TY - JOUR A1 - Fareed, Adnan A1 - Rosalie, Julian M. A1 - Kumar, Sourabh A1 - Kar, S. A1 - Hickel, Tilmann A1 - Fähler, S. A1 - Maaß, Robert T1 - Constrained incipient phase transformation in Ni-Mn-Ga films: A small-scale design challenge JF - Materials & Design N2 - Ni-Mn-Ga shape-memory alloys are promising candidates for large strain actuation and magnetocaloric cooling devices. In view of potential small-scale applications, we probe here nanomechanically the stress-induced austenite–martensite transition in single crystalline austenitic thin films as a function of temperature. In 0.5 μm thin films, a marked incipient phase transformation to martensite is observed during nanoindentation, leaving behind pockets of residual martensite after unloading. These nanomechanical instabilities occur irrespective of deformation rate and temperature, are Weibull distributed, and reveal large spatial variations in transformation stress. In contrast, at a larger film thickness of 2 μm fully reversible transformations occur, and mechanical loading remains entirely smooth. Ab-initio simulations demonstrate how an in-plane constraint can considerably increase the martensitic transformation stress, explaining the thickness-dependent nanomechanical behavior. These findings for a shape-memory Heusler alloy give insights into how reduced dimensions and constraints can lead to unexpectedly large transformation stresses that need to be considered in small-scale actuation design. KW - Shape-memory alloys KW - Nanoindentation KW - Incipient plasticity KW - NiMaGa PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581422 DO - https://doi.org/10.1016/j.matdes.2023.112259 VL - 233 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Ott, C. A1 - Das, S. M. A1 - Liebscher, C. A1 - Samwer, K. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - On the elastic microstructure of bulk metallic glasses JF - Materials & Design N2 - Metallic glasses (MGs) are known to be structurally heterogeneous at the nanometer (nm) scale. In addition, elastic property mapping has indicated the presence of at least an order-of-magnitude larger length scales, of which the origin continues to remain unknown. Here we demonstrate the existence of an elastic decorrelation length of the order of 100 nm in a Zr-based bulk MG using spatially resolved elastic property mapping via nanoindentation. Since compositional modulations sufficiently large to account for this elastic microstructure were not resolved by analytical scanning-transmission electron microscopy, chemical phase separation such as spinodal decomposition cannot explain their occurrence as previously suggested. Instead, we argue that the revealed long-range elastic modulations stem from structural variations affecting the local density. These emerge during solidification and are strongly influenced by the cooling constraints imposed on bulk MGs during the casting process. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573504 DO - https://doi.org/10.1016/j.matdes.2023.111929 SN - 0264-1275 VL - 229 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -