TY - JOUR A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Quantification and characterisation of activated carbon in activated sludge by thermogravimetric and evolved gas analyses JF - Journal of Environmental Chemical Engineering N2 - Advanced wastewater treatment with powdered activated carbon (PAC) leads to a spread of PAC into different purification stages of wastewater treatment plants (WWTP) due to recirculation and filter back-wash. Currently, no methods for quantification of PAC in activated sludge are available. In this study, PAC containing activated sludge from four WWTP were examined by two-step thermogravimetric analysis (TGA) with heating up to 600°C in N2 and subsequently in synthetic air. Direct quantification of PAC according to temperature specific weight losses was possible for one WWTP. Quantification by combining specific mass losses was found to be an alternative direct method, with a detection limit of 1.2% PAC in dry sample mass. Additionally, evolved gas analysis (EGA) by infrared-spectroscopy (FTIR) during TGA revealed interaction mechanisms between PAC and activated sludge. Aliphatic compounds from activated sludge were identified as major substances influenced by PAC. In derivative thermogravimetry (DTG), a typical double peak at approximately 300°C was found to be related to carbonylic species with increased evolution of acetic acid in aged activated sludge. TGA and EGA are promising tools to understand, control and optimise the application of PAC in advanced wastewater treatment. KW - Advanced wastewater treatment KW - Powdered activated carbon KW - Sewage treatment plant KW - Thermoanalysis KW - Thermogravimetry KW - Fourier transform infrared spectroscopy PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S2213343718301313 DO - https://doi.org/10.1016/j.jece.2018.03.010 SN - 2213-3437 VL - 6 IS - 2 SP - 2222 EP - 2231 PB - Elsevier CY - Amsterdam AN - OPUS4-44978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Kober, E. A1 - Ricking, M. A1 - Schmitt, T. A1 - Braun, Ulrike T1 - Detection of polymers in treated waste water using TED-GC-MS N2 - The presence of large quantities of plastic waste and its fragmentation in various environmental compartments are an important subject of current research. In the environment, (photo ) oxidation processes and mechanical abrasion lead to the formation of microplastics. However, until now, there are no established quality assurance concepts for the analysis of microplastic (<5 mm) in environmental compartments, including sampling, processing and analysis. The aim of the present work is the development of suitable examination methods and protocols (sampling, sample preparation and detection) to qualify and quantify microplastic in urbane water management systems. At first a fractional filtration system for sampling and the analytical tool, the so-called TED-GC-MS (thermal desorption gas chromatography mass spectrometry) were developed. The TED-GC-MS method is a two-step analytical procedure which consists of a thermal extraction where the sample is annealed and characteristic decomposition products of the polymers are collected on a solid phase. Afterwards these products are analysed using GC-MS. The developed fractional filtration for sampling and the TED-GC-MS for detection were used for quantitative analysis to screen the waste water influent and effluent of a Berlin waste water treatment plant for the most relevant polymers, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyamide (PA). The results of the study revealed that the polymeres PE, PS and PP were detected in the effluent, and PE and PS were find in the raw waste water of the sewage treatment plant in Ruhleben, Berlin. Differences in polymer types and amounts were detected at different sampling dates and within different sieve fractions. Much higher amounts of polymers were observed in the raw waste water. The peak areas of the decomposition products, used for quantification of the polymers, were adjusted using so-called response factors since the TED-GC-MS method is more sensitive for PP and PS than for PE. It has been shown that PE is the most dominant polymer in the samples. Comparing the masses of polymers in the effluent and in the raw sewage, a removal of 99 % of the polymers in the water treatment plant can be assumed. These results are consistent with the literature where removal rates between 98-99 % were described. T2 - SETAC Europe CY - Rom, Italy DA - 13.05.2018 KW - Microplastics KW - Thermogravimetry KW - Waste water KW - Chromatography PY - 2018 AN - OPUS4-44968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -