TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate for thermoelectric applications JF - AIP Advances N2 - This study combines three different approaches to lower the sintering temperature of Sm-doped CaMnO3 to save energy in production and facilitate co-firing with other low-firing oxides or metallization. The surface energy of the powder was increased by fine milling, sintering kinetics were enhanced by additives, and uniaxial pressure during sintering was applied. The shrinkage, density, microstructure, and thermoelectric properties were evaluated. Compared to micro-sized powder, the use of finely ground powder allows us to lower the sintering temperature by 150 K without reduction of the power factor. By screening the effect of various common additives on linear shrinkage of CaMnO3 after sintering at 1100 ○C for 2 h, CuO is identified as the most effective additive. Densification at sintering temperatures below 1000 ○C can be significantly increased by pressure-assisted sintering. The power factor at room temperature of CaMnO3 nano-powder sintered at 1250 ○C was 445 μW/(m K2). Sintering at 1100 ○C reduced the power factor to 130 μW/(m K2) for CaMnO3 nano-powder, while addition of 4 wt.% CuO to the same powder led to ∼290 μW/(m K2). The combination of fine milling, CuO addition, and pressureassisted sintering at 950 ○C resulted in a power factor of ∼130 μW/(m K2). These results show that nano-sized powder and CuO addition are successful and recommendable strategies to produce CaMnO3 with competitive properties at significantly reduced temperatures and dwell times. KW - Sintering additive KW - Liquid phase sintering KW - Pressure assisted sintering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555467 DO - https://doi.org/10.1063/5.0098015 SN - 2158-3226 VL - 12 IS - 8 SP - 1 EP - 9 PB - American Institute of Physics (AIP) CY - New York, NY AN - OPUS4-55546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick T1 - Modeling of the cooling behavior of thermoelectric multilayers N2 - Multilayered designs are an attractive approach towards cost-effective manufacturing of thermoelectric generators. Therefore, efforts are being made to co-fire two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, ceramic tapes, multilayer technology, and pressure-assisted sintering (PAS) were used. A major challenge for the PAS of low-sintered calcium manganate was cracking during cooling. A relationship between the properties of the release tape used during PAS and the cracking behavior was experimentally observed. To understand the origin of failure, reaction layers in the multilayer were analyzed and thermal stresses during cooling were estimated by finite element (FE) simulations. Thermal expansion, elastic properties, and biaxial strength of the thermoelectric oxides and selected reaction layers were determined on separately prepared bulk samples. The analysis showed that the reaction layers were not the cause for cracking of calcium manganate. Using the FE model, thermal stresses in different manganate multilayer designs with varying properties of the release tape were studied. The FEM study indicated, and a validation experiment proved that the thickness of the release tape has the main effect on thermal stresses during cooling in separately sintered calcium manganate. T2 - Keramik 2021 / Ceramics 2021 CY - Online Meeting DA - 19.04.2021 KW - Fem KW - Thermoelectric KW - Pressure assisted sintering PY - 2021 AN - OPUS4-52489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -