TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered ¬glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 93rd Annual Meeting German Soc Glass Technol in conjunction with annual meeting French Union for Sci and Glass technol CY - Nuremberg, Germany DA - 13.05.2019 KW - Blähen KW - Glass KW - Kristallisation KW - Sintern PY - 2019 AN - OPUS4-50433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -