TY - JOUR A1 - Swaminathan, Srinivasan A1 - Sun, K. A1 - Was, G. S. T1 - Decoupling the roles of grain boundary oxidation and stress in IASCC of neutron-irradiated 304L stainless steel N2 - Irradiation assisted stress corrosion cracking (IASCC) is known to be a combination of applied stress, and a corrosive environment in irradiated materials, but an appropriate understanding of how each of these components affects cracking is not yet clear. In this work, we isolate the role of grain boundary (GB) oxidation in IASCC. For this purpose, solution-annealed 304L stainless steel irradiated in reactor to 5.4 or 69 dpa was studied using a miniaturized four-point bend technique. Two modes of bend tests were conducted; straining in simulated pressurized water reactor primary water (PW) at 320 ◦C in an incremental manner, and pre-oxidation in PW at 320 ◦C without application of stress followed by dynamic straining in purified Ar at the same temperature until crack initiation. Exposure of the 5.4 dpa sample for 210 h in high temperature water initiated cracks in Ar at 60% of the yield stress (0.6YS), whereas the companion sample of the same dose exposed for 1010 h cracked in Ar at 0.5YS. The long-term exposure in water led to GB oxidation that ultimately lowered the crack initiation stress. Dynamic straining in water resulted in larger crack lengths and greater crack depths indicating stress accelerated oxidation and cracking. Dislocation pile-ups at dislocation channel-grain boundary sites provide an amplification of the applied stress to a level consistent with the fracture stress of the grain boundary oxide, providing an explanation for IASCC that occurs at applied stresses well below the irradiated yield stress of the alloy. There was no evidence of cracking upon straining of an unoxidized 69 dpa sample in Ar to well above yield, confirming that the irradiated state is not inherently susceptible to intergranular (IG) cracking and that oxidized GBs are responsible for initiation of IG cracking. KW - Stress corrosion cracking KW - Grain boundary oxidation KW - Stainless steel KW - Crack initiation KW - IASCC PY - 2023 U6 - https://doi.org/10.1016/j.jnucmat.2023.154604 SN - 0022-3115 VL - 585 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-58233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -