TY - JOUR A1 - Orlov, Nikolai A1 - Kiseleva, A. K. A1 - Milkini, P. A. A1 - Evdokimov, P. V. A1 - Putlayev, V. I. A1 - Günster, Jens T1 - Potentialities of Reaction Sintering in the Fabrication of High-Strength Macroporous Ceramics Based on Substituted Calcium Phosphate N2 - Calcium alkali metal (potassium and sodium) double and triple phosphates have been synthesized in different ways. Was for the first time used reaction sintering to produce ceramics based on calcium alkali metal mixed phosphates and investigated the densification behavior of mixed phosphate-based multiphase materials during sintering by this method. Was presented the microstructure of polished surfaces of sintered samples differing in phase composition and determined the density of ceramics prepared using reaction mixtures differing in composition. The effect of reaction sintering on the porosity of the ceramics has been assessed. Using stereolithographic printing and reaction sintering, was produced macroporous mixed Calcium phosphate-based ceramic implants. Their compressive strength has been determined to be 0.78 ± 0.21 MPa for two-phase samples and 1.02 ± 0.13 MPa for three-phase samples. KW - Reaction Sintering KW - Bio Ceramics PY - 2020 U6 - https://doi.org/10.1134/s0020168520120146 VL - 56 IS - 12 SP - 1298 EP - 1306 PB - Pleiades Publishing LTD AN - OPUS4-52004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orlov, N. K. A1 - Evdokimov, P. V. A1 - Milkin, P. A. A1 - Garshev, A. V. A1 - Putlayev, V. I. A1 - Grebenev, V. V. A1 - Günster, Jens T1 - Phase equilibria in CaNaPO4-CaKPO4 system and their influence on formation of bioceramics based on mixed Ca-K-Na phosphates N2 - An investigation of the two-component phase diagram of the CaNaPO4- CaKPO4system performed using various analysis techniques is reported. The continuous solid solution series of α-CaMPO4 existing above 700 °C undergoes eutectoid decomposition during cooling to β-CaMPO4-based solid solutions enriched with Na and K, and to an intermediate nonstoichiometric compound with an ideal composition of CaK0.6Na0.4PO4. All three compounds exhibit significant volumetric effects associated with first-order phase transitions, with positive volume changes under cooling for the intermediate compound. Increased K content in ceramics based on CaKyNa1-yPO4 compositions enhances the strength properties of those ceramics, including their fracture toughness, which is associated with increased density. Increased K content also has a smaller effect of inducing phase transformations accompanied by strong volume changes. KW - Phase transformations KW - Bioceramics KW - Mixed Ca-K-Na phosphates KW - Na and K rhenanites KW - Phase diagram PY - 2019 U6 - https://doi.org/10.1016/j.jeurceramsoc.2019.07.044 VL - 39 IS - 16 SP - 5410 EP - 5422 PB - Elsevier Ltd. AN - OPUS4-49621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -