TY - JOUR A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Hetaba, W. A1 - Skrotzki, Birgit T1 - Thickening of T-1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy N2 - The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical Phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of These two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates. KW - Al-Cu-Li-alloy KW - Precipitation KW - T1 precipitate KW - Microstructure evolution KW - Thickening KW - Creep KW - Volume fraction KW - Number density KW - Strain difference PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471207 SN - 1996-1944 VL - 12 IS - 1 SP - 30, 1 EP - 23 PB - MDPI AN - OPUS4-47120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ta, N. A1 - Bilal, M. U. A1 - Häusler, I. A1 - Saxena, A. A1 - Lin, Y.-Y. A1 - Schleifer, F. A1 - Fleck, M. A1 - Glatzel, U. A1 - Skrotzki, Birgit A1 - Darvishi Kamachali, Reza T1 - Simulation of the θ′ Precipitation Process with Interfacial Anisotropy Effects in Al-Cu Alloys N2 - The effects of anisotropic interfacial properties and heterogeneous elasticity on the growth and ripening of plate-like θ′-phase (Al2Cu) in Al-1.69 at.% Cu alloy are studied. Multi-phase-field simulations are conducted and discussed in comparison with aging experiments. The precipitate/matrix interface is considered to be anisotropic in terms of its energy and mobility. We find that the additional incorporation of an anisotropic interfacial mobility in conjunction with the elastic anisotropy result in substantially larger aspect ratios of the precipitates closer to the experimental observations. The anisotropy of the interfacial energy shows comparably small effect on the precipitate’s aspect ratio but changes the interface’s shape at the rim. The effect of the chemo-mechanical coupling, i.e., the composition dependence of the elastic constants, is studied as well. We show that the inverse ripening phenomenon, recently evidenced for δ’ precipitates in Al-Li alloys (Park et al. Sci. Rep. 2019, 9, 3981), does not establish for the θ′ precipitates. This is because of the anisotropic stress fields built around the θ′ precipitates, stemming from the precipitate’s shape and the interaction among different variants of the θ′ precipitate, that disturb the chemo-mechanical effects. These results show that the chemo-mechanical effects on the precipitation ripening strongly depend on the degree of sphericity and elastic isotropy of the precipitate and matrix phases. KW - Aging KW - Phase-field simulation KW - Interfacial anisotropy KW - Chemo-mechanical coupling KW - Precipitation KW - Elasticity KW - θ′-(Al2Cu) precipitate phase PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522672 VL - 14 IS - 5 SP - 1280 PB - MDPI AN - OPUS4-52267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Roßmöller-Felz, Mattis A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - In situ observation of silver precipitation in sodium zinc borate glass-forming melts N2 - Melting of Na2CO3-ZnO-B2O3 batches containing up to 16.8 wt% AgNO3 (5 mol% Ag2O in the target glass composition) was observed in situ by means of hot stage microscopy. In all batches metallic silver precipitation took place as most of the silver nitrate was reduced to metallic silver before Ag+ ions could be dissolved in the evolving borate melts. In turn, only traces of Ag+ (<300 ppmw) were dissolved in the sodium zinc borate glass melts under study. It is assumed that the oxidation to Ag+ was limited due to poor availability of reducible oxygen in the glass melts and presence of Na2O being a stronger base than Ag2O. Thus, the precipitated metallic silver formed droplets of different sizes. The larger droplets (d > 20 µm) were already settled at the bottom of the container and remained constant in size upon dwelling for 1 h at 1050 °C of about one hour and the subsequent cooling (45 K/min) to room temperature, whereas the smaller droplets (d < 20 µm) were mobile in the borate melt due to Marangoni and Stokes motion. For the latter droplets, coalescence was observed in situ. A growth of larger droplets at the expense of smaller ones, i.e., Ostwald ripening was also expected but could not be studied with the used experimental equipment. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Glass melt KW - Silver KW - Sodium zinc borate glass KW - Hot stage microscopy KW - Precipitation PY - 2022 AN - OPUS4-55732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza A1 - Rockenhäuser, Christian A1 - Saxena, A. A1 - Skrotzki, Birgit A1 - Umer Bilal, M. A1 - Ramirez, Daniela Valencia A1 - Schwarze, C. A1 - Häusler, I. T1 - Chemo-mechanical Coupling Effect During Precipitation in AlLi and AlLiCu systems N2 - The chemo-mechanical coupling effect during precipitation in AlLi and AlLiCu systems is presented and effects of chemo-mechanical coupling on materials with different microstructures is discussed. The results of the simulations are then compared to electron-microscopical investigations. T2 - Plenary meeting DFG Priority program 1713 ("Chemomechanics") CY - Bochum, Germany DA - 17.12.2018 KW - Al-Li alloys KW - Phase field simulation KW - Precipitation KW - Inverse ostwald ripening KW - Transmission electron microscopy PY - 2018 AN - OPUS4-46961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -