TY - JOUR A1 - Agea, Boris A1 - Walzel, S. T1 - 3D Druck unterstütz die Dekarbonisierung JF - Keramik-Forum N2 - Suspensionsbasiertes Binder Jetting reduziert die Brennzeiten von technischer Keramik im Vergleich zu anderen 3d-druckverfahren signifikant. dabei wird nicht nur Energie beim Betrieb der Brennöfen gespart, sondern auch die Emission von Kohlendioxid beim Brennvorgang selbst gesenkt. KW - Schlickerdeposition PY - 2021 VL - 6 SP - 26 EP - 28 PB - Keramische Zeitschrift AN - OPUS4-53812 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Alig, I. A1 - Böhning, Martin T1 - A phenomenological criterion for an optical assessment of PE-HD fracture surfaces obtained from FNCT JF - Polymer Testing N2 - The full-notch creep test (FNCT) is a common test method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD), e.g. for container materials. The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of PE-HD specimens under constant mechanical load in a well-defined liquid test environment. Since the craze-crack damage mechanism underlying the ESC phenomenon is associated with brittle failure, the occurrence of a predominantly brittle fracture surface is a prerequisite to consider an FNCT measurement as representative for ESC, i.e. a time to failure dominated by craze-crack propagation. The craze-crack propagation continuously reduces the effective residual cross-sectional area of the specimen during the test, which results in a corresponding increase of the effective mechanical stress. Thus, a transition to ductile shear deformation is inevitable at later stages of the test, leading usually to a pronounced central ligament. Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. An enhanced imaging analysis of FNCT fracture surfaces enables a detailed assessment of craze-crack Propagation during ESC. In this study, laser scanning microscopy (LSM) was employed to evaluate whether FNCT fracture surfaces are representative with respect to craze-crack propagation and ESC. Based on LSM height data, a phenomenological criterion is proposed to assess the validity of distinct FNCT measurements. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. Its applicability is verified on a sample basis for seven different commercial PE-HD container materials. KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Fracture surfaces KW - Optical criterion of brittleness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521012 DO - https://doi.org/10.1016/j.polymertesting.2020.107002 VL - 94 SP - 107002 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Ageing behaviour of laser powder bed fused 316L: a powder to failure approach N2 - Laser powder bed fusion (LPBF) is an additive manufacturing process for materials which inherently tends to yield various degrees of metastable hierarchical microstructures, defects and high residual stresses in the as-built condition depending on the process parameters. The understanding of the evolution of these typical features during heat treatment and subsequent thermal and mechanical ageing is crucial for the wider acceptance for safety critical structures. A multi-disciplinary research project at BAM studying the development of the microstructure, defects, residual stresses typical of LPBF 316L and their evolution during thermal and mechanical ageing has led to insights into the stability of these inherent features. This presentation aims to give a broad overview of the project with a few specific cases of investigation. Firstly, the formation of residual stresses, the nature of the initial microstructure, the tensile properties and a modelling approach to understand the anisotropy will be presented. This will be followed by examples of studies of their evolution during heat treatment, long term thermal exposure, and room temperature and high temperature mechanical testing compared to a baseline of conventional wrought variant of the same alloy. T2 - International Conference on Additive Manufacturing 2021 (ICAM 2021) CY - Online meeting DA - 01.11.2021 KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2021 AN - OPUS4-54106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hmood, F. J. A1 - Wilbig, Janka A1 - Nicolaides, Dagmar A1 - Zocca, Andrea A1 - Günster, Jens T1 - An approach to monitor the real-time deformation during heat treatment of 3D-printed glass JF - Ceramics International N2 - This study suggests a tool for a better control on the sintering/crystallization of 3D-printed bioactive glassceramics bodies. A small cantilever in form of a bar with square cross section attached to a base and inclined 34◦ with the horizon, was used to monitor the viscous flow and sintering/crystallization headway of a glassceramic systems. 3D printing and sintering of bioactive glass-ceramics is of great interest for medical care applications. Viscous flow ensures sufficient densification of the typically low density printed green bodies, while crystallization prevents the structure from collapsing under the gravitational load. As a model system, a bioactive glass called BP1 (48.4 SiO2, 1 B2O3, 2 P2O5, 36.6 CaO, 6.6 K2O, 5.6 Na2O (mol%)), which has a chemical composition based on that of ICIE16, was employed in this work. In addition, ICIE16 was used as a reference glass. The results show that the suggested design is a very promising tool to track the real-time deformation of 3D printed glass-ceramic specimens and gives a good indication for the onset of crystallization as well. KW - Real-time deformation KW - Sintering KW - 3D-printing KW - Bioactive glass PY - 2021 DO - https://doi.org/10.1016/j.ceramint.2021.03.334 VL - 47 IS - 14 SP - 20045 EP - 20050 PB - Elsevier Ltd. AN - OPUS4-53449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Schmid, Thomas A1 - Deubener, J. T1 - An overview of structural, physical and thermal properties of low melting zinc and lead borate glasses N2 - Low melting zinc borate glasses awake interest to replace lead borate glasses in the silver metallization pastes for solar cells or microelectronics. In the current study, characteristic properties of alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) were compared to an earth alkali zinc borate glass (CaO-ZnO-B2O3). Additionally, zinc oxide is partially substituted by lead oxide or cooper oxide in the borate glasses (Li2O-PbO-B2O3, Na2O ZnO CuO-B2O3). The alkali zinc borate glasses indicate less differences in Raman spectra, and thus in structural properties, in comparison to the Ca and Pb ions influence. LPbB (Tg = 401 °C) has a lower viscosity than LZB (Tg = 468 °C) and CaZB has the highest glass transition temperature (Tg = 580 °C). The Angell plot for the alkali zinc borate glasses shows a high fragility m = 80. Besides Tg, the density measured by means of the Archimedean principle, molar volume, and coefficient of thermal expansion (CTE) of the glasses were investigated. Trends could be found according to alkali ions or intermediate oxides. The density increases with decreasing alkali ion size from KZB (2.632 g/cm3) to LZB (2.829 g/cm3) and increases from LZB to LPbB (3.764 g/cm3). CTE ranges between 7.09 10-6 K-1 for CaZB and 11.5 10 6 K 1 for KZB and RZB. The differential thermal analysis (DTA) and X ray diffraction (XRD) indicate crystallization of various crystalline phases during heating with 5 K/min in most cases. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Borate glasses KW - Glass structure KW - Viscosity KW - Young´s Modulus KW - Alkali ions PY - 2021 AN - OPUS4-52867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Analysis of reaction layers and cooling simulations of co-fired thermoelectric multilayers N2 - Ceramic multilayer technology is an attractive approach for the cost-effective fabrication of thermoelectric generators. Therefore, efforts are being made to co-sinter two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, calcium cobaltite, calcium manganate and release tapes were pressure assisted sintered. A major challenge here is the cracking of calcium manganate during cooling. A relationship between the properties of the release tape used in pressure-assisted sintering and the cracking behavior was observed experimentally. To understand the origin of failure, formed reaction layers in the multilayer were analyzed by EDX and grazing incident XRD. Based on this analysis, bulk samples were prepared, and thermal expansion and Young's modulus and were determined thereon, if they were not known from the literature. The biaxial strength of the thermoelectric oxides was determined by the ball on three ball method. The thermal stresses during cooling of different multilayer designs were estimated by finite element simulations. The stresses caused by the reaction layers turned out to be negligible. The FEM study indicated further, and a validation experiment proved, that the thickness of the release tape has the main effect on thermal stresses during cooling in single material. For best performance, the design of a thermoelectric multilayer generator needs to consider thermoelectric performance and thermal stresses during cooling. T2 - Virtual Conference on Thermoelectrics CY - Online meeting DA - 20.07.2021 KW - Ceramic multilayer KW - Cooling simulations KW - Thermal stress KW - Thermoelectric PY - 2021 AN - OPUS4-52994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Ansätze zur digitalen Wissensrepräsentation aus der Plattform MaterialDigital (PMD) N2 - Die Digitalisierung von Materialien und Prozessen stellt eine große Herausforderung dar, die nur durch eine Bündelung der Bemühungen aller Beteiligten in diesem Bereich erreicht werden kann. Bei einer derartigen digitalen Beschreibung spielen Datenanalysemethoden, eine Qualitätssicherung von Prozessen inklusive Input- und Output-Daten sowie die Interoperabilität zwischen Anwendungen nach den FAIR-Prinzipien eine wichtige Rolle. Dies umfasst das Speichern, Verarbeiten und Abfragen von Daten in einer vorzugsweise standardisierten Form (Beteiligung von Normungsgremien). Zur Bewältigung dieser Herausforderung ist eine mit allen Stakeholdern konsistente Kontextualisierung der Materialdaten anzustreben, d.h. alle erforderlichen Informationen über den Zustand des Materials einschließlich produktions- und anwendungsbezogener Änderungen müssen über eine einheitliche, maschinenlesbare Beschreibung verfügbar gemacht werden. Dazu werden Wissensrepräsentationen und Konzeptualisierungen ermöglichende Ontologien verwendet. Eine zentrale Betrachtungsweise in diesem Zusammenhang ist die Realisierung von (automatisierten) Datenpipelines, die eine Beschreibung und Verfolgung von Daten ausgehend von ihrer Erzeugung, bspw. in einem Messgerät, bis zu ihrer globalen Verwendung in möglicherweise verschiedenen Kontexten beinhalten. Erste Bemühungen und Ansätze zu diesen Problemstellungen führten im Projekt Innovations-Plattform Material Digital (PMD, materialdigital.de) zur Erstellung von Anwendungsontologien, die Prozesse und Testmethoden explizit beschreiben. Dabei wurde u.a. der Zugversuch an Metallen bei Raumtemperatur nach ISO 6892-1 ontologisch beschrieben. Diese als Beispiel dienende Ontologieentwicklung wird in dieser Präsentation vorgestellt. Weiterhin wurde, ausgehend von der domänenspezifischen Entwicklung von Anwendungsontologien, eine Kernontologie erstellt, die eine übergeordnete Verbindung von ontologischen Konzepten aufgrund der Verwendung gleichen Vokabulars und semantischer Verknüpfungen erlaubt. Diese sowie die das PMD-Projekt selbst werden ebenfalls in dieser Präsentation vorgestellt. T2 - DVM Workshop: Grundlagen und Beispiele zur Digitalisierung für die Materialforschung und -prüfung CY - Online meeting DA - 19.10.2021 KW - Plattform Material Digital (PMD) KW - Ontologie KW - Zugversuch KW - Wissensrepräsentation KW - Semantic Web PY - 2021 AN - OPUS4-53565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Skrotzki, Birgit A1 - Schriever, Sina T1 - BAM reference data - Results of ASTM E139-11 creep tests on a reference material of Nimonic 75 nickel-base alloy N2 - Results of creep tests on a certified reference material at T = 600°C and a tensile creep load of 160 MPa are provided. The evaluated results include the times to reach 2% and 4% creep strain, respectively, and the creep rate after 400 h. The data were audited and are BAM reference data. KW - Reference data KW - Creep KW - Nickel-base alloy KW - Nimonic 75 KW - Reference material BCR-425 PY - 2021 DO - https://doi.org/10.5281/zenodo.5106606 PB - Zenodo CY - Geneva AN - OPUS4-52970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Beschreibung des Ermüdungsverhaltens von Endlos-Faserverstärkten-Kunststoff-Verbunden mit Hilfe mikromechanischer Modelle N2 - Im Rahmen des Vortrags werden die neusten Ergebnisse aus dem Fachbereich 5.3 zur Beschreibung des Ermüdungsverhaltens von FKV mittels Mikromechanischer-Modelle präsentiert. Explizit wird der theoretische Ansatz am Beispiel von GFK unter thermomechanischer Beanspruchung hergeleitet und an Hand von Versuchsergebnissen verifiziert. T2 - Webkonferenz Composites United, Composite Fatigue CY - Online meeting DA - 30.09.2021 KW - Faser-Kunststoff-Verbunde KW - thermomechanische Beanspruchung KW - Materialmodell PY - 2021 AN - OPUS4-54151 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Tokarski, T. T1 - CALM down: Identifying unknown phases N2 - CALM is software for determining the Bravais lattice type and the resulting lattice parameters from a single Kikuchi pattern. It requires the definition of 4 bands and a single bandwidth from which all other band positions as well as bandwidths are derived. For band detection, it uses the Funk transform, which allows detection of twice as many bands as usual. CALM works for any symmetry and requires low-noise patterns of at least 320x240 pixels. The resulting errors are <2% even for such small patterns, assuming good quality. The relative errors are <0.5%. However, this requires a projection centre position best derived from a sample of a cubic phase in CALM. However, this must have been recorded under identical conditions. Hundreds of Kikuchi patterns of phases with different symmetries were examined. T2 - Chemnitz MTEX Workshop 2021 CY - Online meeting DA - 08.03.2021 KW - EBSD KW - Gitterkonstanten KW - Phasenidentifikation PY - 2021 AN - OPUS4-52345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza A1 - Wang, Lei A1 - Lin, L. L. A1 - Manzoni, Anna Maria A1 - Skrotzki, Birgit A1 - Thompson, G. B. T1 - CALPHAD-informed density-based grain boundary thermodynamics N2 - The Gibbs free energy of a grain boundary is a complex thermodynamic function of temperature, pressure, and composition. These complexities add to the intrinsic crystallographic and chemical constraints imposed by the adjacent bulk phase. Recently we have proposed a density-based model for assessing grain boundary thermodynamics that enables a CALPHAD-informed description of the grain boundary. As such, the Gibbs free energy of the grain boundary is directly linked with available CALPHAD thermodynamic data. In this talk, new aspects of interfacial segregation and phase transformation are revealed by benchmarking the current model for various experimental cases, including several steels, high-entropy alloys and aluminum alloys. The effects of elastic interactions on the grain boundary segregation and the application of the model to a nanocrystalline Pt-Au alloy, with numerous grain boundaries of various characters, will be discussed. T2 - DPG (Deutsche Physiker Gesellschaft) CY - Online meeting DA - 27.09.2021 KW - Density-based model KW - Defects thermodynamics KW - Defects phase diagram KW - CALPHAD KW - Crystal Defects PY - 2021 AN - OPUS4-53556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baesso, Ilaria A1 - Karl, D. A1 - Spitzer, Andrea A1 - Gurlo, A. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Characterization of powder flow behavior for additive manufacturing JF - Additive manufacturing N2 - The flow behavior of powders has an essential role in many industrial processes, including powder bed additive manufacturing. The characterization of the flow behavior is challenging, as different methods are available, and their suitability for an application in additive manufacturing is still controversial. In this study, six standardized methods (measurement of bulk density by ISO 60 and by ASTM B329, angle of repose by ISO 4324, discharge time by ISO 6186 and by ASTM B964-16, and Hausner Ratio by ASTM 7481 – 18), the rotating drum method (by GranuDrum) and powder rheometry (Anton Paar powder cell), were applied to five size fractions of a crushed quartz sand powder and compared. A statistical approach is proposed and discussed to correlate the obtained flowability indexes with the packing density of powder beds deposited layer-by-layer, and these correlations are compared between methods. Overall, the measurement of bulk density by ASTM B329 that showed the best correlation with the powder bed density. Advanced methods such as the rotating drum method and powder rheometry did not demonstrate particularly good correlations, however they provided complementary information which can be useful to assess the dynamic behavior of powders. KW - Powder flow KW - Flowability KW - Powder bed additive manufacturing KW - Powder rheology PY - 2021 DO - https://doi.org/10.1016/j.addma.2021.102250 SN - 2214-8604 VL - 47 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-53229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sandoval Saldias, Janina A1 - Blank, Robin A1 - Stephan-Scherb, Christiane T1 - Chloridische Salzschmelzen als latente Wärmespeicher N2 - Latente Wärmspeicher auf der Basis von NaCl-KCl-MgCl2 Mischungen stellen eine kostengünstige Option für die Energiespeicherung von Prozesswärme dar. Der Beitrag gibt einen Überblick über die materialwissenschaftlichen Herausforderungen im System Salz-Legierung, welche gelöst werden müssen, um diese Speichertechnologie industriell zu etablieren. T2 - DMG Sektionstreffen Angewandte Mineralogie und Kristallographie CY - Online Meeting DA - 25.02.2021 KW - Wärmespeicher KW - Korrosion KW - Salzschmelzen PY - 2021 AN - OPUS4-52234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Botsch, B A1 - Sonntag, U A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Schmies, Lennart A1 - Yarysh, Anna T1 - Classification of fracture surface types based on SEM images N2 - The following work deals with the quantitative fracture surface evaluation in damage analysis. So far, fracture surfaces have almost exclusively been evaluated qualitatively, i.e. the presence of fracture features is documented and their surface proportions are estimated, if necessary. Many years of experience are required, as well as an intensive comparison with defined comparative images from the literature. The aim of this work is the development of classifiers which can recognize fracture mechanisms or fracture features in scanning electron microscope images (SEM). The basis is 46 SEM images, which have been evaluated by fractography experts with regard to fracture features. The existing data set of images is expanded using augmentation methods in order to increase the variability of the data and counteract overfitting. Only convolutional neural networks (CNN) are used to create the classifiers. Various network configurations are tested, with the SegNet achieving the best results. T2 - Materialsweek 2021 CY - Online meeting DA - 07.09.2021 KW - Fractography KW - Fracture surface KW - Deep learning KW - SEM PY - 2021 AN - OPUS4-53418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Hesse, René A1 - Agudo Jacome, Leonardo A1 - Gonzalez-Martinez, I. T1 - Complex artificial features on a TEM transparent membrane N2 - The phenomenon of expelling nanomaterial from microparticles of different materials, such as Au, WO3 or B2O3 under the influence of a convergent electron beam (CB) of a transmission electron microscope (TEM) was reviewed by Ignacio Gonzalez-Martinez [1]. Converging the e-beam in a TEM means that a high amount of energy enters the microparticle at a very local place and interact with the matter. Obviously, during the convergent beam protocol, no imaging with the electron beam is possible, but at the end, nanoparticles with different appearances lie down next to the microparticle while its size is reduced. Hence, there is a blind spot in the observation, which we want to fill, as we want to help clarify the nature of the expelling phenomenon. One hypothesis that explains the phenomenon is the so-called damage (of the microparticle) induced by an electric field (DIEF). Within this theory, the material is ionized and expelled in form of ionic waves. Our aim is therefore to fabricate specimens with artificial microlandscapes, as schematically exemplified in figure 1a), using the focused ion beam (FIB) and micromanipulators, as experimental setups to follow the paths of the expelled material. As a first step towards the fabrication of such specimen, we make experimental feasibility studies for each fabrication method, FIB structuring with Ga+ ion beam and micromanipulated microparticle deposition. Bridges (gray regions in Fig. 1) are created by milling a commercially available electron transparent membrane (silicon oxide or carbon) of a Cu-TEM grid. Platinum or carbon walls (blue features in Fig. 1) are built to stand on those bridges. Microparticles (yellow sphere in Fig. 1) of gold or other material are deposited in the center of the bridges. Figure 2a) shows four square holes (black area) and between them the residual silicon oxide membrane bridges (dark grey). On top of the bridges, walls (light grey) are deposited. The width of the bridges is different, the walls overlap the holes as well as the distance between the walls is very small, so these and other parameters need to be optimized. Figure 2b) shows a square hole (black) with bridges (white) on the right side on top of a carbon membrane (grey). There are still some obstacles which needs to be eliminated. For instance, the deposition process of the walls is not reliable as visible at the wall on top where a hole arises instead of a wall. These studies are still in progress and the results are further discussed in terms of the applicability for the DIEF experiment in the TEM. T2 - 4th EuFN and FIT4NANO Joint Workshop / Meeting CY - Vienna, Austria DA - 27.09.2021 KW - Transmission electron microscope (TEM) KW - Sample preparation KW - Micromanipulation KW - Focussed ion beam growth KW - Nano-landscape PY - 2021 AN - OPUS4-58259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Components in CO2-stream, corrosive to Materials to be Used in CC(U)S Applications N2 - CO2 quality specifications are not only a matter of CO2 purity (i.e. CO2 content). The “rest” also matters, in particular contents of reactive impurities affecting material corrosion (and rock alteration). Also chemical reactions in CO2 stream needs to be considered, in particular when combining CO2 streams of different compositions. T2 - WCO Forum at AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 26.04.2021 KW - Carbon capture storage KW - Corrosion PY - 2021 AN - OPUS4-52502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wang, Lei A1 - Hoyt, J. J. T1 - Corrigendum to ‘Layering misalignment and negative temperature dependence of interfacial free energy of B2-liquid interfaces in a glass forming system’ [Acta Mater. 219 (2021) 117259] T2 - Acta Materialica N2 - The authors regret that one funding number was missing. LW acknowledges financial supports from project DA 1655/1-2 within the SPP 1713 program by DFG. The authors would like to apologise for any inconvenience caused. KW - Missing acknowledgment KW - Glass forming KW - Solidification PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117525 VL - 219 PB - Elsevier Ltd. AN - OPUS4-54083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Corrosion and corrosion fatigue of steels in downhole CCS environment - A summary JF - Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO₃ and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO₂: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - Carbon capture and storage PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531391 DO - https://doi.org/10.3390/pr9040594 SN - 2227-9717 VL - 9 IS - 4 SP - 1 EP - 33 PB - MDPI CY - Basel AN - OPUS4-53139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, M. A1 - Kranzmann, Axel T1 - Corrosion and Corrosion Fatigue of Steels in Downhole CCS Environment—A Summary JF - MDPI Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO2-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO3 and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO2: 30 L/h, +/− applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion fatigue KW - Cabon capture and storage KW - CCS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541626 DO - https://doi.org/10.3390/pr9040594 VL - 9 IS - 4 SP - 594 PB - MDPI AN - OPUS4-54162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, M. A1 - Kranzmann, Axel T1 - Corrosion and Corrosion Fatigue of Steels in Downhole CCS Environment—A Summary JF - Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60°C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO2-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO3 and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60°C , brine: Stuttgart Aquifer and NGB, flowing CO2: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Carbon capture and storage KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - CCS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523948 DO - https://doi.org/10.3390/pr9040594 VL - 9 IS - 4 SP - 594 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Manzoni, Anna Maria A1 - Stephan-Scherb, Christiane T1 - Corrosion induced alloy sulfidation in a high-entropy alloy (HEA) N2 - To apply high-entropy alloys (HEA) of the CrMnFeCoNi family in challenging atmospheres, their degradation behavior under harsh environments needs to be investigated. Oxidation studies to HEAs have not been extensively investigated and most of them are concentrated on environments like synthetic air, laboratory air, CO/CO2, O2 and H2O atmospheres. Main corrosion products which were identified after aging times of up to 100 h are Mn2O3 (≤800°C) and Mn3O4 (≥800°C). Another corrosive medium in high temperature applications is SO2, which preferentially forms sulfides on commercial steels for example. These can be occurred both in the oxide layer and at the oxide/metal interface. For instance, on Fe-Cr based alloys sulfides (Cr5S6) were detected along grain boundaries and their number increases with exposure time and Cr-content in the alloy. These sulfides show an increased hardness, compared to the bulk alloy, and cause an embrittlement of the grain boundaries. This is a serious material degradation phenomenon, now addressed for the case of HEAs. In the present study metal sulfides were identified after corrosion of the HEA CrMnFeCoNi alloy in an Ar-0.5vol.%SO2 atmosphere at 800°C for 24 h, 48 h, 96 h and 192 h exposure time. After all three duration times, a thin non-protective Cr2O3 layer has formed at the oxide/alloy interface. At the gas side a thick Mn3O4 layer with local voids containing sulfur could be detected by SEM-EDS analysis. Furthermore, S precipitates could be detected in the bulk material near the surface. These sulfides were characterized in detail by scanning and transmission electron microscopy. Based on these results, a model for grain boundary sulfidation of high-entropy alloy CrMnFeCoNi is discussed. T2 - EUROMAT 2021 EUROPEAN CONGRESS AND EXHIBITION ON ADVANCED MATERIALS AND PROCESSES CY - Online meeting DA - 13.09.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Sulfidation KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Buggisch, E. A1 - Schiller, Bernadette Nicole A1 - Beck, M. T1 - Corrosion Study on Wellbore Materials for the CO2 Injection Process JF - Processes N2 - For reliability and safety issues of injection wells, corrosion resistance of materials used needs to be determined. Herein, representative low-cost materials, including carbon steel X70/1.8977 and low alloyed steel 1.7225, were embedded in mortar to mimic the realistic casing-mortar interface. Two types of cement were investigated: (1) Dyckerhoff Variodur commercial Portland cement, representing a highly acidic resistant cement and (2) Wollastonite, which can react with CO2 and become stable under a CO2 stream due to the carbonation process. Exposure tests were performed under 10 MPa and at 333 K in artificial aquifer fluid for up to 20 weeks, revealing crevice corrosion and uniform corrosion instead of expected pitting corrosion. To clarify the role of cement, simulated pore water was made by dispersing cement powder in aquifer fluid and used as a solution to expose steels. Surface analysis, accompanied by element mapping on exposed specimens and their crosssections, was carried out to trace the chloride intrusion and corrosion process that followed. KW - Carbon capture storage KW - CCS KW - Carbon dioxide KW - Corrosion KW - Carbon steel KW - Aquifer fluid KW - Cement KW - Casing KW - Pitting PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519774 DO - https://doi.org/10.3390/pr9010115 SN - 2227-9717 VL - 9 IS - 1 SP - 115 PB - MDPI CY - Basel AN - OPUS4-51977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Behrens, H. A1 - Deubener, J. T1 - Crack growth in borate and silicate glasses: Stress-corrosion susceptibility and hydrolytic resistance JF - Journal of Non-Crystalline Solids N2 - A double cantilever beam technique in air equipped with ultrasound modulation was used to measure the crack velocity v in borate and silicate glasses. In all glasses v and the stress intensity KI followed the empirical correlation v ~ KIn. Indicated by its smallest KI at v = 1 μm s − 1, KI* = 0.27 MPa m0.5, the silicoborate glass containing 70 mol% B2O3 was found most susceptible to stress-corrosion enhanced crack growth. Contrarily, the sodium calcium magnesium silicate glass appeared least susceptible with KI* = 0.57 MPa m0.5. No clear correlation is evident between KI*, reflecting the stress-corrosion susceptibility, and the hydrolytic resistance for all glasses under study, but values of n obtained from the present study and taken from previous literature for 35 glasses tend to decrease with increasing network modifier ion fraction. Energy dissipation during stress-corrosion enhanced crack propagation is assumed to cause this trend. KW - DCB KW - Alkali and alkaline earth silicate and borate glass KW - Crack growth in air KW - Stress-corrosion KW - Stress intensity PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2020.120414 VL - 551 SP - 120414 PB - Elsevier B.V. AN - OPUS4-51393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander T1 - Creep behavior and microstructural evolution of LPBF 316L N2 - This presentation shows some experimental results of the characterization of the creep behavior of LPBF 316L, which has been poorly studied and understood to date. The presentation includes results regarding the mechanical properties, the initial microstructural state and its evolution under loading, and the damage mechanism. This work was done within the BAM focus area materials project AGIL. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant was also tested. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured alloys at BAM CY - Online Meeting DA - 19.04.2021 KW - 316L KW - Additive Manufacturing KW - Creep behavior PY - 2021 AN - OPUS4-52682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viguier, B. A1 - Epishin, A. A1 - Fedelich, Bernard T1 - Creep of single-crystals of nickel-base gamma-alloy at high temperatures N2 - Porosity in single-crystal nickel-base superalloys is removed by hot isostatic pressing (HIP) at temperatures above gamma’-solvus where the material is very soft and ductile. For example, single-crystal nickel-base superalloy CMSX-4 is HIPed at temperature 1288 °C, which is slightly higher than the gamma’-solvus temperature of this alloy equal to about 1280 °C. It is assumed that pore shrinking during HIP is mostly due to dislocation creep. Such a modelling of HIP of CMSX-4 was started in our group on the base of results of creep tests of [001] single-crystals at 1288 °C [1]. However, it was found later [2] that the alloy CMSX-4 shows very strong creep anisotropy at 1288 °C. Therefore, for calibration of the creep law, creep tests of different orientations under different stress levels are required at the HIP temperature. This was the main task of present work. Single-crystals of CMSX-4 of axial orientations [001], [011], [123] and [111] were cast by VIAM Moscow and tested by BAM Berlin under creep conditions at 1288 °C and stress levels between 4 MPa and 16 MPa. At all stress levels, the creep rate increases by an order of magnitude when changing the orientation from [001] to [111] with [011] and [123] orientations in between. Such a character of creep anisotropy corresponds to the orientation dependence of the Schmid factor for octahedral glide. The crystal viscoplasticity model developed in [1] was improved to better represent the time induced softening observed during creep. The creep tests for different stresses and orientations as well as pore closure were simulated. The results of pore closure simulation are compared with measurements of porosity decrease during Hiping. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Nickel-base superalloys KW - Creep KW - Single-Crystal PY - 2021 AN - OPUS4-53935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Viguier, B. A1 - Schriever, Sina A1 - Svetlov, I. L. A1 - Petrushin, N. V. A1 - Saillard, R. A1 - Proietti, A. A1 - Poquillon, D. A1 - Chyrkin, A. T1 - Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C JF - Materials Science & Engineering A N2 - A γ-analogue of the superalloy CMSX-4 that does not contain the strengthening γ′ -phase and only consists of the γ-solid solution of nickel has been designed, solidified as single-crystals of different orientations, and tested under creep conditions in the temperature range between 1150 and 1288 °C. The tests have revealed a very high creep anisotropy of this alloy, as was previously found for CMSX-4 at supersolvus temperature of 1288 °C. This creep anisotropy could be explained by the dominance of 〈011〉{111} octahedral slip. Furthermore, the analysis of the creep data has yielded a high value of the creep activation energy, Qc≈442 kJ/mol, which correlates with the high activation energy of Re diffusion in Ni. This supports the hypothesis that dislocation motion in the γ-matrix of Re-containing superalloys is controlled by the diffusion of the Re atoms segregating at the dislocation core. The Norton stress exponent n is close to 5, which is a typical value for pure metals and their alloys. The absence of γ′ -reprecipitation after high-temperature creep tests facilitates microstructural investigations. It has been shown by EBSD that creep deformation results in an increasing misorientation of the existing low angle boundaries. In addition, according to TEM, new low angle boundaries appear due to reactions of the a/2 〈011〉 mobile dislocations and knitting of new networks. KW - Nickel alloys KW - Single-crystals KW - Creep KW - Electron microscopy KW - Deformation mechanisms PY - 2021 DO - https://doi.org/10.1016/j.msea.2021.141880 SN - 0921-5093 VL - 825 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Haberland, C. A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing JF - Additive Manufacturing N2 - Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies. KW - Additive manufacturing KW - Laser powder bed fusion KW - Nickel-based superalloys KW - Scan strategies KW - Residual stresses KW - Microstructure and texture PY - 2021 DO - https://doi.org/10.1016/j.addma.2020.101792 VL - 38 SP - 1792 PB - Elsevier B.V. AN - OPUS4-51944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Nishijima, M. A1 - Kiguchi, T. A1 - Konno, T. T1 - Crystal structure characterization of martensite of Cu–Zn–Al ternary alloy by spherical aberration corrected scanning transmission electron microscopy JF - Intermetallics N2 - The crystal structure of martensite in Cu-27at.%Zn-9.0 at.%Al alloy has been studied by using sphericalaberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and geometrical phase analysis (GPA) to examine possible changes in atomic rearrangements during martensitic transformation of this ternary system. Observation along [100]M zone axis is suitable for examining a chemical order of the martensite, and showed that, despite the non-stoichiometry of the alloy, atomic columns containing Al atoms are imaged and distinguished from the others. On the other hand, observation along [010]M zone axis directly revealed that the parent and martensitic phases possess L21 and 18R (21) structures, respectively. These observations suggested that the martensite retained the local chemical order of the parent phase without shuffling before and after the transformation. GPA revealed that the interface between the two phases was coherent with tilting of the basal plane approximately 6◦ across the boundary, which makes otherwise large inclination small during the martensitic transformation. KW - Shape-memory alloys KW - Martensitic transformation KW - Martensitic structure KW - Electron microscopy, transmission PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107286 SN - 0966-9795 VL - 137 PB - Elsevier Ltd. AN - OPUS4-53076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. A1 - Cios, G. A1 - Winkelmann, A. T1 - Crystallographic analysis of the lattice metric (CALM) from single electron backscatter diffraction or transmission Kikuchi diffraction patterns JF - Journal of Applied Crystallography N2 - A new software is presented for the determination of crystal lattice parameters from the positions and widths of Kikuchi bands in a diffraction pattern. Starting with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown phase, the traces of all visibly diffracting lattice planes are manually derived from four initial Kikuchi band traces via an intuitive graphical user interface. A single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice point distances. Kikuchi band detection, via a filtered Funk transformation, and simultaneous display of the band intensity profile helps users to select band positions and widths. Bandwidths are calculated using the first derivative of the band profiles as excess-deficiency effects have minimal influence. From the reciprocal lattice, the metrics of possible Bravais lattice types are derived for all crystal systems. The measured lattice parameters achieve a precision of <1%, even for good quality Kikuchi diffraction patterns of 400 x 300 pixels. This band-edge detection approach has been validated on several hundred experimental diffraction patterns from phases of different symmetries and random orientations. It produces a systematic lattice parameter offset of up to ±4%, which appears to scale with the mean atomic number or the backscatter coefficient. KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Lattice parameters KW - Radon transform PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527076 DO - https://doi.org/10.1107/S1600576721004210 SN - 1600-5767 VL - 54 IS - Pt 3 SP - 1012 EP - 1022 AN - OPUS4-52707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Stephan-Scherb, Christiane ED - Schorr, S. ED - Weidenthaler, C. T1 - Crystallographic challenges in corrosion research T2 - Crystallography in Materials Science N2 - High-temperature corrosion is a widespread problem in various industries. As soon as a hot and reactive gas (CO2, O2, H2O, SO2, NOx, etc.) is in contact with a solid, physico-chemical processes at the surface and interfaces lead to material degradation. The processes are dynamic and controlled by thermodynamic and kinetic boundary conditions. Whether a reaction product is protective or not depends on various factors, such as chemical composition of the solid and the reactive media, surface treatment as well as diffusion and transport paths of cations and anions. Resulting chemical and structural inhomogeneities with the corrosion layers are characterized by off stoichiometry within cationic and anionic sub lattices. The competitive processes can be studied by various techniques of applied crystallography. This chapter gives an overview on the challenges of chemical-structural Analysis of reaction products by crystallographic methods such as X-ray diffraction and X-ray near-edge structure spectroscopy and scanning electron microscopy electron backscatter diffraction (SEM-EBSD) for corrosion science. KW - High-temperature corrosion KW - Oxidation KW - Diffraction KW - Spectroscopy KW - Oxides PY - 2021 DO - https://doi.org/10.1515/9783110674910-009 SP - 291 PB - De Gruyter ET - 1 AN - OPUS4-52903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Current and future technological advancement in polymer matrix composites enabled through fundamental discoveries N2 - This presentation is a summary of the work from the past 20 years’ development of PMC-testing at the BAM-FB 5.3 with respect to safety-relevant design of advanced light weight structures in aircraft, wind turbine and automotive applications. The talk begins with wood as an example from nature, and emphasizes that load case, fiber architectural design and the production process and quality have to go hand in hand to generate an advanced light weight structure. Since PMC-relevant basic findings of mankind span across hundreds of years, high-performance composite applications today are based more on long term experiences than on breakthrough inventions of modern days. In the second part of the talk, future plans and projects of FB-5.3 are presented, specifically addressing H2-safety, circular economy, recycling by design and digitalization of PMC-technologies. T2 - Abteilungsseminar CY - Online meeting DA - 07.09.2021 KW - Polymer Matrix Composites KW - Thermo mechanical fatigue PY - 2021 AN - OPUS4-54150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Damage progression of environmental stress cracking affected by manufacturing process-induced microstructural orientation N2 - Currently, the Full Notch Creep Test (FNCT) [1] method is used by material suppliers and end users in industry for the approval of container and pipe materials based on high-density polyethylene (PE-HD). The resistance to environmental stress cracking (ESC) of the material is evaluated using the time to failure of the specimen in an aqueous solution of a detergent [2, 3]. Usually specimens made of sheets with isotropic material properties, manufactured by hot pressing, are employed in order to obtain intrinsic properties of the material in terms of ESC failure. In contrast, the processes used in manufacturing to form containers and pipes, such as extrusion blow molding or extrusion, impose anisotropic properties to the material. These are mostly due to a microstructural orientation (polymer chains or crystallites) [4]. Furthermore, the different cooling conditions significantly affect the size distribution of crystallites as well as the overall morphology. It is therefore essential to understand the influence of process-induced material characteristics on failure due to ESC. A large number of studies on material properties as a function of microstructural preferential orientation have already been conducted [5-7]. However, effects on ESC as the major failure mechanism of containers and pipes are still rather unexplored [8, 9]. The most important factor is whether primarily intramolecular high-strength covalent bonds or the substantially weaker intermolecular van der Waals forces are predominantly loaded. In addition to the widely established classification by time to failure, the strain or crack opening displacement (COD) provides valuable information about the evolution and progression of damage as a function of time [10, 11]. Optical strain measurement using digital image correlation allows the differences in COD for isotropic and different angles of orientation of anisotropic specimens to be discussed. Also, a post-fracture surface analysis provides clarification on the craze-crack mechanism of the ESC. These different ESC-related properties of extruded and hot-pressed specimens have been investigated at different environmental medium temperatures and different initial stresses to provide a broad characterization of the fracture behavior of PE-HD. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - High-density polyethylene KW - Fracture behavior KW - Microstructural orientation PY - 2021 AN - OPUS4-53400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Zerbst, Uwe A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Bergant, M. A1 - Evans, Alex A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Yawny, A. T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems JF - Acta Materialia N2 - Phase diagrams are the roadmaps for designing bulk phases. Similar to bulk, grain boundaries can possess various phases, but their phase diagrams remain largely unknown. Using a recently introduced density-based model, here we devise a strategy for computing multi-component grain boundary phase diagrams based on available bulk (CALPHAD) thermodynamic data. Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems, as important ternary bases for several trending steels and high-entropy alloys, are studied. We found that despite its solute segregation enrichment, a grain boundary can have lower solubility limit than its corresponding bulk, promoting an interfacial chemical decomposition upon solute segregation. This is revealed here for the Fe-Mn-base alloy systems. The origins of this counter-intuitive feature are traced back to two effects, i.e., the magnetic ordering effect and the low cohesive energy of Mn solute element. Different aspects of interfacial phase stability and GB co-segregation in ternary alloys are investigated as well. We show that the concentration gradient energy contributions reduce segregation level but increase grain boundary solubility limit, stabilizing the GB against a chemical decomposition. Density-based grain boundary phase diagrams offer guidelines for systematic investigation of interfacial phase changes with applications to microstructure defects engineering. KW - Densty-based Thermodynamics KW - Microstrucrue Design KW - Grain Boundary Phase Diagram PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522207 DO - https://doi.org/10.1016/j.actamat.2021.116668 SN - 1359-6454 VL - 207 SP - 116668 PB - Elsevier Ltd. AN - OPUS4-52220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - Density-based Thermodynamics of Microstructure Defects N2 - Systematic microstructure design requires reliable thermodynamic descriptions and phase diagrams of each and all microstructure elements. While such descriptions are well established for most bulk phases, thermodynamic assessment of crystal defects is greatly challenged by their individualistic aspects. In this talk, we present a density-based thermodynamic concept to describe defects based on available bulk thermodynamic data. Here dealing with grain boundaries (GBs), we apply this concept to compute GB (phase) diagram. Applications to segregation engineering of GBs in bulk and nanocrystalline alloys will be presented. We further develop this model to include the effect of elastic interactions due to atom size mismatch and obtain the corresponding GB (phase) diagram for the ternary Al-Cu-Li system. T2 - TMS 2021 CY - Online meeting DA - 15.03.2021 KW - Microstrucrue Design KW - Density-based Thermodynamics PY - 2021 AN - OPUS4-52337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Development of textured multilayer thermoelectric generators based on calcium cobaltite N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. T2 - Virtual Conference on Thermoelectrics 2021 (VCT) CY - Online meeting DA - 20.07.2021 KW - Thermoelectrics KW - Multilayertechnik KW - Screen printing PY - 2021 AN - OPUS4-52993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rabe, Torsten A1 - Eichler, J. A1 - Picht, G. A1 - Rossner, W. A1 - Stelter, M. A1 - Voigt, I. T1 - Digitalisierung der keramischen Fertigung - Herausforderungen und Chancen N2 - Dieses Strategiepapier zielt darauf ab, Akteuren und Entscheidungsträgern den Status der Digitalisierung in der keramischen Fertigung, erfolgreiche Best-Practice-Beispiele aber auch die Herausforderungen nahezubringen, die es nun anzugehen gilt. Es ist die Vision, die Keramikfertigung durchgehend zu digitalisieren und alle Schritte des Produktkreislaufs lückenlos über die gesamte Wertschöpfungs- und Nutzungskette zu vernetzen: also eine Keramikindustrie 4.0 zu etablieren. Das Strategiepapier erfasst zunächst die Spezifität der keramischen Fertigung und nimmt eine Analyse des gegenwärtigen Standes der Digitalisierung in der keramischen Industrie vor, auch anhand einiger ausgewählter Beispiele aus der industriellen Praxis. Auf Basis der wesentlichen Bausteine für eine Fertigungsdigitalisierung werden schließlich die Chancen für Keramikproduzenten sowie der erforderliche Forschungs- und Entwicklungsbedarf aufgezeigt. KW - Datenmanagement KW - Digitalisierung KW - Fertigungsprozess KW - Keramik KW - Sensorik PY - 2021 SP - 1 EP - 39 PB - Deutsche Gesellschaft für Materialkunde (DGM) und Deutsche Keramische Gesellschaft (DKG) CY - Köln ET - 1000 AN - OPUS4-52708 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Portella, Pedro Dolabella A1 - Hartrott, P. A1 - Hadzic, N. A1 - Todor, A. A1 - Birkholz, H. A1 - Grundmann, J. T1 - Digitalisierung der Materialien in PMD & Mat-o-Lab - Eine normkonforme Anwendungsontologie des Zugversuchs N2 - Zur Bewältigung der Herausforderung bei der Digitalisierung von Materialien und Prozessen ist eine mit allen Stakeholdern konsistente Kontextualisierung von Materialdaten anzustreben, d.h. alle erforderlichen Informationen über den Zustand des Materials einschließlich produktions- und anwendungsbezogener Änderungen müssen über eine einheitliche, maschinenlesbare Beschreibung verfügbar gemacht werden. Dazu werden Wissensrepräsentationen und Konzeptualisierungen ermöglichende Ontologien verwendet. Erste Bemühungen in den beiden Projekten Plattform Material Digital und Materials-open-Laboratory führten zur Erstellung von Anwendungsontologien, die Prozesse und Testmethoden explizit beschreiben. Dabei wurde u.a. der Zugversuch an Metallen bei Raumtemperatur nach DIN EN ISO 6892-1 ontologisch beschrieben. Diese als Beispiel dienende Ontologieentwicklung wird in dieser Präsentation vorgestellt. T2 - Werkstoffprüfung 2021 CY - Online meeting DA - 02.12.2021 KW - Ontologie KW - Semantisches Web KW - Wissensrepräsentation KW - Digitalisierung KW - Zugversuch PY - 2021 AN - OPUS4-53929 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Yuan, R. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J. M. A1 - Maaß, Robert T1 - Early stages of liquid-metal embrittlement in an advanced high-strength steel JF - Materials Today Advances N2 - Grain-boundary degradation via liquid-metal embrittlement (LME) is a prominent and long-standing failure process in next generation advanced high-strength steels. Here we reveal, well ahead of the crack tip, the presences of nano-scale grains of intermetallic phases in Zn-infiltrated but uncracked grain boundaries with scanning- and 4D transmission electron microscopy. Instead of the often-reported Znrich Fe-Zn intermetallics, the nano-scale phase in the uncracked infiltrated grain boundaries is identified as the G-phase, and its presence reveals the local enhancement of strain heterogeneities in the grain boundary network. Based on these observations, we argue that intermetallic phase formation is not occurring after cracking and subsequent liquid Zn infiltration but is instead one of the primary nanoscopic drivers for grain-boundary weakening and crack initiation. These findings shift the focus of LME from micro- and meso-scale crack investigations to the very early stages immediately following Zn diffusion, after which secondary phase nucleation and growth emerge as the root-cause for failure. KW - Advanced high strength steels KW - Liquid metal embrittlement KW - Transmission electron microscopy KW - 4-Dimensional scanning transmission KW - electron microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539716 DO - https://doi.org/10.1016/j.mtadv.2021.100196 SN - 2590-0498 VL - 13 IS - 196 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-53971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, Christiane T1 - Effect of corrosive atmosphere on the oxidation behavior of CrMnFeCoNi and CrCoNi alloys N2 - High- and medium-entropy alloys (HEAs and MEAs) constitute a new class of materials. Those with a face-centered cubic (fcc) structure from the Cr-Mn-Fe-Co-Ni system have excellent mechanical properties and are considered for high-temperature applications since diffusion in these alloys was reported to be sluggish. However, their corrosion resistance at high temperatures must still be evaluated to further qualify them for such kinds of applications. Various groups studied the oxidation behavior of HEAs and MEAs under (dry) laboratory and artificial air as well as CO2/CO mixtures in different temperature ranges. Adomako et al. carried out oxidation tests in dry air between 800 °C and 1000 °C for 24 h in equiatomic CrCoNi, CrMnCoNi, and CrMnFeCoNi alloys. The authors showed that CrCoNi exhibits the best corrosion resistance at 800 °C due to the formation of a protective Cr2O3 layer. The matrix below the oxide scale was reported to be correspondingly depleted in Cr. It was further shown that the addition of Mn and Fe to CrCoNi changes the phase composition of the oxide scale at 800 °C. A Mn2O3 layer was grown during oxidation on CrMnCoNi and CrMnFeCoNi and a Cr2O3 scale was formed at the matrix/oxide scale interface. Beneath these oxide layers, Mn- and Cr-depleted zones were detected. These phase morphologies demonstrate the inward diffusion of oxygen and outward diffusion of Cr and Mn resulting in the formation of Cr2O3 and Mn2O3. In the present study, the corrosion resistance of CrMnFeCoNi and CrCoNi were confirmed and additionally characterized under further oxidizing atmospheres at 800 °C including Ar-2 Vol.% O2, Ar-2 Vol.% H20, and Ar-2 Vol.% SO2 mixtures. T2 - 10th International Symposium on High-Temperature Corrosion and Protection of Materials CY - Online meeting DA - 28.03.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Effects of saline aquifer water on the corrosion behaviour of martensitic stainless steels during exposure to CO2 environment T2 - Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021 N2 - Immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 and X5CrNiCuNb16-4 at T=60 °C and ambient pressure and p=100 bar were performed for 700 h - 8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS-sites in the Northern-German-Basin. Main corrosion products are FeCO₃ and FeOOH. Highest surface corrosion rates at ambient pressure are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4. Corrosion rates at 100 bar (max. 0.01 mm/year for 42CrMo4, X20Cr13, X46Cr13) are generally lower than at ambient pressure (<0.01 mm/year for X35CrMo4, X5CrNiCuNb16-4). Heat treatment to martensitic microstructure offers good corrosion resistance. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - CCS KW - Corrosion KW - High alloyed steels PY - 2021 DO - https://doi.org/10.2139/ssrn.3812248 SP - 1 EP - 12 PB - SSRN CY - Rochester, NY AN - OPUS4-53140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Electric field distribution on ceramic samples during dielectric strength testing N2 - The dielectric breakdown strength of ceramics strongly depends on the test conditions. Thus, standardized test procedures and thorough documentation are indispensable. However, during dielectric strength testing the breakdown often occurs near the electrode edge or even outside the specified electrode area. This behavior is similarly observed for printed and cylindrical electrodes. The aim of the presented study was to calculate the electric field strength distribution in a ball-on-plate testing setup for metallized samples and to correlate the field distribution with the observed breakdown locations. Small misalignments in the test setup were also considered in the simulations. Furthermore, the field strength at the breakdown Location should be compared to the experimentally determined dielectric strength. Therefore, Finite Element Models of several test conditions with varying printed electrode areas and sample thicknesses were created and electrostatic calculations of the electric field Distribution were performed. The simulation results were compared to experimental data. Alumina (96 %) was used as test material. The calculations show that the electric field strength maxima match the experimentally observed locations of breakdown. Without any fitting of the model, the maximum calculated field strength is in reasonable agreement with the experimental dielectric strength. The FE analysis is a helpful tool to understand the observations in experimental dielectric strength testing. T2 - CERAMICS 2021 / 96th DKG Annual Meeting CY - Online Meeting DA - 19.04.2021 KW - Dielectric breakdown KW - Dielectric strength KW - Electric field strength KW - Ceramics PY - 2021 AN - OPUS4-52512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Croteau, Jean-Francois A1 - Pai Kulyadi, E. A1 - Agudo Jácome, Leonardo A1 - Kale, C. A1 - García-Tabarés Valdivieso, E. A1 - Perez Fontenla, A. T. A1 - Siu, D. A1 - Kang, D. A1 - Eisenlohr, P. A1 - Bieler, T. R. A1 - Solanki, K. N. A1 - Manzoni, Anna Maria A1 - Atieh, S. A1 - Balint, D. A1 - Hooper, P. A1 - Jacques, N. A1 - Cantergiani, E. T1 - Electro-hydraulic forming of SRF cavities: Effect of strain rate on niobium single crystals N2 - An investigation of the dislocation substructure and mechanical properties of high-purity niobium single crystals with different initial crystal orientations deformed in tension at strain rates of 10^{-4} to 10^3 s^{-1} is presented. Specimens were cut from a large grain niobium disk used for the manufacturing of SRF cavities. Different crystallographic tensile directions exhibited significantly different softening and hardening behaviors and elongation at fracture. Such anisotropy is reduced at high strain rates. Also, different dislocation substructures were observed with TEM at low and high strain rates. At low strain rates, dislocation cells with a high density of long dislocations were observed. At high strain rates, homogeneously distributed dislocations with a higher dislocation dipole density were observed. The relationship between the differences in dislocation substructures and mechanical properties at low and high strain rates and the potential effects on the superconducting properties are discussed. T2 - 2021 International Conference on RF Superconductivity (SRF'21) CY - Online meeting DA - 28.06.2021 KW - Dislocation substructure KW - Strain rate dependence KW - Transmission electron microscopy (TEM) PY - 2021 UR - https://indico.frib.msu.edu/event/38/attachments/158/1089/TUPCAV012_poster.pdf AN - OPUS4-54540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Falk, Florian A1 - Lehmusto, J. A1 - Sobol, Oded A1 - Pint, B. T1 - Elucidation of competitive oxidation/sulfidation reactions on binary ferritic alloys N2 - Ferritic-austenitic chromia-forming alloys are frequently used as boiler tubes and heat exchanger materials for fossil-,biomass, and co-fired power plants. In all applied environments several strongly corrosive gaseous species such as CO2, SO2, SO3, H2O, O2 exist, causing materials degradation by high-temperature corrosion. The elucidation of degradation mechanisms introduced by multiple gases is challenging due to the presence of different oxidizing agents contributing to the competing reactions for oxidation, sulfurization or carburization. The degradation processes can be divided into initial stages, a transitional stage and the further proceeding steady-state oxidation reaction. Especially the long-term steady-state oxidation and further materials’ life-time are strongly dependent on the initial stages. The adsorption and absorption of the reactive species at the alloy surface and the growing oxide in the initial reaction is further influenced by dissociation and re-reactions of the gas phase molecules. To understand these mechanisms from a fundamental point of view in more detail, dedicated experiments and advanced characterization techniques on various length scale need to be applied. Real-time approaches using highly energetic synchrotron X-ray diffraction showed a high potential to enlighten competitively mechanisms by following the corrosion reactions in-situ in the environment they occur. Despite various other thin film characterization techniques, time of flight secondary ion mass spectroscopy (ToF-SIMS) is a powerful tool to visualize light atoms or labeled isotopes enabling the Differentiation between different oxidizing species. It was especially shown to be applicable in challenging atmospheres containing KCl deposits or in CO/CO2/O2 environments. The present study analyses the competing oxidation/sulfidation process in a humid atmosphere on two ferritic alloys with 2 and 9 % in weight chromium by in situ energy dispersive X-ray diffraction (EDXRD) and comparative tube furnace exposure using S16O2 and H2 18O atmosphere. T2 - Conference on High Temperature Corrosion and Protection of Materials HTCPM 2021 CY - Online Meeting DA - 29.03.2021 KW - Oxidation KW - High Temperature Corrosion KW - Ferritic Alloys KW - SIMS KW - EDXRD PY - 2021 AN - OPUS4-52363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Le, Quynh-Hoa A1 - Roth, J. T1 - Entwicklung einer fraktographischen Symbolik N2 - Bei der Untersuchung von Bruchflächen werden zunächst Beobachtungen gemacht, d.h. makroskopische und mikroskopische Merkmale analysiert und in Bildern dokumentiert. Im zweiten Schritt werden anhand der gefundenen Merkmale Rissverlauf und Bruchmechanismen ermittelt. Abschließend sollen diese Ergebnisse in einem Bericht oder Gutachten zusammengefasst werden. Hierbei ist eine skizzenhafte Darstellung der fraktographischen Befunde hilfreich für das Verständnis des Lesers. Ein vorgefertigter fraktographischer Symbolsatz würde dies erheblich vereinfachen. Skizzen von fraktographischen Befunden sind in der Literatur recht häufig zu finden, z.B. in der VDI 3822 oder dem ASM Handbook Fractography, allerdings gibt es hierzu keine umfassende Systematik, wie sie z.B. aus der Meteorologie (Wetterkarten), Geographie (Landkarten, Seekarten) oder Geologie (Bodenkarten) seit langer Zeit bekannt sind. Deshalb wird hier der Versuch unternommen, einen Symbolsatz zu entwickeln und zur Verfügung zu stellen, mit dessen Hilfe fraktographische Befunde in eindeutiger und übersichtlicher Weise veranschaulicht werden können. Der fraktographische Symbolsatz ("Fracto Graphics") befindet sich in Entwicklung, ist offen zur Diskussion sowie für Verbesserungen. T2 - 55. Metallographie-Tagung CY - Online meeting DA - 29.9.2021 KW - Fraktographie KW - Symbolik KW - Schadensanalyse PY - 2021 AN - OPUS4-53433 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Entwicklung thermoelektrischer Multilayergeneratoren auf der Basis von Calciumcobaltit N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. N2 - Thermoelektrische Generatoren können zum „Energy harvesting“ für den autarken Betrieb von bspw. Sensoren eingesetzt werden. Eine interessante Alternative zu den herkömmlichen π-Typ Generatoren sind auf Grund der höheren Leistungsdichte und der guten Automatisierbarkeit thermoelektrische Multilayergeneratoren. Calciumcobaltit ist ein vielsprechendes oxidisches Thermoelektrika (p-Typ) mit stark anisotropen Eigenschaften. Die hier vorgestellte Studie zeigt die Entwicklung von texturierten Unileg-Multilayer-Generatoren mittels keramischer Multilayertechnologie. Calciumcobaltit wird durch Foliengießen und druckunterstützte Sinterung texturiert. Im Vergleich zur konventionellen Sinterung verbessert sich die Festigkeit um den Faktor 10. Die thermoelektrischen Eigenschaften können je nach verwendetem Druckniveau hinsichtlich maximalem Power Factor oder hinsichtlich maximalem Gütefaktor optimiert werden. Ein Glaskeramikkomposit wird als Isolationsmaterial mit hohem Volumenwiderstand und angepasstem Wärmeausdehnungskoeffizienten entwickelt. Der Unileg-Multilayer-Generator wird in einem Schritt co-gesintert. Die hergestellten Demonstratoren erreichen 80% der simulierten Output-Leistung. Diese Ergebnisse stellen den ersten Machbarkeitsnachweis für die Herstellung von co-gesinterten Multilayer-Generatoren aus texturiertem Calciumcobaltit mit hohem Power Factor und hoher Festigkeit dar. T2 - Seminar des Lehrstuhls für Funktionsmaterialien, Universität Bayreuth CY - Online meeting DA - 18.06.2021 KW - Thermoelektrischer Generator KW - Multilayertechnik KW - Energy harvesting PY - 2021 AN - OPUS4-52834 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kraus, David T1 - Ermüdungsverhalten von Glasfaser-Kunststoff-Verbunden unter thermomechanischer Beanspruchung T2 - BAM-Dissertationsreihe N2 - Die Werkstoffgruppe der Faser-Kunststoff-Verbunde (FKV) hat sich aufgrund ihrer hervorragenden Leichtbaueigenschaften unter anderem im Sportgerätebau, in der Luft- und Raumfahrt und in der Windenergieindustrie etabliert. Die so hergestellten Strukturen sind in der Regel nicht nur mechanischen Belastungen, sondern auch thermischen Lasten in einem breiten Temperaturspektrum ausgesetzt. Dennoch ist die Auswirkung des Temperatureinflusses bei einer Kombination von thermischer und mechanischer Last auf die Lebensdauer von Strukturen aus FKV bisher nur wenig untersucht. Im Rahmen dieser Arbeit wird der Einfluss von Temperaturen zwischen 213 K und 343 K auf einen Glasfaser-Epoxidharz-Verbund experimentell untersucht. Das Material wird in diesem Temperaturbereich eingehend charakterisiert: Es werden sowohl die thermomechanischen Eigenschaften von Faser- und Matrixwerkstoff als auch die des Verbundes ermittelt. In einem weiteren Schritt wird dann der Einfluss der Temperatur auf die Schädigungsentwicklung im quasi-statischen Lastfall sowie unter schwingender Ermüdungsbeanspruchung bei verschiedenen FKV-Mehrschichtverbunden analysiert. Basierend auf den experimentellen Daten wird ein Zusammenhang zwischen der Schädigung und der Anstrengung der Matrix innerhalb der Einzelschicht demonstriert. Die Matrixanstrengung wird mithilfe eines mikromechanischen Modells unter Berücksichtigung der thermomechanischen Eigenspannungen analytisch berechnet. Bei Querzugbeanspruchung kann gezeigt werden, dass eine Vorhersage der Schädigung in Abhängigkeit der Volumenänderungsenergie innerhalb der Matrix getroffen werden kann. Mithilfe des Konzepts der Matrixanstrengung ist eine Vorhersage der Lebensdauer des Werkstoffs unter schwingender Ermüdungsbeanspruchung in Abhängigkeit der Einsatztemperatur möglich. N2 - Due to their superior lightweight properties, fiber reinforced polymer (FRP) materials are well established in various fields, such as sports equipment, aerospace or wind energy structures. These structures are not only subjected to mechanical loads, but also to a broad spectrum of thermal environments. However, the impact of temperature on the fatigue life of thermomechanically loaded FRP structures is barely investigated to-date. In the scope of this work, the influence of temperatures in a range of 213 K to 343 K on a glass fiber reinforced epoxy polymer is experimentally examined. An extensive thermo-mechanical characterization of the static properties of the material is performed. The neat resin and Fiber material are investigated, as well as the composite. In addition, the impact of thermal loads on the damage evolution under quasi-static as well as cyclic fatigue loading is investigated for different multi-angle laminates. Based on the experimental data, a correlation is shown between damage and matrix effort of the unidirectional layer. The matrix effort is calculated according to a micromechanical model considering thermal residual stresses. Particularly under transverse loading, the damage Evolution can be predicted as a function of the dilatational strain energy of the matrix. Using the concept of the matrix effort presented in this work, a prediction of the fatigue life of the investigated material at different ambient temperature conditions can be performed. T3 - BAM Dissertationsreihe - 169 KW - Ermüdung KW - Faser-Kunststoff-Verbund KW - GFK KW - Schädigung KW - Thermomechanik KW - Fatigue KW - Composite KW - Glas fibre reinforced polymer KW - Damage KW - Thermomechanics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530253 SN - 1613-4249 VL - 169 SP - 1 EP - 164 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dub, S. A1 - Haftaoglu, Cetin A1 - Kindrachuk, Vitaliy T1 - Estimate of theoretical shear strength of C60 single crystal by nanoindentation JF - Journal of Materials Science N2 - The onset of plasticity in a single crystal C60 fullerite was investigated by nanoindentation on the (111) crystallographic plane. The transition from elastic to plastic deformation in a contact was observed as pop-in events on loading curves. The respective resolved shear stresses were computed for the octahedral slip systems ⟨011¯¯¯⟩{111}, supposing that their activation resulted in the onset of plasticity. A finite element analysis was applied, which reproduced the elastic loading until the first pop-in, using a realistic geometry of the Berkovich indenter blunt tip. The obtained estimate of the C60 theoretical shear strength was about 1/11 of the shear modulus on {111} planes. KW - Finite element analysis KW - Fullerite KW - Nanoindentation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523208 DO - https://doi.org/10.1007/s10853-021-05991-2 VL - 56 IS - 18 SP - 10905 EP - 10914 PB - Springer Nature AN - OPUS4-52320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Evaluating corrosion and corrosion fatigue behavior via laboratory testing techniques in highly corrosive CCS-environment T2 - Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021 N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO₂). T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2021 DO - https://doi.org/10.2139/ssrn.3812193 SP - 1 EP - 11 PB - SSRN CY - Rochester, NY AN - OPUS4-53142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Evaluation of the damaging effect of crop protection formulations on high density polyethylene using the Full Notch Creep Test JF - Polymer N2 - Four typical high-density polyethylene container materials were used to investigate damage or stress cracking behavior in contact with model liquids for crop protection products. These model liquids are established in German regulations for the approval of dangerous goods containers and consist of typical admixtures used for crop protection products but without biological active ingredients. This study is performed with the standardized method of Full Notch Creep Test, adapting the media temperature to 40 °C according to the usual conditions where these test liquids are applied. The two model liquids differ into a water-based solution and a composition based on different organic solvents which are absorbed by the material up to significant levels. Therefore, extensive sorption measurements are performed. The fracture surfaces obtained are analyzed in detail not only by light microscopy, but also by laser scanning microscopy as well as scanning electron microscopy. Influence of pre-saturation and applied stress are addressed by respective systematic series of experiments. KW - Polyethylene KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Fracture PY - 2021 DO - https://doi.org/10.1016/j.polymer.2021.123853 SN - 0032-3861 VL - 228 SP - 123853 PB - Elsevier Ltd. AN - OPUS4-52686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Mancias, J. A1 - Gan, B. A1 - Maaß, Robert T1 - Evidence of room-temperature shear-deformation in a Cu-Al intermetallic JF - Scripta Materialia N2 - Lamellar eutectics are known to evidence plastic shear in otherwise brittle intermetallics, if the lamella spacing is small enough. Here we pursue this idea of confined plasticity in intermetallics further and demonstrate room-temperature shear-deformation in a two-phase CuAl 2 -CuAl intermetallic nano- composite. The presence of a phase with a 3-fold symmetry is also revealed after deformation. Simula- tion of transmission electron microscopy images shows this to be monoclinic CuAl. These observations are made in the deformation zone underneath locations of nanoindents, of which the force-displacement curves exhibit an unusual response of continuously increasing pop-in sizes with load. KW - Nanoindentation KW - Intermetallic KW - Nano-composite KW - Shear bands KW - Plasticity PY - 2021 DO - https://doi.org/10.1016/j.scriptamat.2020.08.033 VL - 190 SP - 126 EP - 130 PB - Elsevier Ltd. AN - OPUS4-52455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Zerbst, Uwe T1 - Experimentelle Ermittlung zyklischer R-Kurven in additiv gefertigtem AISI 316L Stahl N2 - Diese Untersuchung beschäftigt sich mit der Charakterisierung von Kurzrisswachstum in mittels Laser-Pulverbett-Verschmelzen (LPBF - Laser Powder Bed Fusion) hergestelltem rostfreien austenitischen Stahl. Spezifischer wird die Ermittlung zyklischer R-Kurven untersucht. Diese beschreiben den Aufbau des Widerstands gegen Ermüdungsrisswachstum - d.h. des Schwellenwertes - aufgrund von Rissschließeffekten bei physikalisch kurzen Rissen. Mit Hilfe der zyklischen R-Kurven kann die Fähigkeit eines Bauteils, physikalisch kurze Risse zu arretieren, charakterisiert werden. Wir verfügen damit über eine Schnittstelle zwischen klassischer Ermüdung und Bruchmechanik. Das ist gerade auch für additiv gefertigte (AM – Additive Manufacturing) Materialien von Interesse. Diese weisen prozessintrinsische Defekte auf, die als Initiierungsstellen kurzer Ermüdungsrisse agieren. Im Rahmen der experimentellen Untersuchungen wurden zyklische R-Kurven für konventionellen und LPBF AISI-316L-Stahl ermittelt. Insbesondere wurde der Einfluss verschiedener Wärmebehandlungen (WB1: 450°C, WB2: 800°C und WB3: 900°C) auf das Wachstumsverhalten physikalisch kurzer Risse im LPBF-Material untersucht. Aufgrund hoher Eigenspannungen war die Ermittlung des Kurzrisswachstumsverhaltens bei WB1 nicht möglich. Für WB2 und WB3 ergaben sich sehr unterschiedliche zyklische R-Kurven. Untersuchungen der Eigenspannungen, der Bruchfläche (insbesondere der Rauheit) und der Mikrostruktur sollen die Ursachen für das unterschiedliche Verhalten erklären. Die Ergebnisse werden mit den Verhältnissen in konventionellem Material verglichen. T2 - Tagung des Arbeitskreises Bruchmechanik und Bauteilsicherheit CY - Online meeting DA - 18.02.2021 KW - Additive Manufacturing KW - Zyklische R-Kurve KW - Ermüdungsriss KW - L-PBF KW - 316L PY - 2021 AN - OPUS4-52250 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Trappe, Volker T1 - Failure Mechanisms of GFRP Scarf Joints under Tensile Load JF - Materials N2 - A potential repair alternative to restoring the mechanical properties of lightweight fiberreinforced polymer (FRP) structures is to locally patch these areas with scarf joints. The effects of such repair methods on the structural integrity, however, are still largely unknown. In this paper, the mechanical property restoration, failure mechanism, and influence of fiber orientation mismatch between parent and repair materials of 1:50 scarf joints are studied on monolithic glass fiber-reinforced polymer (GFRP) specimens under tensile load. Two different parent orientations of [-45/+45]2S and [0/90]2S are exemplarily examined, and control specimens are taken as a baseline for the tensile strength and stiffness property recovery assessment. Using a layer-wise stress analysis with finite element simulations conducted with ANSYS Composite PrepPost to support the experimental investigation, the fiber orientation with respect to load direction is shown to affect the critical regions and thereby failure mechanism of the scarf joint specimens. KW - Scarf joint KW - Glass fiber reinforced polymers KW - Failure mechanisms PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523952 DO - https://doi.org/10.3390/ma14071806 VL - 14 IS - 7 SP - 1806 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Krebber, Katerina T1 - Fiber Optic Sensors for SHM - From Laboratory to Industrial N2 - The paper highlights the research activities in Germany and Europe in the development of distributed fiber optic sensor for structural health monitoring (SHM) like the monitoring of geotechnical and civil infrastructures and presents selected results achieved within these projects. T2 - Conaendi & IEV 2021 CY - Online meeting DA - 09.03.2021 KW - Fiber KW - Optic KW - SHM PY - 2021 AN - OPUS4-52254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qu, R. A1 - Maaß, Robert A1 - Liu, Z. A1 - Tönnies, D. A1 - Tian, L. A1 - Ritchie, R. A1 - Zhang, Z. A1 - Volkert, A. T1 - Flaw-insentive fracture of a micrometer-sized brittle metallic glass JF - Acta Materialia N2 - Brittle materials, such as oxide glasses, are usually very sensitive to flaws, giving rise to a macroscopic fracture strength that is much lower than that predicted by theory. The same applies to metallic glasses (MGs), with the important difference that these glasses can exhibit certain plastic strain prior to catas- trophic failure. Here we consider the strongest metallic alloy known, a ternary Co 55 Ta 10 B 35 MG. We show that this macroscopically brittle glass is flaw-insensitive at the micrometer scale. This discovery emerges when testing pre-cracked specimens with self-similar geometries, where the fracture stress does not de- crease with increasing pre-crack size. The fracture toughness of this ultra-strong glassy alloy is further shown to increase with increasing sample size. Both these findings deviate from our classical under- standing of fracture mechanics, and are attributed to a transition from toughness-controlled to strength- controlled fracture below a critical sample size. KW - Metallic glass KW - Fracture toughness KW - Size effect KW - Small-scale PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117219 VL - 218 PB - Elsevier Ltd. AN - OPUS4-53097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants JF - Advanced Engineering Materials N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531227 DO - https://doi.org/10.1002/adem.202100445 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Mrkwitschka, Paul A1 - Moos, R. A1 - Rabe, Torsten T1 - Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators JF - Journal of the American Ceramic Society N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulationmaterial should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic Composite material adapted for multilayer generators fromcalciummanganate and Calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500◦C), a sintering temperature of 900◦C, and a high resistivity up to 800◦C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases. KW - Electrical insulators KW - Glass-ceramics KW - Multilayers KW - Thermal expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538898 DO - https://doi.org/10.1111/jace.18235 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley Online Library AN - OPUS4-53889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuchenbecker, Petra T1 - Granulometry of Nano Powders - a Challenge Especially for the Dispersion Process JF - cfi / Berichte der Deutschen Keramischen Gesellschaft N2 - The use of increasingly finer starting powders up to nanopowders can also be observed in the field of ceramics. Their advantages consist, for example, in their lower activation energy, an increase in strength or unique optical properties. However, handling and characterization of the powders are much more difficult. The main reason for this is the very high adhesive forces between the particles and between particles and other surfaces, too. Therefore, submicron and even more so nanoparticles tend to agglomerate and their separation into primary particles during sample preparation prior to particle sizing is of particular challenge. A representative measurement sample is only obtained when it no longer contains agglomerates. The evaluation of the dispersion process and a decision on whether it was successful thus increases in importance for the reliability of the measurement results of particle sizing. The presentation uses examples to show possible approaches and provides information on possible sources of error. It is shown that successful granulometric characterisation of fine powders requires both an improved dispersion technique and very often an effective combination of two or more measurement methods. KW - Agglomerates KW - Nano-powder KW - Dispersion process PY - 2021 SN - 0173-9913 VL - 98 IS - 2 SP - 47 EP - 54 PB - Göller Verlag GmbH CY - Baden-Baden AN - OPUS4-52504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - High temperature and low stress creep behavior of the refractory chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr N2 - The refractory chemically complex alloy (rCCA) AlMo0.5NbTa0.5TiZr, with a density of 7.4 g/cm3, shows a compressive ultimate strength of 772 MPa at 1000 °C, comparatively surpassing Ni-base and other rCCAs. Its dual-phase microstructure, with a high volume fraction (≈ 62%) of cuboidal and plate-like particles coherently embedded in a continuous matrix, resembles the well-known pattern of the γ/γ" in Ni-base superalloys. Its developers have thus implied that it could stand as structural alloy for high temperature (HT) applications. Here, we report the HT creep properties and the underlying microstructural changes of the rCCA AlMo0.5NbTa0.5TiZr to propose deformation and degradation micromecanisms for this regime. The material was produced by arc-melting and subsequently heat treated in argon: at 1400 °C for 24 h plus a hot isostatic pressure treatment at 1370 °C and 170 MPa for 4 h, with a cooling rate of 10 K/min. Miniaturized tensile specimens (≈ 28 x 7 x 2 mm) were cut and polished to a quality of 1 μm. Creep tests were conducted in vacuum in the respective temperature and stress range 800-1200 °C and 30-120 MPa. For observation, thin slices were extracted from the gauge length, away from the fracture surface, grinded to a thickness of 100 μm, and electropolished to electron transparency. The microstructure was observed on the electropolished specimens using scanning (S) as well as transmission (T) electron microscopy (EM). The Norton plot gives Norton exponents of about 3.1 and 3.2 for temperatures of 1000 and 1100 °C, respectively. Curiously, creep rate minima are very close for a stress level of 30. The starting microstructure reflects a macroscopically lean coarse grain structure and a microscopically fine-meshed basketweave structure with coherency dislocations only around coarsened particles usually close to subgrain boundaries. Results are discussed on the base of variations of this starting microstructure after interrupted and ruptured creep tests. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Creep behavior KW - Chemically complex alloy KW - Cow stress PY - 2021 AN - OPUS4-53388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Stephan-Scherb, Christiane A1 - Karafiludis, Stephanos A1 - Schneider, Mike A1 - Laplanche, Guillaume T1 - High temperature corrosion of high (HEA) and medium (MEA) entropy alloys N2 - The high-temperature corrosion behavior of the medium-entropy alloy Cr33Co33Ni33 (MEA) and the high-entropy alloy Fe20Cr20Co20Ni20Mn20 (HEA) in a mixed gas atmosphere of 10% H2O-2% O2 -0.5% SO2 + Ar as carrier gas [Vol.%] at 800 °C with duration times of t = 24h, 48h and 96h was investigated. Both alloys have a single-phase fcc microstructure. The oxidation kinetics of the HEA-CrMnFeCoNi roughly followed a linear rate law and a slow oxide growth was observable for the MEA-CrCoNi. The scale thickness of the corrosion layer in the quinary alloy increased with exposure time, while the scale thickness in the ternary alloy remained constant at around 1 µm. The MEA-CrCoNi developed a protective Cr2O3 layer with minor buckled parts. Co,Ni-chromite (Co,Ni)Cr2O4 was detected by XRD in minor amounts. The scale on HEA-CrMnFeCoNi displayed a triplex structure of a thin, continuous, inner Cr2O3 layer, a dense, intermediate Mn3O4 layer, and a thick, outer, porous layer consisting of Mn3O4 and MnSO4. Sulphides were only identified in the matrix of HEA-CrMnFeCoNi. Thermodynamic equilibrium calculations with FactSage (Log(S2) vs. Log(O2), ΔG of reactions) are in good agreement with these observations. The intense diffusion of Cr in the ternary alloy leads to an immediate formation of a protective Cr2O3 layer. The fast diffusion of Mn through the bulk HEA material and through the formed Cr2O3 layer compared to the other alloying elements is considered as the rate-limiting process. T2 - DMG Sektionstreffen Angewandte Mineralogie und Kristallographie CY - Online meeting DA - 25.02.2021 KW - Cr2O3 KW - High-Temperature Corrosion KW - HEA KW - MEA PY - 2021 AN - OPUS4-52164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja T1 - How flipped classroom teaching methods in first year studying succeed T2 - Proceedings of the HEAd’21 N2 - Flipping the classroom is a method to let students study on their own and then take time to discuss their questions and do extended hands-on lectures or exercises in class – or in the case of the covid-19 pandemic during plenary online sessions. First year mechanical engineering students use different teaching materials (mainly lecture videos, lightboard videos and micromodule lectures) to study from a distance and comprehend the principle underlying science in theory. Then the online plenary lectures offer the opportunity to apply their knowledge and transfer different scientific aspects of the course to get the bigger picture. Exercises, worked solutions, selfassessed tests and peer-instruction during present time help students to check on their learning progress. However, the self-study periods and (online) plenary sessions need to be guided carefully. To meet the course learning outcome and overcome the diversity of a first year class various practical leads have to be fulfilled to turn flipped classroom teaching into success. T2 - 7th International Conference on Higher Education Advances (HEAd’21) CY - Valencia, Spain DA - 20.06.2021 KW - Inverted classroom KW - Flipped classroom KW - Online teaching KW - Lecture videos KW - First year students PY - 2021 DO - https://doi.org/10.4995/HEAd21.2021.12792 SP - 1211 EP - 1219 AN - OPUS4-54156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - I n situ monitoring of growing oxidation of the chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime using synchrotron radiation Preliminary results N2 - The chemically complex alloys (CCAs) that contain mostly refractory elements (rCCAs), may be highly resistant to heat and load, which makes them attractive candidates for use at extremely high temperatures associated with many technological applications, e.g. aeroengine turbines. However, the field of CCAs, especially their resistance in harsh (oxidative) and hot environment is still young and not much experimental evidence for the understanding mechanisms in this regime is available, which the proposed study addresses. For safe use in structural applications, in addition to their mechanical performance, the environmental resistance of this alloy is also critical. Surface degradation can significantly decrease the mechanical resistance during high temperature exposure, leading to premature failure. The AlMo0.5NbTa0.5TiZr rCCA only contains Al as a protection candidate and it is composed of a coherent B2/bcc nanoscopic cube-on-cube interweave and an hexagonal phase. The evaluation of the oxidation process in the AlMo0.5NbTa0.5TiZr rCCA in the heat-treated state has not been assessed yet. The proposed study focusses on a deeper understanding of the formation mechanism and growth kinetics of oxides at high temperature in the AlMo0.5NbTa0.5TiZr rCCA using synchrotron radiation. Due to the envisaged high temperature structural applications, the alloy is evaluated in an oxidation environment specifically between 800°C and 1000°C. T2 - Large scale facility-based techniques SPP meeting CY - Online meeting DA - 02.11.2021 KW - Refractory chemically complex alloys KW - Oxidation behavior KW - Microstructural analysis KW - Synchrotron radiation PY - 2021 AN - OPUS4-54383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja T1 - Improving Learning Outcome for GSL (German as a Second Language) Students in a Blended Learning Cumulative Assessment Material Science Course JF - International Journal of e-Education, e-Business, e-Management and e-Learning N2 - First year students especially with migration background and language deficiencies rate material science in mechanical engineering as one of the fundamental courses with high work load and necessity of language skills due to the descriptive nature of the course. Therefore a blended learning course structure using based on inverted classroom teaching scenarios was established. Heart of the self-study period are visualizing peer-to-peer lecture films supported by micro-lectures along with various online teaching materials. Although students with migration background generally scored lower in tests due to the lack of language skills improved learning outcomes are demonstrated in high quality class discussions and in overall understanding. This paper introduces the learning structure and graded activities, evaluates the course and compares results of native German-speaking students to those of students with migration background. KW - Portfolio KW - Diversity KW - Blended learning KW - Inverted classroom KW - Lecture films PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541557 DO - https://doi.org/10.17706/ijeeee.2021.11.3.93-100 SN - 2010-3654 VL - 11 IS - 3 SP - 93 EP - 100 AN - OPUS4-54155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo T1 - Incipient Oxidation and Deformation Mechanisms of the Chemically Complex Alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime N2 - The development of refractory chemically complex alloys (rCCAs) has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy. It was named as “high entropy superalloy” as it resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. However, the continuous phase in Ni Base alloys is an fcc solution and the cuboidal γ’ precipitates present the L12 intermetallic structure. On the opposite, this CCA has a reversed microstructure where the continuous matrix is formed by an ordered B2 phase which contains cuboidal precipitates of a disordered BCC phase. Some of the most importat results of microstructural analysis, creep test and oxidation are presented in the following work. The as-cast sample shows a bcc/B2 structure with hexagonal phase precipitates in amorphous state whereas the annealed sample also shows a combination of these phases but with larger bcc precipitates and a fully crystallized hexagonal intermetallic. It was found that porosity was higher in the annealed samples (Kinkerdall effect) and the hardness was higher in samples with faster cooling rate due smaller nanostructure. Norton plots show both diffusion and dislocation controlled deformation, and it was found different kinetics between dry and humid air oxidation with the presence of spallation. T2 - CONVEMI 2021 (Venezuelan congress of microscopy and microanalysis) CY - Online meeting DA - 29.10.2021 KW - High entropy superalloys KW - Mechanical properties KW - Oxidation behavior KW - Microstructural analysis PY - 2021 AN - OPUS4-54382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - Incorporating elasticity into CALPHAD-informed density-based grain boundary phase diagrams reveals segregation transition in Al-Cu and Al-Cu-Mg alloys JF - Acta Materialia N2 - The phase-like behavior of grain boundaries (GBs), recently evidenced in several materials, is opening up new possibilities in the design of alloy microstructures. In this context, GB phase diagrams are contributing to a predictive description of GB segregation and (interfacial) phase changes. The influence of chemo-mechanical solute-GB interactions on the GB phase diagram remains elusive so far. This is particularly important for multi-component alloys where the elastic interactions among solute atoms, of various sizes and bonding energies, can prevail, governing a complex co-segregation phenomenon. Recently, we developed a density-based model for GB thermodynamics that intrinsically accounts for GB elasticity in pure elements. In this work, we incorporate the homogeneous and heterogeneous elastic energies associated with the solutes into the density-based framework. We derive the multi-component homogeneous elastic energy by generalizing the continuum misfitting sphere model and extend it for GBs. The density-based free energy functional directly uses bulk CALPHAD thermodynamic data. The model is applied to binary and ternary Al alloys. We reveal that the elastic energy can profoundly affect the GB solubility and segregation behavior, leading to Cu segregation in otherwise Cu-depleted Al GBs. Consequently, GB segregation transition, i.e., a jump in the GB segregation as a function of alloy composition, is revealed in Al-Cu and Al-Cu-Mg alloy systems with implications for subsequent GB precipitation in these alloys. CALPHAD-informed elasticity-incorporated GB phase diagrams enable addressing a broader range of GB phenomena in engineering multi-component alloys. KW - Grain boundary thermodynamics KW - Density-based model KW - Al alloys KW - Grain boundary phase diagram KW - CALPHAD KW - Elastic energy PY - 2021 DO - https://doi.org/10.1016/j.commatsci.2021.110717 VL - 199 SP - 110717 PB - Elsevier B.V. AN - OPUS4-53058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haas, S. A1 - Manzoni, Anna Maria A1 - Holzinger, M. A1 - Glatzel, U. T1 - Influence of high melting elements on microstructure, tensile strength and creep resistance of the compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 JF - Materials chemistry and physics N2 - Due to its matrix/γ′ structure, the compositionally complex alloy (CCA) Al10Co25Cr8Fe15Ni36Ti6 has excellent properties that fulfill the requirements for a high-temperature material. This base alloy is alloyed with small amounts of high melting elements to a further improvement of its properties, which results in different shapes, fractions and sizes of the two phases γ′ and Heusler after various homogenization and annealing steps. By correlating this microstructure with time independent and dependent mechanical properties, conclusions can be drawn about the effects of the individual phases. The needle-shaped Heusler-phase leads to bad mechanical behavior if its phase fraction is too high. A fraction below 3 vol% is not critical in tensile tests, but it reduces the creep resistance compared to a purely two-phase matrix/γ′-alloy. Sharp-edged cubic γ′-particles and a coarse Heusler-phase without sharp edges in case of the base alloy with 0.5 at.% hafnium lead to the best tensile and creep properties in the high temperature range. At 750 °C, the Hf-containing alloy clearly outperforms two commercially used alloys in the targeted area of application when it comes to creep resistance. KW - High entropy alloy KW - Creep KW - Microstructure PY - 2021 DO - https://doi.org/10.1016/j.matchemphys.2021.125163 SN - 0254-0584 VL - 274 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-53175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kang, M. A1 - Czasny, M. A1 - Kober, D. A1 - Reschetnikow, A. A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Gurlo, A. T1 - Influence of mica particle content in composites for high voltage applications produced by additive manufacturing and mold casting N2 - The insulation system of high voltage electrical devices like generators and electrical motors has to withstand thermal, electrical, ambient and mechanical influences (TEAM) during operation. Especially the dielectric properties have to satisfy the requirements also under elevated temperatures and extreme environments. To provide this high quality, the conventional fabrication process uses partly manually applied insulation tapes combined with a cost-intensive and under safety concerns at least problematic vacuum pressure impregnation step (VPI). In order to reduce process costs by increasing the degree of automation and avoiding the VPI process, additively manufactured (AM) insulations were studied. This study focuses on the fabrication of ceramic/polymer compounds via AM technique. The AM technology used a rotating screw extrusion print head with air pressure to supply the paste. Plate-like samples with dimensions of 55 mm x 55 mm x1mm thickness were produced. This work focuses on the homogeneously high viscous paste with 12.5 to 50 volume % ratio of filler particles. Three types of mica powders as ceramic filler materials with different particle sizes from micro to mm scale were evaluated. The controlled volume % ratio of particles affects the paste viscosity which enables stacking of paste layers with a viscosity close to clay pastes. The mixed pastes were cured by heating and UV light to increase mechanical properties. A TG/DTA was performed, and electrical properties were investigated. First experiments with respect to the dielectric properties such as volume resistance, permittivity and dielectric strength revealed promising results and the possibility to use AM techniques for the fabrication of high voltage insulations for electrical machines. T2 - MaterialsWeek 2021 CY - Online meeting DA - 07.09.2021 KW - HV-Insulation KW - Polymer-Ceramic-Composite KW - Additive manufacturing PY - 2021 AN - OPUS4-54368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Influence of molecular orientation on the environmental stress cracking resistance N2 - Molecular orientation has a significant effect on the material properties of polymers. Preferential orientation of the microstructure (polymer chains or crystallites) in a specific direction or plane often enhances the material properties, especially if the high-strength covalent bonds are primarily exposed to loads instead of the weaker van der Waals bonds. However, the orientation-dependent microstructure and its mechanical behavior is in general already well understood by many scientific studies [1-3]. Isotropic materials are frequently required for an intrinsic material characterization without prevailing processing-induced properties, as is the case for Full Notch Creep Test (FNCT) [4] addressing environmental stress cracking (ESC) in high-density polyethylene (PE-HD) [5, 6]. Since ESC is one of the major limiting issues for long-term performance of PE-HD pipes and containers [7], which in contrast have a production-related preferential orientated microstructure due to extrusion or extrusion blow molding, it is important to additionally investigate the ESC resistance of such anisotropic microstructure. Investigations of the slow crack growth (SCG) with respect to the molecular orientation generally obtain a factor of 1.2 up to 4.7 between crack growth perpendicular to the extrusion direction and crack growth parallel to the extrusion direction 8. Based on FNCT investigations with an aqueous detergent solution as environmental medium, hot pressed sheets with isotropic morphology are compared with extruded sheets from which specimens with different orientation angles are taken. However, the time to failure obtained by FNCT is also significantly influenced by the different cooling conditions under which the final morphology is formed. The tendency of the specimen to fail due to ESC is investigated as a function of environmental medium temperature. For a more detailed analysis of the affecting parameters in the manufacturing process, the ESC resistance is discussed considering the differences in crystallinity as revealed by thermal analysis. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - Orientation-dependent microstructure KW - High-density polyethylene KW - Full Notch Creep Test PY - 2021 AN - OPUS4-53399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Muth, Thilo A1 - Portella, Pedro Dolabella T1 - Interconnecting data repositories: The Platform MaterialDigital (BMBF) N2 - Presentation of the Platform MaterialDigital. Presentation of the needs and challenges in materials science and engineering. T2 - 3rd EMMC International Workshop - EMMC CY - Online meeting DA - 02.03.2021 KW - Digitization KW - Standardization KW - Ontology PY - 2021 AN - OPUS4-52247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - Interfacial Spinodals N2 - Despite their finite spatial extent, interfaces can have profound impacts on microstructure properties. This is because of their distinct phase-like properties distinguishing them from the adjacent homogeneous bulk structure. When noticed by solute atoms, interfaces can experience their own chemical phase changes. In this talk, we investigate the constrained states of chemically decomposed phases at interfaces. A density-based theory of interfaces is proposed to describe the confined chemical decomposition at general grain boundaries. Here the grain boundary is viewed as a lesser dense, defected structure with reference to the corresponding bulk structure. Using this picture, the thermodynamic origins of interfacial spinodal phenomena are revealed. We also show that transient interfacial spinodals can be activated over a large alloy composition range, enabling kinetic engineering of interfacial chemistry. T2 - TMS 2021 CY - Online meeting DA - 15.03.2021 KW - Microstrucrue Design KW - Spinodal Decomposition KW - Interfacial Spinodal PY - 2021 AN - OPUS4-52338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Finn, Monika A1 - Künecke, Georgia A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Leistner, C. A1 - Petrushin, N. A1 - Svetlov, I. T1 - Investigation of Elastic Properties of the Single-Crystal Nickel-Base Superalloy CMSX-4 in the Temperature Interval between Room Temperature and 1300 °C JF - Crystals N2 - The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade material in gas turbines were investigated by the sonic resonance method in the temperature interval between room temperature and 1300 °C. Elastic constants at such high temperatures are needed to model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as well as during technical accidents which may happen in service (overheating). High reliability of the results was achieved using specimens of different crystallographic orientations, exciting various vibration modes as well as precise measurement of the material density and thermal Expansion required for modeling the resonance frequencies by finite element method. Combining the results measured in this work and literature data the elastic constants of the gamma and gamma' phases were predicted. This prediction was supported by measurement of the temperature dependence of the gamma'fraction. All data obtained in this work are given in numerical or analytical forms and can be easily used for different scientific and engineering calculations. KW - Nickel-base superalloys KW - Single-crystals KW - Characterization KW - Elastic constants PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520972 DO - https://doi.org/10.3390/cryst11020152 VL - 11 IS - 2 SP - 152 PB - MDPI AN - OPUS4-52097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons JF - Journal of Microscopy N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10−3–10-2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 DO - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons JF - Journal of Microscopy N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10−3–10−2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 DO - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Lei A1 - Hoyt, J. J. T1 - Layering misalignment and negative temperature dependence of interfacial free energy of B2-liquid interfaces in a glass forming system JF - Acta Materialia N2 - From molecular dynamics simulations and the capillary fluctuation method, the solid-liquid interfacial free energy has been computed for the B2-liquid interface in the Cu-Zr system. Consistent with previous results for the FCC-liquid interface in Cu-Zr and Al-Sm but atypical of most alloys, was found to increase as the temperature is lowered. In addition, the temperature dependence was obtained for model Lennard-Jones B2-liquid alloys. In all cases the unusual temperature dependence of is correlated with an atomic structure of the interfacial region characterized by a misalignment of the number density peaks between solvents and solutes. In cases where the number density peaks are aligned, the typical temperature dependence is observed. The results are discussed in terms of the Gibbs theory of the thermodynamics of interfaces. It is proposed that the unique interfacial structure and the atypical temperature dependence of are hallmarks of an easy glass forming alloy. KW - Atomistic simulations KW - Interfacial free energy KW - Layering misalignment KW - Glass forming PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117259 SN - 1359-6454 VL - 219 SP - 117259 PB - Elsevier Ltd. AN - OPUS4-53650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Nofz, Marianne A1 - Hemmleb, M T1 - Licht- und Elektronenoptische 3D-Verfahren zur Analyse von Bruchflächen N2 - Die Analyse von Bruchflächen wird in der Schadensanalyse meist auf der Basis von Erfahrungswissen vorgenommen, welches aus vorliegenden Untersuchungen, eigenen Vergleichsversuchen und aus der Literatur stammt. Durch Vergleiche mit bereits vorliegenden Bildern werden qualitativ Bruchmechanismen ermittelt. Grundlage sind zumeist zweidimensionale Bilder aus licht- und elekt-ronenoptischen Verfahren. Quantitative Aussagen beziehen sich bislang beispielsweise auf makroskopische Anteile von Bruchmechanismen oder die Ausmessung von Schwingstreifen. In jüngerer Zeit gibt es vermehrt Ansätze, Computer-Algorithmen einzusetzen, die in der Lage sind, unterschiedlich strukturierte Bruchmerkmale zu finden und zu klassifizieren. Im hier vorgestellten IGF-Vorhaben „iFrakto“, IGF Vorhaben Nr.: 21477 N, werden licht- und elektronenoptisch Topographie-Bilder erzeugt und die gewonnenen 3D-Informationen zusammen mit den klassischen 2D-Bildern ausgewertet. T2 - Treffen der AG Fraktographie im Gemeinschaftsausschuss Rasterelektronenmikroskopie in der Materialprüfung CY - Online meeting DA - 19.11.2021 KW - 3D REM KW - Fraktographie KW - Bruchflächen PY - 2021 UR - https://dgm.inventum.de/widget/preview/45d8c33d-622b-43e2-8459-ba783394a723/611d133ebdac0611d133ebdac1 AN - OPUS4-53800 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Rabe, Torsten T1 - Limits of computer tomography aided characterization of different types of porous ceramic materials N2 - Ceramics with open porosity are attractive materials in many fields of applications covering medicine, catalysis, and filtration. Manifold technologies to produce porous ceramics are available, e.g. foaming and replica processes, resulting in various microstructures. Development and manufacturing of new materials is accelerating, while crucial characterization is becoming increasingly difficult and conventional measurements lack the desired speed. Computed tomography (CT) offers the possibility to three-dimensionally characterize entire samples with minimal sample preparation, while its main advantage is that it is non-destructive. Still, the assessment of quantitative results from CT measurements is not trivial. The poster presents CT characterizations of newly developed as well as commercially available openly porous ceramic samples. Properties such as porosity, permeability or pore characteristics were measured conventionally and compared to results calculated from CT-measurements using the commercial software VG StudioMax. The determined differences between measured and calculated values are presented and application areas as well as limits of the CT characterization are evaluated. T2 - Jahrestagung der Deutschen keramischen Gesellschaft 2021 CY - Online Meeting DA - 19.04.2021 KW - Ceramic KW - Porosity PY - 2021 AN - OPUS4-52724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing JF - Open Ceramics N2 - In additive manufacturing the powder bed based processes binder jetting and powder bed fusion are increasingly used also for the production of ceramics. Final part properties depend to a high percentage on the powder bed density. Therefore, the aim is to use the best combination of powder deposition method and powder which leads to a high packing of the particles. The influence of flowability, powder properties and deposition process on the powder bed density is discussed and the different deposition processes including slurry-based ones are reviewed. It turns out that powder bed density reached by slurry-based layer deposition exceeds conventional powder deposition, however, layer drying and depowdering are extra steps or more time-consuming for the slurry route. Depending on the material properties needed the most suitable process for the part has to be selected. KW - Additive Manufacturing KW - Powder-based processes KW - Powder bed density PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534992 DO - https://doi.org/10.1016/j.oceram.2021.100191 VL - 8 SP - 100191 PB - Elsevier Ltd. AN - OPUS4-53499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Walzel, S. A1 - Chi, J. A1 - Lüchtenborg, J. T1 - Making Binder Jetting Really Work for Technical Ceramics - Additive Manufacturing of Technical Ceramics JF - Ceramic Applications N2 - As an alternative shaping method to the traditionally used processes, additive manufacturing (AM) can produce economical ceramic components in small lot sizes and/or with complex geometries. Powder-based additive manufacturing processes like binder jetting are popular in the field of metal AM. One reason is the increased productivity compared to other AM technologies. For ceramic materials, powder-based AM technologies result in porous ceramic parts, provided they are not infiltrated. CerAMing GmbH unites the advantages of powder-based processes with the production of dense ceramic by means of the Layerwise Slurry Deposition. By using a suspension, a high packing density of the powder bed is achieved which leads to high green body densities. Due to this advantage the approach overcomes the problems of other powder-based AM technologies. Furthermore, a very economical debinding time allows the production of parts with high wall thicknesses. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise Slurry Deposition KW - Lithography-based technologies KW - Technical Ceramics PY - 2021 SP - 49 EP - 52 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-52948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Material development for oxide multilayer generators N2 - Thermoelectric generators can be used for energy harvesting by directly transforming a temperature gradient into a voltage. Multilayer generators based on low-temperature co-fired ceramics technology (LTCC) are an interesting alternative to conventional π-type generators. They exhibit several advantages like high filling factor, possibility of texturing, co-firing of all materials in one single-step, and reduction of production costs due to the high possible degree of automation. Pressure-assisted sintering enables the theoretical possibility of co-firing two promising oxide thermoelectric materials: Ca3Co4O9 (p-type) and CaMnO3 (n-type). Due to the large difference in sintering temperature (300 K) the process is very challenging. In this work we show the material development of Ca3Co4O9, CaMnO3, insulation and metallization for multilayer generators co-fired under pressure at 900 °C. The materials are tailored regarding their sintering behavior, electrical performance and coefficients of thermal expansion. Different generator designs (unileg and pn-type) were fabricated and analyzed regarding crack formation, interaction layers and thermoelectric performance. Simulated stresses during cooling in the multilayers are compared with actual crack formation for different sintering conditions. This study shows that a lower pressure level and a lower level of complexity are beneficial for co-firing and performance. T2 - 45th International Conference and Expo on Advanced Ceramics and Composites (ICACC 2021 Virtual) CY - Online meeting DA - 08.02.2021 KW - Thermoelectrics KW - Multilayer PY - 2021 AN - OPUS4-52462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blank, Robin A1 - Nitschke, Heike A1 - Saliwan Neumann, Romeo A1 - Kranzmann, Axel T1 - Materialographic Preparation of Salt JF - Praktische Metallographie N2 - Molten salt containing systems gain in importance for sustainable energy use and production. For research and development, interactions of molten salts with potential container materials are of major interest. This article introduces preparation procedures to display an intact metal and salt microstructure and their interface using light optical microscopy and scanning electron microscopy. The exemplary material combination is the ternary salt mixture NaCl-KCl-MgCl2 and the low alloyed steel 1.4901 (T92) with a maximum service temperature of 550 °C. These are potential elements/materials for use in latent heat thermal energy storages. KW - Molten salt KW - Corrosion KW - Steel KW - Aging KW - Dry preparation PY - 2021 DO - https://doi.org/10.1515/pm-2022-0058 VL - 59 IS - 10 SP - 628 EP - 640 PB - De Gruyter AN - OPUS4-56048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Ávila, Luis A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study JF - Materials Science and Engineering: A N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited near full density and the detected defects were spherical. Furthermore, the residual stresses in the loading direction were between −74 ± 24 MPa and 137 ± 20 MPa, and the EBSD measurements showed a preferential ⟨110⟩ orientation parallel to the build direction. A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. KW - Mechanical anisotropy KW - Residual stress KW - Crystal plasticity KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511719 DO - https://doi.org/10.1016/j.msea.2020.140154 SN - 0921-5093 VL - 799 SP - 140154 PB - Elsevier B.V. AN - OPUS4-51171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of LPBF 316L: a modeling approach N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations relative to the build plate. Dynamic Young's modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography, and texture analysis with electron backscatter diffraction (EBSD). A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 20.04.2021 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2021 AN - OPUS4-52603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert A1 - Derlet, P. T1 - Micro-plasticity in a fragile model binary glass JF - Acta Materialia N2 - Atomistic deformation simulations in the nominally elastic regime are performed for a model binary glass with strain rates as low as 10 4 /s (corresponding to 0.01 shear strain per 1 μs). A strain rate dependent elastic softening due to a micro-plasticity is observed, which is mediated by thermally-activated localized structural transformations (LSEs). A closer inspection of the atomic-scale structure indicates the material response is distinctly different for two types of local atomic environments. A system spanning iscosahe- drally coordinated substructure responds purely elastically, whereas the remaining substructure admits both elastic and microplastic evolution. This leads to a heterogeneous internal stress distribution which, upon unloading, results in negative creep and complete residual-strain recovery. A detailed structural analysis in terms of local stress, atomic displacement, and SU(2) local bonding topology shows such mi- croscopic processes can result in large changes in local stress and are more likely to occur in geomet- rically frustrated regions characterized by higher free volume and softer elastic stiffness. The thermally- activated LSE activity also mediates structural relaxation, and in this way should be distinguished from stress-driven shear transformation activity which only rejuvenates glass structure. The frequency of LSE activity, and therefore the amount of micro-plasticity, is found to be related to the degree to which the glassy state is relaxed. These insights shed atomistic light onto the structural origins that may govern re- cent experimental observations of significant structural evolution in response to elastic loading protocols. KW - Molecular dynamics KW - Bulk metallic glasses KW - Plasticity KW - Residual strains PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523782 DO - https://doi.org/10.1016/j.actamat.2021.116771 VL - 209 SP - 116771 PB - Elsevier Ltd. AN - OPUS4-52378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructural evolution of Fe-26Al-4Mo-0.5Ti-1B with varying wall thicknesses N2 - With an increasing demand in more efficient fuel consumption to reduce CO2 emissions, weight reductions in high-temperature materials at affordable costs gain increasing attention. One potential candidate is the intermetallic material class of iron aluminides, combining the advantages in mass savings, high temperature performance and recyclability of resources. The alloy Fe-26Al-4Mo-0.5Ti-1B was selected to study the microstructural features evolving from two casting processes, five wall thicknesses and three final conditions. Conclusions are drawn upon the correlations of processing variables, grain sizes and hardness. T2 - DGM Fachausschuss "Intermetallische Phasen" CY - Online meeting DA - 09.02.2021 KW - Intermetallics KW - Iron aluminides KW - Fe-Al alloys KW - Wall thickness KW - Microstructure PY - 2021 AN - OPUS4-52288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Microstructural signatures of dislocation avalanches in a high-entropy alloy JF - Physical review materials N2 - Here, we trace in situ the slip-line formation and morphological signature of dislocation avalanches in a highentropy alloy with the aim of revealing their microstructural degree of localization. Correlating the intermittent microplastic events with their corresponding slip-line patterns allows defining two main event types, one of which is linked to the formation of new slip lines, whereas the other one involves reactivation of already existing slip lines. The formation of new slip lines reveals statistically larger and faster avalanches. The opposite tendency is seen for avalanches involving reactivation of already existing slip lines. The combination of both these types of events represents the highest degree of spatial avalanche delocalization that spans the entire sample, forming a group of events that determine the truncation length scale of the truncated power-law scaling. These observations link the statistics of dislocation avalanches to a microstructural observable. KW - High-entropy alloy KW - Dislocation avalanches PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.043604 SN - 2475-9953 VL - 5 IS - 4 SP - 3604 PB - American Physical Society CY - College Park, MD AN - OPUS4-52458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abboud, M. A1 - Motallebzadeh, A. A1 - Duygulu, O. A1 - Maaß, Robert A1 - Özerinc, S. T1 - Microstructure and nanomechanical behavior of sputtered CuNb thin films JF - Intermetallics N2 - We report on the mechanical properties of Cu–Nb alloys produced by combinatorial magnetron sputtering. Depending on the composition, the microstructure is either fully amorphous (~30–65 at.% Cu), a dispersion of Cu crystallites in an amorphous matrix (~70 at.%), or a dominant crystalline phase with separated nanoscale amorphous zones (~80 at.% Cu). Nanomechanical probing of the different microstructures reveals that the hardness of the fully amorphous alloy is much higher than a rule of mixture would predict. We further demonstrate a remarkable tunability of the resistance to plastic flow, ranging from ca. 9 GPa in the amorphous regime to ca. 2 GPa in the fully crystalline regime. We rationalize these findings based on fundamental structural considerations, thereby highlighting the vast structure-property design space that this otherwise immiscible binary alloy provides. KW - Deposition microstructure KW - Metallic glasses KW - Thin films KW - Mechanical properties KW - Nanocrystalline structure PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107249 SN - 0966-9795 VL - 136 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructure-Property-Correlation of a Mo-Ti-B alloyed iron aluminide N2 - Iron aluminides depict a sustainable and light-weight material class which could be employed in many applications requiring high strength at intermediate to high temperatures. According to first results, the alloy Fe-26Al-4Mo-0.5Ti-1B surpasses conventional materials in wet corrosion resistance and creep resistance up to 650 °C. For these reasons, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated to transfer these findings into a standardised materials dataset and to derive best practices for processing. In the first place, a set of different microstructures adjusted by varying casting methods, wall thicknesses and heat treatments was investigated and correlated with hardness on macro and micro scale. Correlations were drawn between solidification rates and resulting grain sizes and hardness. The effect of vacancy hardening was only verified for wall thickness as low as 2.5 mm. Moreover, a common decrease of macrohardness after a heat treatment at 1000 °C for 100 h was observed irrespective of casting process or wall thickness. This effect was linked with an unexpected decrease of the complex boride phase fraction which acts as a hardening phase. T2 - Intermetallics 2021 CY - Bad Staffelstein, Germany DA - 04.10.2021 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Heat treatment KW - Wall thickness KW - Centrifugal casting KW - Die casting KW - Investment casting KW - Microstructure KW - Hardness KW - Complex borides PY - 2021 AN - OPUS4-53617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick T1 - Modeling of the cooling behavior of thermoelectric multilayers N2 - Multilayered designs are an attractive approach towards cost-effective manufacturing of thermoelectric generators. Therefore, efforts are being made to co-fire two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, ceramic tapes, multilayer technology, and pressure-assisted sintering (PAS) were used. A major challenge for the PAS of low-sintered calcium manganate was cracking during cooling. A relationship between the properties of the release tape used during PAS and the cracking behavior was experimentally observed. To understand the origin of failure, reaction layers in the multilayer were analyzed and thermal stresses during cooling were estimated by finite element (FE) simulations. Thermal expansion, elastic properties, and biaxial strength of the thermoelectric oxides and selected reaction layers were determined on separately prepared bulk samples. The analysis showed that the reaction layers were not the cause for cracking of calcium manganate. Using the FE model, thermal stresses in different manganate multilayer designs with varying properties of the release tape were studied. The FEM study indicated, and a validation experiment proved that the thickness of the release tape has the main effect on thermal stresses during cooling in separately sintered calcium manganate. T2 - Keramik 2021 / Ceramics 2021 CY - Online Meeting DA - 19.04.2021 KW - Fem KW - Thermoelectric KW - Pressure assisted sintering PY - 2021 AN - OPUS4-52489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Nadammal, Naresh T1 - Monitoring additive manufacturing N2 - Additive manufacturing (AM) processes allow a high level of freedom in designing and producing components for complex structures. They offer the possibility of a significant reduction of the process chain. However, the large number of process parameters influence the structure and the behavior of AM parts. A thorough understanding of the interdependent mechanisms is necessary for the reliable design and production of safe AM parts. In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - Conaendi&IEV 2021 CY - Online meeting DA - 10.03.2021 KW - Additive Fertigung PY - 2021 AN - OPUS4-52241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Bock, Robert A1 - Günzel, Stephan A1 - Gesell, Stephan T1 - Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service T2 - International Conference on Hydrogen Proceedings Safety N2 - For achieving Net Zero-aims hydrogen is an indispensable component, probably the main component. For the usage of hydrogen, a wide acceptance is necessary, which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing, which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13. T2 - 9th International Conference on Hydrogen Safety CY - Online meeting DA - 21.09.2021 KW - Hydrogen KW - Burst test KW - Composite pressure vessels KW - Net zero KW - Monte-Carlo-Analysis PY - 2021 SP - 133 EP - 146 PB - IGEM AN - OPUS4-55668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Novel insights into high temperature corrosion phenomena by advanced X-ray methods N2 - A variety of materials of technological interest change their properties through contact with reactive media. Solid-gas reactions lead to a variety of reaction products on the surfaces and internal interfaces. The observation of nucleation and growth processes in the environment where they occur (in situ) from a chemical-structural perspective is especially challenging for aggressive atmospheres. The talk presents innovative approaches to study corrosion mechanisms using advanced X-ray methods. Using energy dispersive X-ray diffraction and X-ray absorption spectroscopy in different tailor made environmental reaction chambers, valuable insights into high temperature oxidation and sulfidation processes were gained. Fe-based alloys were exposed to hot and reactive atmospheres containing gases like SO2, H2O and O2 at 650°C. During the gas exposure the tailor made reaction chambers were connected to a high energy diffraction end station at the synchrotron. The crystallization and growth of oxide and sulfide reaction products at the alloy surfaces were monitored by collecting full diffraction pattern every minute. Careful examination of shape and intensity of phase-specific reflections enabled to a detailed view on growth kinetics. These studies showed, oxides are the first phases occurring immediately after experimental start. As soon as reactive gas media enter the chamber, the conditions change and different reaction products, such as sulfides start to grow. A comparison of different gas environments applied, illustrated the differences in the type of reaction products. The in situ observation of high temperature material degradation by corrosion made it possible to study the contribution of phases, which are not stable at room temperature. For instance, wuestite (Fe1-xO), was frequently observed at high temperatures in humid gases on Fe with 2 wt.% and 9 wt.% chromium, but not at room temperature. The strength of the occurrence of this phase additionally explains why, despite a higher Cr content, ferritic alloys with 9 wt.% Cr in a challenging atmosphere prevent the intrinsic formation of protective layers. The in situ observations were supplemented by careful considerations of thermodynamic boundary conditions and detailed post characterization by classical metallographic analysis. Additionally, the structure and chemistry of the dominant oxide layers were evaluated using X-ray absorption near edge structure spectroscopy. The talk will give an overview about chances and challenges for studying high temperature corrosion phenomena by advanced X-ray methods. T2 - MRS Spring Meeting CT08.02.01 CY - Online Meeting DA - 18.04.2021 KW - XRD KW - Spectroscopy KW - Corrosion KW - High temperature KW - In-situ PY - 2021 AN - OPUS4-52486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ganesh, Rahul A1 - Gesell, Stephan A1 - Kuna, M. A1 - Fedelich, Bernard A1 - Kiefer, B. T1 - Numerical calculation of ΔCTOD for thermomechanical fatigue crack growth T2 - DVM-Bericht: Bruchmechanische Werkstoff- und Bauteilbewertung: Beanspruchungsanalyse, Prüfmethoden und Anwendungen N2 - The cyclic crack tip opening displacement ΔCTOD is a promising loading Parameter to quantify the crack propagation under thermomechanical fatigue (TMF). In this work, suitable techniques are investigated and compared for an accurate calculation of ΔCTOD under TMF loading using a viscoplastic temperature dependent material model. It turned out that collapsed special crack tip elements give the best results. An efficient FEM-technique is developed to simulate the incremental crack growth by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. The developed techniques are demonstrated and discussed for two-dimensional examples like TMF-specimens. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and ΔCTOD value. N2 - Zur Bewertung des Rissfortschritts unter thermomechanischer Ermüdung (TMF) ist die zyklische Rissöffnungsverschiebung ΔCTOD ein aussichtsreicher bruchmechanischer Beanspruchungsparameter. In dieser Arbeit werden unter Anwendung eines viskoplastischen, temperaturabhängigen Materialmodells geeignete FEM-Techniken für die akkurate Berechnung des ΔCTOD bei TMF erprobt und verglichen. Als beste Technik hat sich die Verwendung kollabierter Rissspitzenelemente erwiesen. Es wurde ein effizienter FEM-Algorithmus zur Simulation der Rissausbreitung mit inkrementeller Neuvernetzung entwickelt, bei dem die Verformungen und inelastischen Zustandsvariablen jeweils vom alten auf das neue Netz übertragen werden. Die erarbeiteten Techniken werden am Beispiel von zweidimensionalen Strukturen und TMF-Proben vorgestellt und diskutiert. Dabei werden wesentliche Kontrollparameter der Simulation wie optimale Grösse der Rissspitzenelemente, Länge des Rissinkrementes in Relation zur plastischen Zone und dem ΔCTOD-Wert empfohlen. T2 - 53. Tagung des Arbeitskreises "Bruchmechanik und Bauteilsicherheit" CY - Online meeting DA - 18.02.2021 KW - Crack tip opening displacement KW - Thermomechanical fatigue KW - Crack growth PY - 2021 SP - 1 EP - 10 PB - DVM (Deutscher Verband für Materialforschung und -prüfung) CY - Berlin AN - OPUS4-52519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ganesh, Rahul A1 - Gesell, Stephan A1 - Kuna, M. A1 - Fedelich, Bernard A1 - Kiefer, B. T1 - Numerical calculation of ΔCTOD for thermomechanical fatigue crack growth N2 - The cyclic crack tip opening displacement ΔCTOD is a promising loading Parameter to quantify the crack propagation under thermomechanical fatigue (TMF). In this work, suitable techniques are investigated and compared for an accurate calculation of ΔCTOD under TMF loading using a viscoplastic temperature dependent material model. It turned out that collapsed special crack tip elements give the best results. An efficient FEM-technique is developed to simulate the incremental crack growth by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. The developed techniques are demonstrated and discussed for two-dimensional examples like TMF-specimens. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and ΔCTOD value. T2 - 53. Tagung des Arbeitskreises "Bruchmechanik und Bauteilsicherheit" CY - Online meeting DA - 18.02.2021 KW - Crack tip opening displacement KW - Thermomechanical fatigue KW - Crack growth PY - 2021 AN - OPUS4-52520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gesell, Stephan A1 - Ganesh, Rahul A1 - Kuna, Meinhard A1 - Fedelich, Bernard A1 - Kiefer, Björn T1 - Numerical calculation of ΔCTOD for thermomechanical fatigue crack growth N2 - The cyclic crack tip opening displacement ΔCTOD is a promising loading Parameter to quantify the crack propagation under thermomechanical fatigue (TMF). In this work, suitable techniques are investigated and compared for an accurate calculation of ΔCTOD under TMF loading using a viscoplastic temperature dependent material model. It turned out that collapsed special crack tip elements give the best results. An efficient FEM-technique is developed to simulate the incremental crack growth by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. The developed techniques are demonstrated and discussed for two-dimensional examples like TMF-specimens. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and ΔCTOD value. T2 - ESIS Technical Meeting on Numerical Methods (TC8) CY - Online meeting DA - 06.04.2021 KW - Crack tip opening displacement KW - Thermomechanical fatigue KW - Crack growth PY - 2021 AN - OPUS4-52410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Farahbod-Sternahl, L. A1 - Saliwan Neumann, Romeo A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - On the determination of residual stresses in additively manufactured lattice structures JF - Journal of Applied Crystallography N2 - The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Additive manufacturing techniques generally allow the production of ‘lattice structures’ without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced distortion and even cracks. In most cases, internal stresses remain locked in the structures as residual stress. The determination of the residual stress in lattice structures through nondestructive neutron diffraction is described in this work. It is shown how two difficulties can be overcome: (a) the correct alignment of the lattice structures within the neutron beam and (b) the correct determination of the residual stress field in a representative part of the structure. The magnitude and the direction of residual stress are discussed. The residual stress in the strut was found to be uniaxial and to follow the orientation of the strut, while the residual stress in the knots was more hydrostatic. Additionally, it is shown that strain measurements in at least seven independent directions are necessary for the estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and an informed choice on the possible strain field. If the most prominent direction is not measured, the error in the calculated stress magnitude increases considerably. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Principal stress components KW - Neutron diffraction KW - Lattice structures PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520663 DO - https://doi.org/10.1107/S1600576720015344 SN - 1600-5767 VL - 54 SP - 228 EP - 236 AN - OPUS4-52066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -