TY - CONF A1 - Sommer, Konstantin A1 - Ávila, Luis T1 - Microstructure ageing of stainless steel AISI 316L manufactured by selective laser melting (SLM) N2 - Additive manufacturing (AM) processes, such as SLM, offer a variety of advantages compared to conventional manufacturing. Today AM parts are still comparatively less cost-effective if they are manufactured in large quantities. To make the AM parts more cost-efficient, the AM process has to be improved. It requires a good understanding of microstructure formation, microstructure-property-relations and ageing processes affected by different loads. In this work the ageing behavior of SLM manufactured AISI 316L stainless steel is evaluated. The microstructure effected by mechanical, thermal and corrosive loads are investigated and compared to as-built microstructure. Tensile tests are used for mechanical ageing. For thermal and corrosive loads the typical application conditions of 316L apply. The methods of microstructure investigation include SEM, TEM, CT and EBSD. The main object of this work is the description of microstructure and ageing processes of AM parts. T2 - European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM) 2019 CY - Trondheim, Norway DA - 09.09.2019 KW - 316L KW - Selective laser melting KW - Microstructure evolution PY - 2019 AN - OPUS4-49886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading performance and related microstructure evolution of ferritic-martensitic 9-12% Cr steels N2 - The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Cyclic loading KW - Microstructure evolution PY - 2018 SP - 259 EP - 265 AN - OPUS4-47118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -