TY - CONF A1 - Welter, T. A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Marzok, Ulrich A1 - Müller, Ralf T1 - Glass structures with low H2-diffusity N2 - Effective hydrogen storage capacities are prerequisite for an efficient energy provision using fuel cells. Since glass has low intrinsic hydrogen permeability, it is a promising material for hydrogen storage containers as well as hydrogen diffusion barriers. Previous studies on oxidic glasses suggest a correlation between the glass composition and hydrogen permeation that was derived mainly from silica glass. In the present study, we concentrate on the relationship between thermodynamic (i.e., configurational entropy) and topologic (i.e., free volume, network polymerization) parameters. Experimental data were gathered well below the glass transition temperature, excluding significant effects caused by structural relaxation and chemical dissolution of hydrogen. The results of seven analysed glasses on the SiO2-NaAlO2 joint showed that the hydrogen permeability in fully polymerized glasses cannot solely be derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen solubility and diffusion. Additionally, the results indicate that the configurational heat capacity ΔCp at Tg affects the hydrogen permeability of the investigated glasses. T2 - 92. Glastechnische Tagung der DGG CY - Bayreuth, Germany DA - 28.05.2018 KW - Hydrogen permeability KW - Atomic packing factor KW - Glass composition KW - Diffusion coefficient PY - 2018 AN - OPUS4-45900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Marzok, Ulrich A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. T1 - Silicate glass structures with low hydrogen permeability N2 - Efficient energy provision using fuel cells requires effective hydrogen storage capacities. Glass is a material of low intrinsic hydrogen permeability and is therefore a promising material for hydrogen storage containers or diffusion barriers. Pioneer work on oxidic glasses seems to indicate a correlation between glass composition and hydrogen permeation, which was mainly derived from the behavior of silica glass. In this study, we focus on the relationship between topologic (free volume; network polymerization) and thermodynamic (configurational entropy) glass parameters. Experiments were performed well below the glass transition temperature, which excludes significant structural relaxation and chemical dissolution of hydrogen. The compositional dependence of seven glasses on the SiO2-NaAlO2 join pointed out that in fully polymerized glasses the H2 permeability cannot be solely derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen diffusion and solubility. Additionally, results indicate that hydrogen permeability of the glasses is affected by the configurational heat capacity ΔCp at Tg. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Diffusion coefficient KW - 3D glass structure model KW - Glass composition KW - Hydrogen permeation PY - 2018 AN - OPUS4-45911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464711 DO - https://doi.org/10.1016/j.jnoncrysol.2018.01.033 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotaka, M. A1 - Honma, T. A1 - Komatsu, T. A1 - Shinozaki, K. A1 - Affatigato, M. A1 - Müller, Ralf T1 - Control of self-powdering phenomenon in ferroelastic β′-Gd2(MoO4)3 crystallization in boro-tellurite glasses N2 - Glasses with compositions of 21Gd2O3-63MoO3-(16-x)B2O3-xTeO2 (mol%) (x= 0, 2, 4, 8) were prepared using a conventional melt quenching technique, and the crystallization behavior of ferroelastic β′-Gd2 MoO4)3 Crystals was examined to clarify the mechanism of self-powdering phenomenon and to design bulk crystallized glasses. It was found that the self-powdering phenomenon appeared significantly during the crystallization at temperatures near the crystallization peak temperature, but the phenomenon is suppressed in the crystallization at temperatures much higher than the glass transition temperature. It was also found that the substitution of TeO2 for B2O3 in the base glasses suppresses the self-powdering phenomenon and consequently bulk crystallized glasses were obtained in the glass with x=8 mol%. The densities at room temperature of the base glasses are d =4.755–4.906 g/cm3, being much higher than the value of d=4.555 g/cm3 for β′-Gd2(MoO4)3 crystal. It is proposed that the stresses in the inside of crystals induced by large density differences (i.e., large molar volume differences) between the glassy phase and crystals might be relaxed effectively in the glasses containing TeO2 with weak TeeO bonds and fragile character. KW - Glass crystallization stress PY - 2018 DO - https://doi.org/10.1016/j.jnoncrysol.2017.12.006 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 85 EP - 92 PB - Elsevier B.V. AN - OPUS4-46472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. T1 - Sintering and foaming of silicate N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with properties and complex shape. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - Foaming KW - Glass KW - Powder KW - Sintering PY - 2018 AN - OPUS4-46474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Marzok, U. T1 - Hochtemperatur Laserprofilometrie (HTLP) N2 - Der Vortrag gibt einen Überblick über Funktionsweise und Anwendungsmöglichkeiten der an der BAM entwickelten Messmethode der Hochtemperatur-Laserprofilomtrie T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.01.2018 KW - Sinterung KW - Hochtemperatur KW - Formerkennung PY - 2018 AN - OPUS4-46475 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - The influence of volatile constituents on mechanical properties of glasses N2 - Im Rahmen des Young Researcher Day des SPP1594 wurden die bisherigen Inhalte der Projekte zusammengefasst und vorgetragen. T2 - Annual Meeting and Young Researcher Day CY - Jena, Germany DA - 11.09.2018 KW - Glass KW - Crack growth KW - Vickers KW - DCB KW - Water speciation PY - 2018 AN - OPUS4-46728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Nofz, Marianne T1 - High temperature coatings (Book review) N2 - All in all, practicing professionals as well as researchers can read this book with pleasure and great benefit. It presents a comprehensive collection of data and practical examples manifested in about 100 graphs, 80 schemes of processes and devices, a manifold of images showing the microstructure of alloys or details of components and several phase diagrams. Tables containing data on commercially available coatings, alloys, compositions of corrosive salts, function of constituents of coatings add further important pieces of information. Thus, this book is a valuable source of information for anyone engaged in work with or research on high temperature coatings. KW - Coating KW - High temperature PY - 2018 DO - https://doi.org/10.1002/maco.201870104 SN - 0947-5117 VL - 69 IS - 10 SP - 1490 EP - 1490 PB - Wiley‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Kirzdörfer, Adrian A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - First hints on reorientation of surface crystals N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Very few observations of crystal orientation were focused on separately growing surface crystals. In conclusion, no systematic studies on initially oriented crystal growth or nucleation from defined active surface nucleation sites exists. Therefore, the main objective of this just is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. As a first attempt, we focus on reorientation of separately growing surface crystals during their early growth. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28. Mai 2018 KW - Glass KW - Crystallization KW - BCS PY - 2018 AN - OPUS4-47536 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Wollschläger, Nicole A1 - Mosquera Feijoo, Maria A1 - Schulz, Wencke A1 - Kranzmann, Axel T1 - Thin Sol-Gel Alumina Coating as Protection of a 9% Cr Steel Against Flue Gas Corrosion at 650 °C N2 - Samples of sol-gel alumina coated and uncoated P92 steel were exposed to flue gas at 650 °C for 300 h. As result of this treatment a 50 µm thick bi-layered oxide scale had formed on the surface of the uncoated sample. Below the scale a 40 µm thick inner oxidation zone was detected. In contrast, the porous, micron thick alumina coating enabled the formation of a chromium oxide scale with a thickness of some nanometers at the interface between steel substrate and coating. In this case high temperature corrosion of the steel was prevented so far. KW - Steel KW - Oxide coatings KW - High-temperature corrosion KW - TEM KW - SEM PY - 2018 DO - https://doi.org/10.1007/s11085-017-9799-0 SN - 0030-770X SN - 1573-4889 VL - 89 IS - 3-4 SP - 453 EP - 470 PB - Springer AN - OPUS4-44472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Schulz, Wencke A1 - Sojref, Regine A1 - Kranzmann, Axel T1 - Exposition of sol-gel alumina-coated P92 steel to flue gas: Time-resolved microstructure evolution, defect tolerance, and repairing of the coating N2 - Technically relevant P92 steel (9% Cr) was coated with a micron-thick porous alumina layer prepared by sol-gel technique and treated with flue gas (60 CO2-30 H2O-2 O2-1 SO2-7 N2 (mole fraction in %)) at 650 ° to mimic an oxyfuelcombustion process. Local defects in the coating were marked using focused ion beam (FIB) technique and were inspected after exposition to hot flue gas atmosphere at 300, 800, and 1300 h, respectively. Local defects like agglomerated alumina sol particles tend to spall off from the coating uncovering the underlying dense chromia scale. Re-coating was found to restore the protection ability from oxidation when repeatedly treated with hot flue gas. Cracks and voids did not promote the local oxidation due to the formation of crystalline Mn/S/O species within and on top of the coating. The protective character of the steel-coating system is a result of (i) the fast formation of a dense chromia scale at the surface of sol-gel alumina-coated P92 steel bars in combination with (ii) the porous alumina coating acting as diffusion barrier, but also as diffusion partner in addition with (iii) fast Mn outward diffusion capturing the S species from flue gas. KW - Alumina coatings KW - Oxyfuel KW - Steel P92 KW - High temperature corrosion PY - 2018 DO - https://doi.org/10.1002/maco.201709712 SN - 1521-4176 SN - 0947-5117 SN - 0043-2822 VL - 69 IS - 4 SP - 492 EP - 502 PB - Wiley-VCH Verlag GmbH&Co. KGaA CY - Weinheim AN - OPUS4-45300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Wolfram A1 - Ramirez Caro, Alejandra A1 - Sojref, Regine A1 - Mota Gassó, Berta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction N2 - In order to observe the effect of the aggregate phases between 2 mm and 16 mm without overlap with rheological effects induced by the cement hy-dration and without interactions with a threshold fine sand particle size that affects both, paste and aggregates, rheological experiments were conducted on a limestone filler based paste mixed with aggregates up to 16 mm. Vari-ous aggregate fractions were blended and mixed with the replacement paste in different volumetric ratios. The dry aggregates’ flow coefficients were determined and compared to yield stress and plastic viscosity values at different aggregate volume fractions. The results indicated that the flow coefficient is not a suitable parameter to predict the performance of the aggregates in the paste. It was shown that the yield stress of pastes is largely determined by the blend of different aggregate fractions, while the plastic viscosity to large extend depends upon the coars-est aggregate fraction. Based on the results, ideal aggregate composition ranges for minimised yield stress are presented. For the plastic viscosity no such grading curves to achieve minimum values could be found, but high viscosity curves are identified. KW - Rheology KW - Flow Coefficient KW - Particle Size Distribution KW - Volume Fraction KW - Cement KW - Concrete KW - Reference Material KW - Limestone Filler PY - 2018 SN - 978-3-7469-1878-5 SP - 96 EP - 108 PB - tredition GmbH CY - Hamburg AN - OPUS4-44434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -