TY - JOUR A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - von Hartrott, P. A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Comparison of long-term radii evolution of the S-phase in aluminum alloy 2618A during ageing and creep N2 - A study was made on the effect of creep loading on the precipitate radii evolution of the aluminum alloy 2618A. The overageing process of the alloy was investigated under load at a temperature of 190 °C with stresses between 79 and 181 MPa and compared to stress free isothermal ageing. The precipitates responsible for strength were characterized using dark-field transmission electron microscopy (DFTEM). This allows the experimental Determination of radii distributions of the rod-shaped Al2CuMg precipitates and the evaluation regarding their mean precipitate radius. It was found that the mean precipitate radius enables the comparison of the different microstructural conditions of crept and uncrept samples. The mean precipitate radii of the samples experiencing creep are significantly higher than those of undeformed samples. It was shown that the acquired radii distributions are viable to determine averaged particle radii for comparison of the aged samples. A ripening process including pipe diffusion along dislocations describes the data on coarsening very well for the creep samples. KW - Aluminum alloys KW - Electron microscopy KW - Aging KW - Creep KW - Microstructure KW - S-Phase PY - 2018 U6 - https://doi.org/10.1016/j.msea.2018.01.033 SN - 0921-5093 VL - 716 SP - 78 EP - 86 PB - Elsevier B. V. AN - OPUS4-44090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 U6 - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Hartrott, P. A1 - Metzger, M. A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Lebensdauerbewertung von alternden Werkstoffen N2 - Werkstoffe im Hochtemperatureinsatz verändern mit der Zeit ihre Mikrostruktur. Mit diesem Alterungsprozess einher geht eine Veränderung der mechanischen Eigenschaften ebenso wie eine Veränderung des Schädigungsverhaltens. Im Rahmen des FVV Vorhabens „Alterung und Lebensdauer“ haben das Fraunhofer IWM in Freiburg und die BAM in Berlin die weit verbreitete warmfeste Aluminiumlegierung EN AW-2618A in verschiedenen Alterungszuständen experimentell charakterisiert und darauf aufbauend Modelle für die Lebensdauerbewertung mit der Finite-Elemente- Methode implementiert. KW - Aluminiumlegierung KW - Alterung KW - Mikrostruktur KW - Lebensdauervorhersage KW - Schädigung PY - 2018 U6 - https://doi.org/10.1007/s35146-018-0085-8 SN - 0024-8525 SN - 2192-8843 VL - 79 IS - 10 SP - 72 EP - 76 PB - Springer AN - OPUS4-46064 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Hartrott, P. A1 - Metzger, M. A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Lifetime assessment of aging materials N2 - Materials subjected to high-temperature service conditions will change their microstructure with time. Associated with this aging process is a change of mechanical properties as well as a change of damage mechanisms. Within the scope of the FVV project Aging and Lifetime, Fraunhofer IWM in Freiburg and BAM in Berlin (both Germany) experimentally characterized the widespread high-temperature aluminum alloy EN AW-2618A in different overaging states. Based on the experimental findings, models for numerical lifetime assessment with the finite-element method were implemented. KW - Aluminum alloy KW - Aging KW - Microstructure KW - Lifetime prediction KW - Damage PY - 2018 U6 - https://doi.org/10.1007/s38313-018-0084-7 SN - 2192-9114 VL - 79 IS - 10 SP - 64 EP - 68 PB - Springer AN - OPUS4-46065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Skrotzki, Birgit A1 - Stegemann, Robert A1 - Löwe, Peter A1 - Kreutzbruck, M. T1 - The role of surface topography on deformation-induced magnetization under inhomogeneous elastic-plastic deformation N2 - It is widely accepted that the magnetic state of a ferromagnetic material may be irreversibly altered by mechanical loading due to magnetoelastic effects. A novel standardized nondestructive testing (NDT) technique uses weak magnetic stray fields, which are assumed to arise from inhomogeneous deformation, for structural health monitoring (i.e., for detection and assessment of damage). However, the mechanical and microstructural complexity of damage has hitherto only been insufficiently considered. The aim of this study is to discuss the phenomenon of inhomogeneous “self-magnetization” of a polycrystalline ferromagnetic material under inhomogeneous deformation experimentally and with stronger material-mechanical focus. To this end, notched specimens were elastically and plastically deformed. Surface magnetic states were measured by a three-axis giant magnetoresistant (GMR) sensor and were compared with strain field (digital image correlation) and optical topography measurements. It is demonstrated that the stray fields do not solely form due to magnetoelastic effects. Instead, inhomogeneous plastic deformation causes topography, which is one of the main origins for the magnetic stray field formation. Additionally, if not considered, topography may falsify the magnetic signals due to variable lift-off values. The correlation of magnetic vector components with mechanical tensors, particularly for multiaxial stress/strain states and inhomogeneous elastic-plastic deformations remains an issue. KW - Magnetic stray fields KW - Magnetomechanical effect KW - Damage KW - Topography KW - Multiaxial deformation KW - Notch KW - Plastic deformation KW - Metal magnetic memory KW - Digital image correlation KW - Structural steel PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457878 SN - 1996-1944 VL - 11 IS - 9 SP - 1518, 1 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Hetaba, W. A1 - Skrotzki, Birgit T1 - Thickening of T-1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy N2 - The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical Phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of These two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates. KW - Al-Cu-Li-alloy KW - Precipitation KW - T1 precipitate KW - Microstructure evolution KW - Thickening KW - Creep KW - Volume fraction KW - Number density KW - Strain difference PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471207 SN - 1996-1944 VL - 12 IS - 1 SP - 30, 1 EP - 23 PB - MDPI AN - OPUS4-47120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -