelastischen Modellvorstellungen ohne weitere Anpassungen in den Schädigungskontext, der jedoch mehrachsige Beanspruchungen und elastisch-plastische Deformationsprozesse erwarten lässt. Das Ziel der Arbeit ist es daher, die gängigen MMM-Hypothesen zur Signalentstehung fach- und skalenübergreifend und unter stärkerer Berücksichtigung mechanischer und mikrostruktureller Aspekte zu überprüfen. Zu diesem Zweck wurden zum einen gekerbte Flachzugproben aus einem unlegierten Baustahl inhomogen elastisch-plastisch verformt und die entstehenden magnetischen Streufelder an deren Oberflächen mit einem Drei-Achsen-GMR-Magnetometer detektiert. Die so ermittelten Magnetfeld-verteilungen wurden für unterschiedliche Verformungszustände ortsaufgelöst und richtungsabhängig mit gemessenen Dehnungsverteilungen (digitale Bildkorrelation) und mit simulierten Lastspannungs-verteilungen korreliert. Die eingeschnürten Probenbereiche wurden zusätzlich topographisch mittels Streifenlichtprojektion und Weißlichtinterferenzmikroskopie vermessen, um den Magnetisierungs-prozess ebenfalls vor dem Hintergrund geometrischer Effekte diskutieren zu können. Um systematische, verformungsinduzierte Veränderungen der magnetischen Mikrostruktur (magnetischer Domänen) im polykristallinen, quasi-isotropen Material nachzuweisen, wurde zum anderen ein in dieser Arbeit entwickelter statistischer Ansatz der Domänenanalyse angewandt. Hierfür wurde das Material zunächst durch Härteeindrücke mehrachsig elastisch-plastisch verformt, und die verformten Probenbereiche wurden anschließend mit Hilfe der Bitterstreifentechnik hauptsächlich bei niedriger Vergrößerung lichtmikroskopisch untersucht. Die beobachteten makroskopischen Domänen-kontraste wurden über ein analytisches, kontaktmechanisches (ECM-) Modell und über Makro-Eigen-spannungsmessungen (energiedispersive Synchrotron-Beugungsuntersuchungen) charakteristischen Verformungszonen unter den Härteeindrücken zugeordnet. Die Ergebnisse dieser Untersuchungen belegen, dass die Entstehung der Streufelder – entgegen bisheriger Annahmen – nicht allein auf mechanische Spannungs- und Verformungsgradienten im Material zurückzuführen, sondern auch topographisch bedingt ist. Die Vernachlässigung überlagerter geometrischer Effekte kann zu sicherheitsrelevanten Fehlinterpretationen der magnetischen Signale führen. Einachsige magnetoelastische Modellvorstellungen sollten zudem nicht ohne Anpassungen auf komplexe Beanspruchungen übertragen werden, da u. a. sowohl mechanische Größen (wie Spannungen oder Dehnungen) als auch mikrostrukturelle Parameter (wie z. B. Versetzungsdichten) bei komplexen Belastungen als ortsabhängige Variablen behandelt werden müssen. Die in dieser Arbeit beobachteten Domänenkontraste lassen sich zweifelsfrei charakteristischen Verformungszonen zuordnen, mikro-strukturell jedoch nicht allein mit anzunehmenden Gradienten der Versetzungsdichte erklären. Statt-dessen entstehen beispielsweise lokale Verformungstexturen, die zusätzliche magnetische Anisotropien bewirken könnten. Da bisher weder die makroskopischen noch die mikrostrukturellen Ursachen der Streufeldentstehung hinreichend verstanden sind, scheint die MMM-Methode für die quantitative Bewertung des Schädigungszustands derzeit ungeeignet. N2 - The Metal Magnetic Memory (MMM) method is a standardized, nondestructive testing method used for the detection of locally damaged material areas in ferromagnetic components or samples. It assumes local magnetoelastic interactions in stress concentration zones, causing weak magnetic stray fields on the damaged specimen surfaces. The MMM method transfers magnetoelastic model conceptions developed for uniaxial and elastic deformations without further adjustments into the damage context, which is, however, associated with multiaxial stresses and elastic-plastic deformations. The objective of this thesis is therefore to verify prevalent MMM hypotheses concerning the signal generation, putting emphasis on complex mechanical and microstructural aspects of damage while using interdisciplinary and multi-scale approaches. To this end, on the one hand, notched tensile specimens made of an unalloyed structural steel were inhomogeneously (elastically and plastically) deformed and deformation-induced magnetic stray fields were then detected by a three-axis GMR magnetometer. The obtained surface magnetic field distributions were correlated with measured strain distributions (digital image correlation) and with numerically simulated mechanical stress distributions (finite element analysis). To enable discussions on the magnetization process against the background of geometrical effects, the necked specimen regions were additionally investigated using optical profilometry methods (fringe projection and white light interference microscopy). On the other hand, a newly developed meso-scale approach to magnetic domain analysis was applied to prove systematic, deformation-induced changes of the magnetic microstructure within the polycrystalline, quasi-isotropic material: After multiaxial elastic-plastic deformation of coupon specimens by hardness indentation, the deformed sample regions were studied by Bitter technique in optical microscopy, preferably at low magnification. The observed macroscopic domain contrasts were related to characteristic deformation zones below the indents by using an analytical model from the field of contact mechanics (ECM) and macro-residual stress measurements (obtained from energy-dispersive synchrotron diffraction experiments). It is demonstrated that the formation of magnetic stray fields, quite contrary to previous assumptions, results not only from mechanical (e.g. stress) gradients within the material, but is also topographically induced. The neglect of such superimposed geometric effects may also lead to safety-relevant misinterpretations of the magnetic signals. Furthermore, uniaxial magnetoelastic model concepts should not be applied to complex stress/strain conditions without adaptation since both mechanical quantities (such as stresses or strains) and microstructural parameters (such as dislocation densities) must be treated as location-dependent variables. The observed magnetic domain contrasts could clearly be assigned to characteristic deformation zones but cannot be explained solely by hypothesized gradients of the dislocation density. Instead, for example, local deformation textures emerge, which may cause additional magnetic anisotropies. The MMM method currently seems unsuitable for quantitative damage assessments of components or specimens since neither the macroscopic nor the microstructural origins of the stray field formation have yet been sufficiently understood. KW - Magnetoelastischer Effekt KW - Magnetische Domänen KW - Mehrachsige Verformung KW - Schädigung KW - Unlegierter Baustahl KW - Magnetoelastic effect KW - Magnetic domains KW - Multiaxial deformation KW - Damage KW - Structural steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484302 DO - https://doi.org/10.14279/depositonce-8524 SP - 1 EP - 117 CY - Berlin AN - OPUS4-48430 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Sonntag, Nadja A1 - Jürgens, M. A1 - Uhlemann, Patrick A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Datasets for Service-Like Creep-Fatigue Experiments on Grade P92 Steel N2 - The dataset contains experimental mechanical data from complex service-like creep-fatigue experiments performed isothermally at 620 °C and a low strain amplitude of 0.2 % on tempered martensite-ferritic grade P92 steel. The data sets in text file format provide cyclic deformation (min. and max. stresses) and the total (hysteresis) data of all recorded fatigue cycles for three different creep-fatigue experiments: 1) a standard relaxation fatigue (RF) test with symmetrical dwell times of three minutes introduced at minimum and maximum strain, 2) a fully strain-controlled service-like relaxation (SLR) test combining these three-minute peak strain dwells with a 30-minute dwell in between at zero strain, and 3) a partly stress-controlled service-like creep (SLC) test combining the three-minute peak strain dwells with 30-minute dwells at constant stress. Further information on data and data acquisition, analysis, and experimental details are given in “Experimental Data from Service-Like Creep-Fatigue Experiments on Grade P92 Steel”, submitted to Data in Brief. Additional analyses of these datasets, as well as experimental findings and discussions are presented in “Creep-Fatigue of P92 in Service-Like Tests with Combined Stress- and Strain-Controlled Dwell Times”, submitted to International Journal of Fatigue. KW - Creep-fatigue KW - Stress relaxation KW - Dwell-Fatigue KW - Tempered martensite-ferritic steel PY - 2022 DO - https://doi.org/10.5281/zenodo.7198218 PB - Zenodo CY - Geneva AN - OPUS4-55995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Piesker, Benjamin A1 - Ávila Calderón, Luis Alexander A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Tensile and Low‐Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature N2 - This study investigates the room‐ and high‐temperature (650 °C) tensile and low‐cycle‐fatigue behavior of Inconel 718 produced by laser powder bed fusion (PBF‐LB/M) with a four‐step heat treatment and compares the results to the conventional wrought material. The microstructure after heat treatment is characterized on different length scales. Compared to the wrought variant, the elastic and yield properties are comparable at both test temperatures while tensile strength, ductility, and strain hardening capacity are lower. The fatigue life of the PBF‐LB/M variant at room temperature is slightly lower than that of the wrought material, while at 650 °C, it is vice versa. The cyclic stress response for both material variants is characterized by cyclic softening, which is more pronounced at the higher test temperature. High strain amplitudes (≥0.7%) at room temperature and especially a high testing temperature result in the formation of multiple secondary cracks at the transitions of regions comprising predominantly elongated grain morphology and columns of stacked grains with ripple patterns in the PBF‐LB/M material. This observation and pronounced crack branching and deflection indicate that the cracks are controlled by sharp micromechanical gradients and local crystallite clusters. KW - Additive manufacturing KW - Fatigue damage KW - Heat treatment KW - Inconel 718 KW - Laser powder bed fusion KW - Low-cycle fatigue KW - Tensile strength PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599316 DO - https://doi.org/10.1002/adem.202302122 SN - 1527-2648 SP - 1 EP - 17 PB - Wiley AN - OPUS4-59931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Kriech- und Bruchverhalten von additiv hergestelltem austenitischem Stahl 316L. Vergleich zum konventionellen Werkstoff. N2 - Eine kritische Aufgabe im Rahmen der Etablierung von Prozess-Struktur-Eigenschafts-Performance-Beziehungen bei der additiven Fertigung (AM) von Metallen ist die Ermittlung von zuverlässigen und gut dokumentierten Kennwerten zum Materialverhalten sowie das Schaffen von Wissen über die Struktur-Eigenschafts-Korrelation. Schließlich ist dies die Grundlage für die Entwicklung gezielterer Prozessoptimierungen und zuverlässigerer Lebensdauer-Vorhersagen. In diesem Zusammenhang zielt dieser Beitrag darauf ab, Daten und Erkenntnisse über das Kriechverhalten des austenitischen Edelstahls 316L zu liefern, der mittels Laser-Powder-Bed-Fusion (L-PBF) hergestellt wird. Um dieses Ziel zu erreichen, wurden Proben aus konventionellem warmgewalztem sowie AM-Material gemäß den bestehenden Normen für konventionelles Material geprüft und vor und nach dem Versagen mikrostrukturell charakterisiert. Die Probekörper wurden aus einzelnen Blöcken des AM-Materials gefertigt. Die Blöcke wurden mit einer Standard-Scan- und Aufbaustrategie hergestellt und anschließend wärmebehandelt. Das Kriechverhalten wird anhand der Kriechlebensdauer und ausgewählter Kriechkurven und Kennwerte beschrieben und vergleichend bewertet. Der Einfluss von Defekten und Mikrostruktur auf das Materialverhalten wird anhand von zerstörenden und zerstörungsfreien Auswertungen an ausgewählten Proben analysiert. Der AM-Werkstoff zeigt kürzere Kriechlebensdauern, erreicht das sekundäre Kriechstadium deutlich schneller und bei geringerer Dehnung und weist eine geringere Kriechduktilität im Vergleich zu seinem konventionellen Gegenstück auf. Das Kriechschädigungsverhalten des AM-Werkstoffs ist eher mikrostruktur- als defektgesteuert und ist durch die Bildung intergranularer Kriechrisse gekennzeichnet. Als kritische Merkmale werden die Versetzungsdichte sowie die Versprödung der Korngrenzen identifiziert. Die Mikro-Computertomographie (µCT) erweist sich als Alternative zur Metallographie, um die Kriechschädigung zu analysieren. T2 - Sitzung des DGM-Arbeitskreises Mechanisches Werkstoffverhalten bei hoher Temperatur CY - Online meeting DA - 07.10.2020 KW - 316L KW - Kriechen KW - Additive Fertigung KW - Mikrostruktur KW - Mikro-Computertomographie PY - 2020 AN - OPUS4-51824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Ageing behaviour of laser powder bed fused 316L: a powder to failure approach N2 - Laser powder bed fusion (LPBF) is an additive manufacturing process for materials which inherently tends to yield various degrees of metastable hierarchical microstructures, defects and high residual stresses in the as-built condition depending on the process parameters. The understanding of the evolution of these typical features during heat treatment and subsequent thermal and mechanical ageing is crucial for the wider acceptance for safety critical structures. A multi-disciplinary research project at BAM studying the development of the microstructure, defects, residual stresses typical of LPBF 316L and their evolution during thermal and mechanical ageing has led to insights into the stability of these inherent features. This presentation aims to give a broad overview of the project with a few specific cases of investigation. Firstly, the formation of residual stresses, the nature of the initial microstructure, the tensile properties and a modelling approach to understand the anisotropy will be presented. This will be followed by examples of studies of their evolution during heat treatment, long term thermal exposure, and room temperature and high temperature mechanical testing compared to a baseline of conventional wrought variant of the same alloy. T2 - International Conference on Additive Manufacturing 2021 (ICAM 2021) CY - Online meeting DA - 01.11.2021 KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2021 AN - OPUS4-54106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Entwicklung der Mikrostruktur der mechanischen Eigenschaften und der Eigenspannungen in L-PBF 316L N2 - Die additive Fertigung (AM) metallischer Werkstoffe mittels Laser Powder Bed Fusion (L-PBF) ermöglicht einzigartige hierarchische Mikrostrukturen, die zu Verbesserungen bestimmter mechanischer Eigenschaften gegenüber konventionell hergestellten Varianten derselben Legierung führen können. Allerdings ist das L-PBF-Verfahren häufig durch das Vorhandensein hoher Eigenspannungen gekennzeichnet, die es zu verstehen und zu mindern gilt. Daher ist das Verständnis der Mikrostrukturen, der Eigenspannungen und der daraus resultierenden mechanischen Eigenschaften entscheidend für eine breite Akzeptanz bei sicherheitskritischen Anwendungen. Die BAM hat ein multidisziplinäres Forschungsprogramm gestartet, um diese Aspekte bei LPBF 316L zu untersuchen. Der vorliegende Beitrag stellt einige der wichtigsten Ergebnisse vor: der Einfluss von Prozessparametern auf die Mikrostruktur, der Einfluss von Mikrostruktur und Textur auf die Festigkeit, Kriechverhalten und Schädigung und die Stabilität von Eigenspannungen und Mikrostruktur unter Wärmebehandlungsbedingungen. T2 - DGM 3. Fachtagung Werkstoffe und Additive Fertigung CY - Dresden, Germany DA - 11.05.2022 KW - Mechanische Eigenschaften KW - Additive Fertigung KW - L-PBF 316L KW - Entwicklung KW - Mikrostruktur KW - Eigenspannung PY - 2022 AN - OPUS4-55786 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Skrotzki, Birgit A1 - Stegemann, Robert A1 - Löwe, Peter A1 - Kreutzbruck, M. T1 - The role of surface topography on deformation-induced magnetization under inhomogeneous elastic-plastic deformation N2 - It is widely accepted that the magnetic state of a ferromagnetic material may be irreversibly altered by mechanical loading due to magnetoelastic effects. A novel standardized nondestructive testing (NDT) technique uses weak magnetic stray fields, which are assumed to arise from inhomogeneous deformation, for structural health monitoring (i.e., for detection and assessment of damage). However, the mechanical and microstructural complexity of damage has hitherto only been insufficiently considered. The aim of this study is to discuss the phenomenon of inhomogeneous “self-magnetization” of a polycrystalline ferromagnetic material under inhomogeneous deformation experimentally and with stronger material-mechanical focus. To this end, notched specimens were elastically and plastically deformed. Surface magnetic states were measured by a three-axis giant magnetoresistant (GMR) sensor and were compared with strain field (digital image correlation) and optical topography measurements. It is demonstrated that the stray fields do not solely form due to magnetoelastic effects. Instead, inhomogeneous plastic deformation causes topography, which is one of the main origins for the magnetic stray field formation. Additionally, if not considered, topography may falsify the magnetic signals due to variable lift-off values. The correlation of magnetic vector components with mechanical tensors, particularly for multiaxial stress/strain states and inhomogeneous elastic-plastic deformations remains an issue. KW - Magnetic stray fields KW - Magnetomechanical effect KW - Damage KW - Topography KW - Multiaxial deformation KW - Notch KW - Plastic deformation KW - Metal magnetic memory KW - Digital image correlation KW - Structural steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457878 DO - https://doi.org/10.3390/ma11091518 SN - 1996-1944 VL - 11 IS - 9 SP - 1518, 1 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Hanke, Thomas A1 - Eisenbart, Miriam T1 - Mechanical testing ontology (MTO) N2 - The materials mechanical testing ontology (MTO) was developed by collecting the mechanical testing vocabulary from ISO 23718 standard, as well as the standardized testing processes described for various mechanical testing of materials like tensile testing, Brinell hardness test, Vickers hardness test, stress relaxation test, and fatigue testing. Versions info: V2 developed using BFO+CCO top-level ontologies. V3 developed using PROVO+PMDco top-level ontologies. V4 developed using BFO+IOF top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/ontologies/mechanical-testing-ontology GitHub: https://github.com/HosseinBeygiNasrabadi/Mechanical-Testing-Ontology MatPortal: https://matportal.org/ontologies/MTO IndustryPortal: https://industryportal.enit.fr/ontologies/MTO KW - Ontology KW - Mechanical testing KW - FAIR data PY - 2023 UR - https://gitlab.com/kupferdigital/ontologies/mechanical-testing-ontology/ PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-58271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Hanke, Thomas A1 - Skrotzki, Birgit T1 - Semantic Representation of Low‐Cycle‐Fatigue Testing Data Using a Fatigue Test Ontology and ckan.kupferdigital Data Management System N2 - Addressing a strategy for publishing open and digital research data, this article presents the approach for streamlining and automating the process of storage and conversion of research data to those of semantically queryable data on the web. As the use case for demonstrating and evaluating the digitalization process, the primary datasets from low‐cycle‐fatigue testing of several copper alloys are prepared. The fatigue test ontology (FTO) and ckan.kupferdigital data management system are developed as two main prerequisites of the data digitalization process. FTO has been modeled according to the content of the fatigue testing standard and by reusing the basic formal ontology, industrial ontology foundry core ontology, and material science and engineering ontology. The ckan.kupferdigital data management system is also constructed in such a way that enables the users to prepare the protocols for mapping the datasets into the knowledge graph and automatically convert all the primary datasets to those machine‐readable data which are represented by the web ontology language. The retrievability of the converted digital data is also evaluated by querying the example competency questions, confirming that ckan.kupferdigital enables publishing open data that can be highly reused in the semantic web. KW - Accessible KW - CKAN KW - Interoperable KW - Digitalizations KW - Ontologies KW - Reusable data KW - Fatigue testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604991 UR - https://onlinelibrary.wiley.com/doi/10.1002/adem.202400675 DO - https://doi.org/10.1002/adem.202400675 SN - 1527-2648 SP - 1 EP - 11 PB - Wiley AN - OPUS4-60499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Bauer, Felix A1 - Uhlemann, Patrick A1 - Thärig, Steffen A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Mechanical testing dataset of cast copper alloys for the purpose of digitalization N2 - This data article presents a set of primary, analyzed, and digitalized mechanical testing datasets for nine copper alloys. The mechanical testing methods including the Brinell and Vickers hardness, tensile, stress relaxation, and low-cycle fatigue (LCF) testing were performed according to the DIN/ISO standards. The obtained primary testing data (84 files) mainly contain the raw measured data along with the testing metadata of the processes, materials, and testing machines. Five secondary datasets were also provided for each testing method by collecting the main meta- and measurement data from the primary data and the outputs of data analyses. These datasets give materials scientists beneficial data for comparative material selection analyses by clarifying the wide range of mechanical properties of copper alloys, including Brinell and Vickers hardness, yield and tensile strengths, elongation, reduction of area, relaxed and residual stresses, and LCF fatigue life. Furthermore, both the primary and secondary datasets were digitalized by the approach introduced in the research article entitled “Toward a digital materials mechanical testing lab” [1]. The resulting open-linked data are the machine-processable semantic descriptions of data and their generation processes and can be easily queried by semantic searches to enable advanced data-driven materials research. KW - FAIR principles KW - Hardness KW - Low-Cycle Fatigue (LCF) KW - Tensile testing KW - Stress relaxation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605005 DO - https://doi.org/10.1016/j.dib.2024.110687 SN - 2352-3409 SP - 1 EP - 15 PB - Elsevier BV AN - OPUS4-60500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Hanke, T. A1 - Weber, M. A1 - Eisenbart, M. A1 - Bauer, F. A1 - Meissner, R. A1 - Dziwis, G. A1 - Tikana, L. A1 - Chen, Yue A1 - Skrotzki, Birgit T1 - Toward a digital materials mechanical testing lab N2 - To accelerate the growth of Industry 4.0 technologies, the digitalization of mechanical testing laboratories as one of the main data-driven units of materials processing industries is introduced in this paper. The digital lab infrastructure consists of highly detailed and standard-compliant materials testing knowledge graphs for a wide range of mechanical testing processes, as well as some tools that enable the efficient ontology development and conversion of heterogeneous materials’ mechanical testing data to the machine-readable data of uniform and standardized structures. As a basis for designing such a digital lab, the mechanical testing ontology (MTO) was developed based on the ISO 23718 and ISO/IEC 21838-2 standards for the semantic representation of the mechanical testing experiments, quantities, artifacts, and report data. The trial digitalization of materials mechanical testing lab was successfully performed by utilizing the developed tools and knowledge graph of processes for converting the various experimental test data of heterogeneous structures, languages, and formats to standardized Resource Description Framework (RDF) data formats. The concepts of data storage and data sharing in data spaces were also introduced and SPARQL queries were utilized to evaluate how the introduced approach can result in the data retrieval and response to the competency questions. The proposed digital materials mechanical testing lab approach allows the industries to access lots of trustworthy and traceable mechanical testing data of other academic and industrial organizations, and subsequently organize various data-driven research for their faster and cheaper product development leading to a higher performance of products in engineering and ecological aspects. KW - General Engineering KW - General Computer Science PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582698 DO - https://doi.org/10.1016/j.compind.2023.104016 SN - 0166-3615 VL - 153 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-58269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Ontology-Oriented Modeling of the Vickers Hardness Knowledge Graph N2 - This research deals with the development of the Vickers hardness knowledge graph, mapping the example dataset in them, and exporting the data-mapped knowledge graph as a machine-readable Resource Description Framework (RDF). Modeling the knowledge graph according to the standardized test procedure and using the appropriate upper-level ontologies were taken into consideration to develop the highly standardized, incorporable, and industrial applicable models. Furthermore, the Ontopanel approach was utilized for mapping the real experimental data in the developed knowledge graphs and the resulting RDF files were successfully evaluated through the SPARQL queries. KW - Data Mapping KW - FAIR Data KW - Ontology KW - Knowledge Graph KW - Vickers Hardness PY - 2024 DO - https://doi.org/10.4028/p-k8Gj2L VL - 149 SP - 33 EP - 38 PB - Trans Tech Publications Ltd CY - Switzerland AN - OPUS4-59981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 DO - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Skrotzki, Birgit A1 - Simon, Franz-Georg A1 - Czichos, Horst ED - Hennecke, Manfred ED - Skrotzki, Birgit T1 - Grundlagen der Werkstoffkunde N2 - Der Aufbau der Werkstoffe wird durch Merkmale wie Bindungsart, atomare Strukturen, Kristallstrukturen einschließlich ihrer Gitterbaufehler, Körner und Phasen bestimmt. Die Mikrostruktur (Gefüge) stellt den Verbund der Kristalle, Phasen und Gitterbaufehler auf mikroskopischer und nanoskopischer Skala dar. Die Grundlagen der Phasenumwandlungen werden behandelt und die Bedeutung von Diffusionsprozessen erläutert. Werkstoffe sind bedeutend für Kultur, Wirtschaft, Technik und Umwelt. Ihre Herstellung benötigt Ressourcen und Energie. Recycling ist eine Möglichkeit zur Erhöhung der Ressourcenproduktivität. KW - Materialkreislauf KW - Aufbau von Festkörpern KW - Kristallsystem KW - Gleichgewicht KW - Ungleichgewicht KW - Kreislaufwirtschaft PY - 2019 SN - 978-3-662-57492-8 DO - https://doi.org/10.1007/978-3-662-57492-8_27-1 SP - 1 EP - 31 PB - Springer-Verlag GmbH Deutschland CY - Berlin, Heidelberg ET - 35. AN - OPUS4-48476 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Einfluss von Haltezeiten auf die TMF-Lebensdauer von P92 bei mittleren und geringen Dehnungsamplituden N2 - Results of an extended TMF test program on grade P92 steel in the temperature range of 620 ◦C–300 ◦C, comprising in-phase (IP) and out-of-phase (OP) tests, partly performed with symmetric dwells at Tmax/Tmin, are presented. In contrast to previous studies, the low-strain regime is also illuminated, which approaches flexible operation in a power plant with start/stop cycles. At all strain amplitudes, the material performance is characterized by continuous cyclic softening, which is retarded in tests at lower strains but reaches similar magnitudes in the course of testing. In the investigated temperature range, the phase angle does not affect fatigue life in continuous experiments, whereas the IP condition is more detrimental in tests with dwells. Fractographic analyses indicate creep-dominated and fatigue-dominated damage for IP and OP, respectively. Analyses of the (micro)hardness distribution in the tested specimens suggest an enhanced microstructural softening in tests with dwell times for the low- but not for the high-strain regime. To rationalize the obtained fatigue data, the fracturemechanics-based DTMF concept, which was developed for TMF life assessment of ductile alloys, was applied. It is found that the DTMF parameter correlates well with the measured fatigue lives, suggesting that subcritical growth of cracks (with sizes from a few microns to a few millimeters) governs failure in the investigated range of strain amplitudes. T2 - DVM-Arbeitskreis Bauteilverhalten bei thermomechanischer Ermüdung - Workshop 2023 CY - Berlin, Germany DA - 20.09.2023 KW - 9–12%Cr steel KW - Thermomechanical fatigue KW - Symmetric dwell periods KW - Parametric modeling PY - 2023 AN - OPUS4-58431 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Sonntag, Nadja A1 - Nolze, Gert A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Jürgens, Maria T1 - Cyclic mechanical performance and microstructure evolution of P92 under LCF and TMF conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing contribution of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In this contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of fatigue and creep/relaxation periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain). Temperature intervals of TMF tests were chosen as either 300-620°C or 500-620°C, resembling so-called warm or hot start conditions of a power plant. The test results will be presented and discussed with a focus on the impact of hold periods during testing (combined creep/relaxation-fatigue conditions) on mechanical softening, lifetime and formation of cracks. The findings will be complemented by results on the modification of the hierarchical ferritic-martensitic microstructure under different loading scenarios. T2 - 4th International Workshop on Thermo-Mechanical Fatigue 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Power plant KW - Tempered martensite ferritic steels KW - Thermo-Mechanical Fatigue KW - Microstructure modification KW - EBSD PY - 2019 AN - OPUS4-50053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Agudo Jácome, Leonardo A1 - Olbricht, Jürgen T1 - Dwell-Fatigue and Cyclic Softening of Grade P92 Steel under LCF and TMF Conditions N2 - Tempered martensite-ferritic steels, such as the grade P92 steel studied in this contribution, exhibit pronounced macroscopic cyclic softening under isothermal low-cycle fatigue (LCF) and non-isothermal thermomechanical fatigue (TMF) conditions, which is considered to be the predominant degradation mechanism in high-temperature fatigue in this and other material groups. However, such softening processes are highly complex since microscopic (e.g., recovery) and macroscopic (e.g., crack initiation and growth), as well as global and local effects superimpose, especially under creep-fatigue conditions. In this contribution, we discuss the cyclic deformation and softening behavior of P92 in strain-controlled LCF, in-phase (IP) TMF, and out-of-phase (OP) TMF tests with and without dwell times in the temperature range from 300 °C to 620°C. EBSD-based dislocation analysis on various fatigued material states confirms the continuous redistribution and annihilation of geometrically necessary dislocations in all studied states, which can be quantitatively correlated with macroscopic softening despite different damage mechanisms for different test types. Deviations from this correlation are observed for OP TMF and LCF with dwell times, i.e., for conditions where optical microscopy reveals pronounced crack-oxidation interactions at the specimen surfaces. T2 - LCF9 - Ninth International Conference on Low Cycle Fatigue CY - Berlin, Germany DA - 21.06.2022 KW - LCF KW - TMF KW - EBSD PY - 2022 DO - https://doi.org/10.48447/LCF9-2022-111 AN - OPUS4-55128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Werner, Tiago A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Microstructure Based Study on the Low Cycle Fatigue Behavior of Stainless Steel 316L manufactured by Laser Powder Bed Fusion N2 - Due to the advantages of Laser Powder Bed Fusion (PBF-LB), i.e., design freedom and the possibility to manufacture parts with filigree structures, and the considerable amount of knowledge available for 316L in its conventional variant, the mechanical behavior, and related microstructure-property relationships of PBF-LB/316L are increasingly subject of research. However, many aspects regarding the - application-relevant - mechanical behavior at high temperatures are not yet fully understood. Here, we present the results of an experimental study on the LCF behavior of PBF-LB/316L featuring a low defect population, which makes this study more microstructure-focused than most of the studies in the literature. The LCF tests were performed between room temperature (RT) and 600 °C. The mechanical response is characterized by strain-life curves, and hysteresis and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, and optical and electron microscopy. The PBF-LB/M/316L was heat treated at 450 °C for 4 h, and a hot‑rolled (HR) 316L variant with a fully recrystallized equiaxed microstructure was tested as a reference. Besides, selected investigations were performed after a subsequent heat treatment at 900 °C for 1 h. The PBF-LB/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. At the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The main damage mechanisms are multiple cracking at slip bands (RT) and intergranular cracking (600 °C). Neither the melt pool boundaries nor the gas porosity have a significant influence on the LCF damage mechanism. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial hardening followed by a continuous softening. The additional heat treatment at 900 °C for 1 h led to decreased cyclic stresses, and a longer fatigue life. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - AGIL KW - 316L KW - Microstructure KW - Low Cycle Fatigue KW - Heat Treatment KW - Laser Poeder Bed Fusion PY - 2024 AN - OPUS4-60432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Jan Zia, Ghezal Ahmad A1 - Hanke, Thomas A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Improving the Reproducibility of Characterization and Quantification of Precipitates through Automated Image Processing and Digital Representation of Processing Steps N2 - The strength of age-hardenable aluminum alloys is based on the controlled formation of nm-sized precipitates, which represent obstacles to dislocation movement. Transmission electron microscopy (TEM) is generally used to identify precipitate types and orientations and to determine their size. This geometric quantification (e.g., length, diameter) is often performed by manual image analysis, which is very time consuming and sometimes poses reproducibility problems. The present work aims at the digital representation of this characterization method by proposing an automatable digital approach. Based on DF-TEM images of different precipitation states of alloy EN AW-2618A, a modularizable digital workflow is described for the quantitative analysis of precipitate dimensions. The integration of this workflow into a data pipeline concept is also presented. The semantic structuring of data allows data to be shared and reused for other applications and purposes, which enables interoperability. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Digital representation KW - Automatable digital approach KW - Digital workflow KW - Quantitative image analysis KW - Data pipeline concept KW - Semantic structuring KW - Interoperability KW - FAIR data management PY - 2024 AN - OPUS4-60427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Han, Ying A1 - Kruse, Julius A1 - Radners, Jan A1 - Madia, Mauro A1 - von Hartrott, Philipp T1 - Fatigue Behavior at Elevated Temperature of Alloy EN AW-2618A N2 - The influence of test temperature and frequency on the fatigue life of the alloy EN AW-2618A (2618A) was characterized. The overaged condition (T61 followed by 1000 h/230 °C) was investigated in load-controlled tests with a stress ratio of R = -1 and two test frequencies (0.2 Hz, 20 Hz) at room temperature and at 230°C, respectively. An increase in the test temperature reduces fatigue life, whereby this effect is more pronounced at lower stress amplitudes. Decreasing the test frequency in tests at high temperatures further reduces the service life. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Aluminium alloy KW - EN AW 2618A KW - Fatigue KW - Overaging KW - Damage behavior PY - 2024 AN - OPUS4-60426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Hanke, Thomas A1 - Chen, Yue T1 - Brinell test ontology (BTO) N2 - Brinell Test Ontology (BTO) has developed for representing the Brinell testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 6506-1 standard. Versions info: V2 developed using BFO+CCO top-level ontologies. V3 developed using EMMO+CHAMEO top-level ontologies. V4 developed using PROVO+PMDco top-level ontologies. V5 developed using BFO+IOF top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/brinell-hardness-test GitHub: https://github.com/HosseinBeygiNasrabadi/Brinell-Test-Ontology-BTO- MatPortal: https://matportal.org/ontologies/BTO IndustryPortal: https://industryportal.enit.fr/ontologies/BTO KW - Ontology KW - Knowledge graph KW - Data mapping KW - Brinell hardness KW - FAIR data PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/brinell-hardness-test UR - https://github.com/HosseinBeygiNasrabadi/Brinell-Test-Ontology-BTO- UR - https://matportal.org/ontologies/BTO UR - https://industryportal.enit.fr/ontologies/BTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Tensile stress relaxation test ontology (TSRTO) N2 - Tensile Stress Relaxation Test Ontology (TSRTO) has developed for representing the tensile stress relaxation testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 10319-1 standard. Versions info: V1 developed using BFO+CCO top-level ontologies. V3 developed using PROV+PMDco top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/relaxation-test GitHub: https://github.com/HosseinBeygiNasrabadi/Tensile-Stress-Relaxation-Test-Ontology-TSRTO MatPortal: https://matportal.org/ontologies/TSRTO IndustryPortal: https://industryportal.enit.fr/ontologies/TSRTO KW - Ontology KW - Tensile stress relaxation testing KW - FAIR data PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/relaxation-test UR - https://github.com/HosseinBeygiNasrabadi/Tensile-Stress-Relaxation-Test-Ontology-TSRTO UR - https://matportal.org/ontologies/TSRTO UR - https://industryportal.enit.fr/ontologies/TSRTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Vickers test ontology (VTO) N2 - Vickers Test Ontology (VTO) has developed for representing the Vickers testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 6507-1 standard. Versions info: V2 developed using BFO+CCO top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/vickers-hardness-test GitHub: https://github.com/HosseinBeygiNasrabadi/Vickers-Test-Ontology-VTO- MatPortal: https://matportal.org/ontologies/VTO IndustryPortal: https://industryportal.enit.fr/ontologies/VTO KW - Ontology KW - Knowledge graph KW - Data mapping KW - Vickers hardness KW - FAIR data. PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/vickers-hardness-test UR - https://github.com/HosseinBeygiNasrabadi/Vickers-Test-Ontology-VTO- UR - https://matportal.org/ontologies/VTO UR - https://industryportal.enit.fr/ontologies/VTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Tensile test ontology (TTO) N2 - Tensile Test Ontology (TTO) has developed for representing the Tensile testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 6892-1 standard. Versions info: V2 developed using BFO+CCO top-level ontologies. V3 developed using PROVO+PMDco top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/tensile-test GitHub: https://github.com/HosseinBeygiNasrabadi/Tensile-Test-Ontology-TTO- MatPortal: https://matportal.org/ontologies/TTO IndustryPortal: https://industryportal.enit.fr/ontologies/TTO KW - Ontology KW - Tensile testing PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/tensile-test UR - https://github.com/HosseinBeygiNasrabadi/Tensile-Test-Ontology-TTO- UR - https://matportal.org/ontologies/TTO UR - https://industryportal.enit.fr/ontologies/TTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Fatigue test ontology (FTO) N2 - Fatigue Test Ontology (FTO) has developed for representing the fatigue testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 12106 standard. Versions info: V2 developed using PROVO+PMDco top-level ontologies. V3 developed using BFO+IOF top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/lcf-test GitHub: https://github.com/HosseinBeygiNasrabadi/Fatigue-Test-Ontology-FTO- MatPortal: https://matportal.org/ontologies/FTO IndustryPortal: https://industryportal.enit.fr/ontologies/FTO KW - Ontology KW - Fatigue testing KW - FAIR data PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/lcf-test UR - https://github.com/HosseinBeygiNasrabadi/Fatigue-Test-Ontology-FTO- UR - https://matportal.org/ontologies/FTO UR - https://industryportal.enit.fr/ontologies/FTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Platform MaterialDigital Core Ontology (PMDco): A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Patents4Science CY - Berlin, Germany DA - 05.10.2023 KW - Knowledge Representation KW - Semantic Interoperability KW - FAIR data management KW - Knowledge graph and ontologies KW - PMD Core Ontology PY - 2023 AN - OPUS4-58507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -