TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Alig, I. A1 - Böhning, Martin T1 - A phenomenological criterion for an optical assessment of PE-HD fracture surfaces obtained from FNCT JF - Polymer Testing N2 - The full-notch creep test (FNCT) is a common test method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD), e.g. for container materials. The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of PE-HD specimens under constant mechanical load in a well-defined liquid test environment. Since the craze-crack damage mechanism underlying the ESC phenomenon is associated with brittle failure, the occurrence of a predominantly brittle fracture surface is a prerequisite to consider an FNCT measurement as representative for ESC, i.e. a time to failure dominated by craze-crack propagation. The craze-crack propagation continuously reduces the effective residual cross-sectional area of the specimen during the test, which results in a corresponding increase of the effective mechanical stress. Thus, a transition to ductile shear deformation is inevitable at later stages of the test, leading usually to a pronounced central ligament. Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. An enhanced imaging analysis of FNCT fracture surfaces enables a detailed assessment of craze-crack Propagation during ESC. In this study, laser scanning microscopy (LSM) was employed to evaluate whether FNCT fracture surfaces are representative with respect to craze-crack propagation and ESC. Based on LSM height data, a phenomenological criterion is proposed to assess the validity of distinct FNCT measurements. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. Its applicability is verified on a sample basis for seven different commercial PE-HD container materials. KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Fracture surfaces KW - Optical criterion of brittleness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521012 DO - https://doi.org/10.1016/j.polymertesting.2020.107002 VL - 94 SP - 107002 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hmood, F. J. A1 - Wilbig, Janka A1 - Nicolaides, Dagmar A1 - Zocca, Andrea A1 - Günster, Jens T1 - An approach to monitor the real-time deformation during heat treatment of 3D-printed glass JF - Ceramics International N2 - This study suggests a tool for a better control on the sintering/crystallization of 3D-printed bioactive glassceramics bodies. A small cantilever in form of a bar with square cross section attached to a base and inclined 34◦ with the horizon, was used to monitor the viscous flow and sintering/crystallization headway of a glassceramic systems. 3D printing and sintering of bioactive glass-ceramics is of great interest for medical care applications. Viscous flow ensures sufficient densification of the typically low density printed green bodies, while crystallization prevents the structure from collapsing under the gravitational load. As a model system, a bioactive glass called BP1 (48.4 SiO2, 1 B2O3, 2 P2O5, 36.6 CaO, 6.6 K2O, 5.6 Na2O (mol%)), which has a chemical composition based on that of ICIE16, was employed in this work. In addition, ICIE16 was used as a reference glass. The results show that the suggested design is a very promising tool to track the real-time deformation of 3D printed glass-ceramic specimens and gives a good indication for the onset of crystallization as well. KW - Real-time deformation KW - Sintering KW - 3D-printing KW - Bioactive glass PY - 2021 DO - https://doi.org/10.1016/j.ceramint.2021.03.334 VL - 47 IS - 14 SP - 20045 EP - 20050 PB - Elsevier Ltd. AN - OPUS4-53449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baesso, Ilaria A1 - Karl, D. A1 - Spitzer, Andrea A1 - Gurlo, A. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Characterization of powder flow behavior for additive manufacturing JF - Additive manufacturing N2 - The flow behavior of powders has an essential role in many industrial processes, including powder bed additive manufacturing. The characterization of the flow behavior is challenging, as different methods are available, and their suitability for an application in additive manufacturing is still controversial. In this study, six standardized methods (measurement of bulk density by ISO 60 and by ASTM B329, angle of repose by ISO 4324, discharge time by ISO 6186 and by ASTM B964-16, and Hausner Ratio by ASTM 7481 – 18), the rotating drum method (by GranuDrum) and powder rheometry (Anton Paar powder cell), were applied to five size fractions of a crushed quartz sand powder and compared. A statistical approach is proposed and discussed to correlate the obtained flowability indexes with the packing density of powder beds deposited layer-by-layer, and these correlations are compared between methods. Overall, the measurement of bulk density by ASTM B329 that showed the best correlation with the powder bed density. Advanced methods such as the rotating drum method and powder rheometry did not demonstrate particularly good correlations, however they provided complementary information which can be useful to assess the dynamic behavior of powders. KW - Powder flow KW - Flowability KW - Powder bed additive manufacturing KW - Powder rheology PY - 2021 DO - https://doi.org/10.1016/j.addma.2021.102250 SN - 2214-8604 VL - 47 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-53229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, M. A1 - Kranzmann, Axel T1 - Corrosion and Corrosion Fatigue of Steels in Downhole CCS Environment—A Summary JF - Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60°C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO2-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO3 and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60°C , brine: Stuttgart Aquifer and NGB, flowing CO2: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Carbon capture and storage KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - CCS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523948 DO - https://doi.org/10.3390/pr9040594 VL - 9 IS - 4 SP - 594 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Buggisch, E. A1 - Schiller, Bernadette Nicole A1 - Beck, M. T1 - Corrosion Study on Wellbore Materials for the CO2 Injection Process JF - Processes N2 - For reliability and safety issues of injection wells, corrosion resistance of materials used needs to be determined. Herein, representative low-cost materials, including carbon steel X70/1.8977 and low alloyed steel 1.7225, were embedded in mortar to mimic the realistic casing-mortar interface. Two types of cement were investigated: (1) Dyckerhoff Variodur commercial Portland cement, representing a highly acidic resistant cement and (2) Wollastonite, which can react with CO2 and become stable under a CO2 stream due to the carbonation process. Exposure tests were performed under 10 MPa and at 333 K in artificial aquifer fluid for up to 20 weeks, revealing crevice corrosion and uniform corrosion instead of expected pitting corrosion. To clarify the role of cement, simulated pore water was made by dispersing cement powder in aquifer fluid and used as a solution to expose steels. Surface analysis, accompanied by element mapping on exposed specimens and their crosssections, was carried out to trace the chloride intrusion and corrosion process that followed. KW - Carbon capture storage KW - CCS KW - Carbon dioxide KW - Corrosion KW - Carbon steel KW - Aquifer fluid KW - Cement KW - Casing KW - Pitting PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519774 DO - https://doi.org/10.3390/pr9010115 SN - 2227-9717 VL - 9 IS - 1 SP - 115 PB - MDPI CY - Basel AN - OPUS4-51977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Behrens, H. A1 - Deubener, J. T1 - Crack growth in borate and silicate glasses: Stress-corrosion susceptibility and hydrolytic resistance JF - Journal of Non-Crystalline Solids N2 - A double cantilever beam technique in air equipped with ultrasound modulation was used to measure the crack velocity v in borate and silicate glasses. In all glasses v and the stress intensity KI followed the empirical correlation v ~ KIn. Indicated by its smallest KI at v = 1 μm s − 1, KI* = 0.27 MPa m0.5, the silicoborate glass containing 70 mol% B2O3 was found most susceptible to stress-corrosion enhanced crack growth. Contrarily, the sodium calcium magnesium silicate glass appeared least susceptible with KI* = 0.57 MPa m0.5. No clear correlation is evident between KI*, reflecting the stress-corrosion susceptibility, and the hydrolytic resistance for all glasses under study, but values of n obtained from the present study and taken from previous literature for 35 glasses tend to decrease with increasing network modifier ion fraction. Energy dissipation during stress-corrosion enhanced crack propagation is assumed to cause this trend. KW - DCB KW - Alkali and alkaline earth silicate and borate glass KW - Crack growth in air KW - Stress-corrosion KW - Stress intensity PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2020.120414 VL - 551 SP - 120414 PB - Elsevier B.V. AN - OPUS4-51393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Viguier, B. A1 - Schriever, Sina A1 - Svetlov, I. L. A1 - Petrushin, N. V. A1 - Saillard, R. A1 - Proietti, A. A1 - Poquillon, D. A1 - Chyrkin, A. T1 - Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C JF - Materials Science & Engineering A N2 - A γ-analogue of the superalloy CMSX-4 that does not contain the strengthening γ′ -phase and only consists of the γ-solid solution of nickel has been designed, solidified as single-crystals of different orientations, and tested under creep conditions in the temperature range between 1150 and 1288 °C. The tests have revealed a very high creep anisotropy of this alloy, as was previously found for CMSX-4 at supersolvus temperature of 1288 °C. This creep anisotropy could be explained by the dominance of 〈011〉{111} octahedral slip. Furthermore, the analysis of the creep data has yielded a high value of the creep activation energy, Qc≈442 kJ/mol, which correlates with the high activation energy of Re diffusion in Ni. This supports the hypothesis that dislocation motion in the γ-matrix of Re-containing superalloys is controlled by the diffusion of the Re atoms segregating at the dislocation core. The Norton stress exponent n is close to 5, which is a typical value for pure metals and their alloys. The absence of γ′ -reprecipitation after high-temperature creep tests facilitates microstructural investigations. It has been shown by EBSD that creep deformation results in an increasing misorientation of the existing low angle boundaries. In addition, according to TEM, new low angle boundaries appear due to reactions of the a/2 〈011〉 mobile dislocations and knitting of new networks. KW - Nickel alloys KW - Single-crystals KW - Creep KW - Electron microscopy KW - Deformation mechanisms PY - 2021 DO - https://doi.org/10.1016/j.msea.2021.141880 SN - 0921-5093 VL - 825 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Haberland, C. A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing JF - Additive Manufacturing N2 - Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies. KW - Additive manufacturing KW - Laser powder bed fusion KW - Nickel-based superalloys KW - Scan strategies KW - Residual stresses KW - Microstructure and texture PY - 2021 DO - https://doi.org/10.1016/j.addma.2020.101792 VL - 38 SP - 1792 PB - Elsevier B.V. AN - OPUS4-51944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Nishijima, M. A1 - Kiguchi, T. A1 - Konno, T. T1 - Crystal structure characterization of martensite of Cu–Zn–Al ternary alloy by spherical aberration corrected scanning transmission electron microscopy JF - Intermetallics N2 - The crystal structure of martensite in Cu-27at.%Zn-9.0 at.%Al alloy has been studied by using sphericalaberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and geometrical phase analysis (GPA) to examine possible changes in atomic rearrangements during martensitic transformation of this ternary system. Observation along [100]M zone axis is suitable for examining a chemical order of the martensite, and showed that, despite the non-stoichiometry of the alloy, atomic columns containing Al atoms are imaged and distinguished from the others. On the other hand, observation along [010]M zone axis directly revealed that the parent and martensitic phases possess L21 and 18R (21) structures, respectively. These observations suggested that the martensite retained the local chemical order of the parent phase without shuffling before and after the transformation. GPA revealed that the interface between the two phases was coherent with tilting of the basal plane approximately 6◦ across the boundary, which makes otherwise large inclination small during the martensitic transformation. KW - Shape-memory alloys KW - Martensitic transformation KW - Martensitic structure KW - Electron microscopy, transmission PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107286 SN - 0966-9795 VL - 137 PB - Elsevier Ltd. AN - OPUS4-53076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. A1 - Cios, G. A1 - Winkelmann, A. T1 - Crystallographic analysis of the lattice metric (CALM) from single electron backscatter diffraction or transmission Kikuchi diffraction patterns JF - Journal of Applied Crystallography N2 - A new software is presented for the determination of crystal lattice parameters from the positions and widths of Kikuchi bands in a diffraction pattern. Starting with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown phase, the traces of all visibly diffracting lattice planes are manually derived from four initial Kikuchi band traces via an intuitive graphical user interface. A single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice point distances. Kikuchi band detection, via a filtered Funk transformation, and simultaneous display of the band intensity profile helps users to select band positions and widths. Bandwidths are calculated using the first derivative of the band profiles as excess-deficiency effects have minimal influence. From the reciprocal lattice, the metrics of possible Bravais lattice types are derived for all crystal systems. The measured lattice parameters achieve a precision of <1%, even for good quality Kikuchi diffraction patterns of 400 x 300 pixels. This band-edge detection approach has been validated on several hundred experimental diffraction patterns from phases of different symmetries and random orientations. It produces a systematic lattice parameter offset of up to ±4%, which appears to scale with the mean atomic number or the backscatter coefficient. KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Lattice parameters KW - Radon transform PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527076 DO - https://doi.org/10.1107/S1600576721004210 SN - 1600-5767 VL - 54 IS - Pt 3 SP - 1012 EP - 1022 AN - OPUS4-52707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems JF - Acta Materialia N2 - Phase diagrams are the roadmaps for designing bulk phases. Similar to bulk, grain boundaries can possess various phases, but their phase diagrams remain largely unknown. Using a recently introduced density-based model, here we devise a strategy for computing multi-component grain boundary phase diagrams based on available bulk (CALPHAD) thermodynamic data. Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems, as important ternary bases for several trending steels and high-entropy alloys, are studied. We found that despite its solute segregation enrichment, a grain boundary can have lower solubility limit than its corresponding bulk, promoting an interfacial chemical decomposition upon solute segregation. This is revealed here for the Fe-Mn-base alloy systems. The origins of this counter-intuitive feature are traced back to two effects, i.e., the magnetic ordering effect and the low cohesive energy of Mn solute element. Different aspects of interfacial phase stability and GB co-segregation in ternary alloys are investigated as well. We show that the concentration gradient energy contributions reduce segregation level but increase grain boundary solubility limit, stabilizing the GB against a chemical decomposition. Density-based grain boundary phase diagrams offer guidelines for systematic investigation of interfacial phase changes with applications to microstructure defects engineering. KW - Densty-based Thermodynamics KW - Microstrucrue Design KW - Grain Boundary Phase Diagram PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522207 DO - https://doi.org/10.1016/j.actamat.2021.116668 SN - 1359-6454 VL - 207 SP - 116668 PB - Elsevier Ltd. AN - OPUS4-52220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Yuan, R. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J. M. A1 - Maaß, Robert T1 - Early stages of liquid-metal embrittlement in an advanced high-strength steel JF - Materials Today Advances N2 - Grain-boundary degradation via liquid-metal embrittlement (LME) is a prominent and long-standing failure process in next generation advanced high-strength steels. Here we reveal, well ahead of the crack tip, the presences of nano-scale grains of intermetallic phases in Zn-infiltrated but uncracked grain boundaries with scanning- and 4D transmission electron microscopy. Instead of the often-reported Znrich Fe-Zn intermetallics, the nano-scale phase in the uncracked infiltrated grain boundaries is identified as the G-phase, and its presence reveals the local enhancement of strain heterogeneities in the grain boundary network. Based on these observations, we argue that intermetallic phase formation is not occurring after cracking and subsequent liquid Zn infiltration but is instead one of the primary nanoscopic drivers for grain-boundary weakening and crack initiation. These findings shift the focus of LME from micro- and meso-scale crack investigations to the very early stages immediately following Zn diffusion, after which secondary phase nucleation and growth emerge as the root-cause for failure. KW - Advanced high strength steels KW - Liquid metal embrittlement KW - Transmission electron microscopy KW - 4-Dimensional scanning transmission KW - electron microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539716 DO - https://doi.org/10.1016/j.mtadv.2021.100196 SN - 2590-0498 VL - 13 IS - 196 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-53971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dub, S. A1 - Haftaoglu, Cetin A1 - Kindrachuk, Vitaliy T1 - Estimate of theoretical shear strength of C60 single crystal by nanoindentation JF - Journal of Materials Science N2 - The onset of plasticity in a single crystal C60 fullerite was investigated by nanoindentation on the (111) crystallographic plane. The transition from elastic to plastic deformation in a contact was observed as pop-in events on loading curves. The respective resolved shear stresses were computed for the octahedral slip systems ⟨011¯¯¯⟩{111}, supposing that their activation resulted in the onset of plasticity. A finite element analysis was applied, which reproduced the elastic loading until the first pop-in, using a realistic geometry of the Berkovich indenter blunt tip. The obtained estimate of the C60 theoretical shear strength was about 1/11 of the shear modulus on {111} planes. KW - Finite element analysis KW - Fullerite KW - Nanoindentation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523208 DO - https://doi.org/10.1007/s10853-021-05991-2 VL - 56 IS - 18 SP - 10905 EP - 10914 PB - Springer Nature AN - OPUS4-52320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Evaluation of the damaging effect of crop protection formulations on high density polyethylene using the Full Notch Creep Test JF - Polymer N2 - Four typical high-density polyethylene container materials were used to investigate damage or stress cracking behavior in contact with model liquids for crop protection products. These model liquids are established in German regulations for the approval of dangerous goods containers and consist of typical admixtures used for crop protection products but without biological active ingredients. This study is performed with the standardized method of Full Notch Creep Test, adapting the media temperature to 40 °C according to the usual conditions where these test liquids are applied. The two model liquids differ into a water-based solution and a composition based on different organic solvents which are absorbed by the material up to significant levels. Therefore, extensive sorption measurements are performed. The fracture surfaces obtained are analyzed in detail not only by light microscopy, but also by laser scanning microscopy as well as scanning electron microscopy. Influence of pre-saturation and applied stress are addressed by respective systematic series of experiments. KW - Polyethylene KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Fracture PY - 2021 DO - https://doi.org/10.1016/j.polymer.2021.123853 SN - 0032-3861 VL - 228 SP - 123853 PB - Elsevier Ltd. AN - OPUS4-52686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Mancias, J. A1 - Gan, B. A1 - Maaß, Robert T1 - Evidence of room-temperature shear-deformation in a Cu-Al intermetallic JF - Scripta Materialia N2 - Lamellar eutectics are known to evidence plastic shear in otherwise brittle intermetallics, if the lamella spacing is small enough. Here we pursue this idea of confined plasticity in intermetallics further and demonstrate room-temperature shear-deformation in a two-phase CuAl 2 -CuAl intermetallic nano- composite. The presence of a phase with a 3-fold symmetry is also revealed after deformation. Simula- tion of transmission electron microscopy images shows this to be monoclinic CuAl. These observations are made in the deformation zone underneath locations of nanoindents, of which the force-displacement curves exhibit an unusual response of continuously increasing pop-in sizes with load. KW - Nanoindentation KW - Intermetallic KW - Nano-composite KW - Shear bands KW - Plasticity PY - 2021 DO - https://doi.org/10.1016/j.scriptamat.2020.08.033 VL - 190 SP - 126 EP - 130 PB - Elsevier Ltd. AN - OPUS4-52455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Trappe, Volker T1 - Failure Mechanisms of GFRP Scarf Joints under Tensile Load JF - Materials N2 - A potential repair alternative to restoring the mechanical properties of lightweight fiberreinforced polymer (FRP) structures is to locally patch these areas with scarf joints. The effects of such repair methods on the structural integrity, however, are still largely unknown. In this paper, the mechanical property restoration, failure mechanism, and influence of fiber orientation mismatch between parent and repair materials of 1:50 scarf joints are studied on monolithic glass fiber-reinforced polymer (GFRP) specimens under tensile load. Two different parent orientations of [-45/+45]2S and [0/90]2S are exemplarily examined, and control specimens are taken as a baseline for the tensile strength and stiffness property recovery assessment. Using a layer-wise stress analysis with finite element simulations conducted with ANSYS Composite PrepPost to support the experimental investigation, the fiber orientation with respect to load direction is shown to affect the critical regions and thereby failure mechanism of the scarf joint specimens. KW - Scarf joint KW - Glass fiber reinforced polymers KW - Failure mechanisms PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523952 DO - https://doi.org/10.3390/ma14071806 VL - 14 IS - 7 SP - 1806 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qu, R. A1 - Maaß, Robert A1 - Liu, Z. A1 - Tönnies, D. A1 - Tian, L. A1 - Ritchie, R. A1 - Zhang, Z. A1 - Volkert, A. T1 - Flaw-insentive fracture of a micrometer-sized brittle metallic glass JF - Acta Materialia N2 - Brittle materials, such as oxide glasses, are usually very sensitive to flaws, giving rise to a macroscopic fracture strength that is much lower than that predicted by theory. The same applies to metallic glasses (MGs), with the important difference that these glasses can exhibit certain plastic strain prior to catas- trophic failure. Here we consider the strongest metallic alloy known, a ternary Co 55 Ta 10 B 35 MG. We show that this macroscopically brittle glass is flaw-insensitive at the micrometer scale. This discovery emerges when testing pre-cracked specimens with self-similar geometries, where the fracture stress does not de- crease with increasing pre-crack size. The fracture toughness of this ultra-strong glassy alloy is further shown to increase with increasing sample size. Both these findings deviate from our classical under- standing of fracture mechanics, and are attributed to a transition from toughness-controlled to strength- controlled fracture below a critical sample size. KW - Metallic glass KW - Fracture toughness KW - Size effect KW - Small-scale PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117219 VL - 218 PB - Elsevier Ltd. AN - OPUS4-53097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants JF - Advanced Engineering Materials N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531227 DO - https://doi.org/10.1002/adem.202100445 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Mrkwitschka, Paul A1 - Moos, R. A1 - Rabe, Torsten T1 - Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators JF - Journal of the American Ceramic Society N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulationmaterial should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic Composite material adapted for multilayer generators fromcalciummanganate and Calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500◦C), a sintering temperature of 900◦C, and a high resistivity up to 800◦C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases. KW - Electrical insulators KW - Glass-ceramics KW - Multilayers KW - Thermal expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538898 DO - https://doi.org/10.1111/jace.18235 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley Online Library AN - OPUS4-53889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - Incorporating elasticity into CALPHAD-informed density-based grain boundary phase diagrams reveals segregation transition in Al-Cu and Al-Cu-Mg alloys JF - Acta Materialia N2 - The phase-like behavior of grain boundaries (GBs), recently evidenced in several materials, is opening up new possibilities in the design of alloy microstructures. In this context, GB phase diagrams are contributing to a predictive description of GB segregation and (interfacial) phase changes. The influence of chemo-mechanical solute-GB interactions on the GB phase diagram remains elusive so far. This is particularly important for multi-component alloys where the elastic interactions among solute atoms, of various sizes and bonding energies, can prevail, governing a complex co-segregation phenomenon. Recently, we developed a density-based model for GB thermodynamics that intrinsically accounts for GB elasticity in pure elements. In this work, we incorporate the homogeneous and heterogeneous elastic energies associated with the solutes into the density-based framework. We derive the multi-component homogeneous elastic energy by generalizing the continuum misfitting sphere model and extend it for GBs. The density-based free energy functional directly uses bulk CALPHAD thermodynamic data. The model is applied to binary and ternary Al alloys. We reveal that the elastic energy can profoundly affect the GB solubility and segregation behavior, leading to Cu segregation in otherwise Cu-depleted Al GBs. Consequently, GB segregation transition, i.e., a jump in the GB segregation as a function of alloy composition, is revealed in Al-Cu and Al-Cu-Mg alloy systems with implications for subsequent GB precipitation in these alloys. CALPHAD-informed elasticity-incorporated GB phase diagrams enable addressing a broader range of GB phenomena in engineering multi-component alloys. KW - Grain boundary thermodynamics KW - Density-based model KW - Al alloys KW - Grain boundary phase diagram KW - CALPHAD KW - Elastic energy PY - 2021 DO - https://doi.org/10.1016/j.commatsci.2021.110717 VL - 199 SP - 110717 PB - Elsevier B.V. AN - OPUS4-53058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haas, S. A1 - Manzoni, Anna Maria A1 - Holzinger, M. A1 - Glatzel, U. T1 - Influence of high melting elements on microstructure, tensile strength and creep resistance of the compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 JF - Materials chemistry and physics N2 - Due to its matrix/γ′ structure, the compositionally complex alloy (CCA) Al10Co25Cr8Fe15Ni36Ti6 has excellent properties that fulfill the requirements for a high-temperature material. This base alloy is alloyed with small amounts of high melting elements to a further improvement of its properties, which results in different shapes, fractions and sizes of the two phases γ′ and Heusler after various homogenization and annealing steps. By correlating this microstructure with time independent and dependent mechanical properties, conclusions can be drawn about the effects of the individual phases. The needle-shaped Heusler-phase leads to bad mechanical behavior if its phase fraction is too high. A fraction below 3 vol% is not critical in tensile tests, but it reduces the creep resistance compared to a purely two-phase matrix/γ′-alloy. Sharp-edged cubic γ′-particles and a coarse Heusler-phase without sharp edges in case of the base alloy with 0.5 at.% hafnium lead to the best tensile and creep properties in the high temperature range. At 750 °C, the Hf-containing alloy clearly outperforms two commercially used alloys in the targeted area of application when it comes to creep resistance. KW - High entropy alloy KW - Creep KW - Microstructure PY - 2021 DO - https://doi.org/10.1016/j.matchemphys.2021.125163 SN - 0254-0584 VL - 274 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-53175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Finn, Monika A1 - Künecke, Georgia A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Leistner, C. A1 - Petrushin, N. A1 - Svetlov, I. T1 - Investigation of Elastic Properties of the Single-Crystal Nickel-Base Superalloy CMSX-4 in the Temperature Interval between Room Temperature and 1300 °C JF - Crystals N2 - The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade material in gas turbines were investigated by the sonic resonance method in the temperature interval between room temperature and 1300 °C. Elastic constants at such high temperatures are needed to model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as well as during technical accidents which may happen in service (overheating). High reliability of the results was achieved using specimens of different crystallographic orientations, exciting various vibration modes as well as precise measurement of the material density and thermal Expansion required for modeling the resonance frequencies by finite element method. Combining the results measured in this work and literature data the elastic constants of the gamma and gamma' phases were predicted. This prediction was supported by measurement of the temperature dependence of the gamma'fraction. All data obtained in this work are given in numerical or analytical forms and can be easily used for different scientific and engineering calculations. KW - Nickel-base superalloys KW - Single-crystals KW - Characterization KW - Elastic constants PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520972 DO - https://doi.org/10.3390/cryst11020152 VL - 11 IS - 2 SP - 152 PB - MDPI AN - OPUS4-52097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons JF - Journal of Microscopy N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10−3–10-2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 DO - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Lei A1 - Hoyt, J. J. T1 - Layering misalignment and negative temperature dependence of interfacial free energy of B2-liquid interfaces in a glass forming system JF - Acta Materialia N2 - From molecular dynamics simulations and the capillary fluctuation method, the solid-liquid interfacial free energy has been computed for the B2-liquid interface in the Cu-Zr system. Consistent with previous results for the FCC-liquid interface in Cu-Zr and Al-Sm but atypical of most alloys, was found to increase as the temperature is lowered. In addition, the temperature dependence was obtained for model Lennard-Jones B2-liquid alloys. In all cases the unusual temperature dependence of is correlated with an atomic structure of the interfacial region characterized by a misalignment of the number density peaks between solvents and solutes. In cases where the number density peaks are aligned, the typical temperature dependence is observed. The results are discussed in terms of the Gibbs theory of the thermodynamics of interfaces. It is proposed that the unique interfacial structure and the atypical temperature dependence of are hallmarks of an easy glass forming alloy. KW - Atomistic simulations KW - Interfacial free energy KW - Layering misalignment KW - Glass forming PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117259 SN - 1359-6454 VL - 219 SP - 117259 PB - Elsevier Ltd. AN - OPUS4-53650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blank, Robin A1 - Nitschke, Heike A1 - Saliwan Neumann, Romeo A1 - Kranzmann, Axel T1 - Materialographic Preparation of Salt JF - Praktische Metallographie N2 - Molten salt containing systems gain in importance for sustainable energy use and production. For research and development, interactions of molten salts with potential container materials are of major interest. This article introduces preparation procedures to display an intact metal and salt microstructure and their interface using light optical microscopy and scanning electron microscopy. The exemplary material combination is the ternary salt mixture NaCl-KCl-MgCl2 and the low alloyed steel 1.4901 (T92) with a maximum service temperature of 550 °C. These are potential elements/materials for use in latent heat thermal energy storages. KW - Molten salt KW - Corrosion KW - Steel KW - Aging KW - Dry preparation PY - 2021 DO - https://doi.org/10.1515/pm-2022-0058 VL - 59 IS - 10 SP - 628 EP - 640 PB - De Gruyter AN - OPUS4-56048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Ávila, Luis A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study JF - Materials Science and Engineering: A N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited near full density and the detected defects were spherical. Furthermore, the residual stresses in the loading direction were between −74 ± 24 MPa and 137 ± 20 MPa, and the EBSD measurements showed a preferential ⟨110⟩ orientation parallel to the build direction. A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. KW - Mechanical anisotropy KW - Residual stress KW - Crystal plasticity KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511719 DO - https://doi.org/10.1016/j.msea.2020.140154 SN - 0921-5093 VL - 799 SP - 140154 PB - Elsevier B.V. AN - OPUS4-51171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert A1 - Derlet, P. T1 - Micro-plasticity in a fragile model binary glass JF - Acta Materialia N2 - Atomistic deformation simulations in the nominally elastic regime are performed for a model binary glass with strain rates as low as 10 4 /s (corresponding to 0.01 shear strain per 1 μs). A strain rate dependent elastic softening due to a micro-plasticity is observed, which is mediated by thermally-activated localized structural transformations (LSEs). A closer inspection of the atomic-scale structure indicates the material response is distinctly different for two types of local atomic environments. A system spanning iscosahe- drally coordinated substructure responds purely elastically, whereas the remaining substructure admits both elastic and microplastic evolution. This leads to a heterogeneous internal stress distribution which, upon unloading, results in negative creep and complete residual-strain recovery. A detailed structural analysis in terms of local stress, atomic displacement, and SU(2) local bonding topology shows such mi- croscopic processes can result in large changes in local stress and are more likely to occur in geomet- rically frustrated regions characterized by higher free volume and softer elastic stiffness. The thermally- activated LSE activity also mediates structural relaxation, and in this way should be distinguished from stress-driven shear transformation activity which only rejuvenates glass structure. The frequency of LSE activity, and therefore the amount of micro-plasticity, is found to be related to the degree to which the glassy state is relaxed. These insights shed atomistic light onto the structural origins that may govern re- cent experimental observations of significant structural evolution in response to elastic loading protocols. KW - Molecular dynamics KW - Bulk metallic glasses KW - Plasticity KW - Residual strains PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523782 DO - https://doi.org/10.1016/j.actamat.2021.116771 VL - 209 SP - 116771 PB - Elsevier Ltd. AN - OPUS4-52378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Microstructural signatures of dislocation avalanches in a high-entropy alloy JF - Physical review materials N2 - Here, we trace in situ the slip-line formation and morphological signature of dislocation avalanches in a highentropy alloy with the aim of revealing their microstructural degree of localization. Correlating the intermittent microplastic events with their corresponding slip-line patterns allows defining two main event types, one of which is linked to the formation of new slip lines, whereas the other one involves reactivation of already existing slip lines. The formation of new slip lines reveals statistically larger and faster avalanches. The opposite tendency is seen for avalanches involving reactivation of already existing slip lines. The combination of both these types of events represents the highest degree of spatial avalanche delocalization that spans the entire sample, forming a group of events that determine the truncation length scale of the truncated power-law scaling. These observations link the statistics of dislocation avalanches to a microstructural observable. KW - High-entropy alloy KW - Dislocation avalanches PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.043604 SN - 2475-9953 VL - 5 IS - 4 SP - 3604 PB - American Physical Society CY - College Park, MD AN - OPUS4-52458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abboud, M. A1 - Motallebzadeh, A. A1 - Duygulu, O. A1 - Maaß, Robert A1 - Özerinc, S. T1 - Microstructure and nanomechanical behavior of sputtered CuNb thin films JF - Intermetallics N2 - We report on the mechanical properties of Cu–Nb alloys produced by combinatorial magnetron sputtering. Depending on the composition, the microstructure is either fully amorphous (~30–65 at.% Cu), a dispersion of Cu crystallites in an amorphous matrix (~70 at.%), or a dominant crystalline phase with separated nanoscale amorphous zones (~80 at.% Cu). Nanomechanical probing of the different microstructures reveals that the hardness of the fully amorphous alloy is much higher than a rule of mixture would predict. We further demonstrate a remarkable tunability of the resistance to plastic flow, ranging from ca. 9 GPa in the amorphous regime to ca. 2 GPa in the fully crystalline regime. We rationalize these findings based on fundamental structural considerations, thereby highlighting the vast structure-property design space that this otherwise immiscible binary alloy provides. KW - Deposition microstructure KW - Metallic glasses KW - Thin films KW - Mechanical properties KW - Nanocrystalline structure PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107249 SN - 0966-9795 VL - 136 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Farahbod-Sternahl, L. A1 - Saliwan Neumann, Romeo A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - On the determination of residual stresses in additively manufactured lattice structures JF - Journal of Applied Crystallography N2 - The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Additive manufacturing techniques generally allow the production of ‘lattice structures’ without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced distortion and even cracks. In most cases, internal stresses remain locked in the structures as residual stress. The determination of the residual stress in lattice structures through nondestructive neutron diffraction is described in this work. It is shown how two difficulties can be overcome: (a) the correct alignment of the lattice structures within the neutron beam and (b) the correct determination of the residual stress field in a representative part of the structure. The magnitude and the direction of residual stress are discussed. The residual stress in the strut was found to be uniaxial and to follow the orientation of the strut, while the residual stress in the knots was more hydrostatic. Additionally, it is shown that strain measurements in at least seven independent directions are necessary for the estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and an informed choice on the possible strain field. If the most prominent direction is not measured, the error in the calculated stress magnitude increases considerably. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Principal stress components KW - Neutron diffraction KW - Lattice structures PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520663 DO - https://doi.org/10.1107/S1600576720015344 SN - 1600-5767 VL - 54 SP - 228 EP - 236 AN - OPUS4-52066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Dubois, F. A1 - Mousa, M. S. A1 - von Schlippenbach, C. A1 - Többens, D. M. A1 - Yesilcicek, Yasemin A1 - Zaiser, E. A1 - Hesse, René A1 - Haas, S. A1 - Glatzel, U. T1 - On the Formation of Eutectics in Variations of the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy JF - Metallurgical and Materials Transactions A N2 - Superalloy inspired Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy is known for its gamma-gamma' microstructure and the third Heusler phase. Variations of this alloy, gained by replacing 0.5 or 1 at. pct Al by the equivalent amount of Mo, W, Zr, Hf or B, can show more phases in addition to this three-phase morphology. When the homogenization temperature is chosen too high, a eutectic phase formation can take place at the grain boundaries, depending on the trace elements: Mo and W do not form eutectics while Hf, Zr and B do. In order to avoid the eutectic formation and the potential implied grain boundary weakening, the homogenization temperature must be chosen carefully by differential scanning calorimetry measurements. A too low homogenization temperature, however, could impede the misorientation alignment of the dendrites in the grain. The influence of grain boundary phases and incomplete dendrite re-orientation are compared and discussed. KW - High entropy alloy KW - Eutectic KW - Homogenization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543504 DO - https://doi.org/10.1007/s11661-020-06091-7 VL - 52 IS - 1 SP - 143 EP - 150 PB - Springer AN - OPUS4-54350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - Rowolt, C. A1 - Milkereit, B. A1 - Darvishi Kamachali, Reza A1 - Kessler, O. A1 - Skrotzki, Birgit T1 - On the long-term aging of S-phase in aluminum alloy 2618A JF - Journal of Materials Science N2 - The aluminum alloy 2618A is applied for engine components such as radial compressor wheels which operate for long time at elevated temperatures. This results in coarsening of the hardening precipitates and degradation in mechanical properties during the long-term operation, which is not taken into account in the current lifetime prediction models due to the lack of quantitative microstructural and mechanical data. To address this issue, a quantitative investigation on the evolution of precipitates during long-term aging at 190 °C for up to 25,000 h was conducted. Detailed transmission electron microscopy (TEM) was combined with Brinell hardness measurements and thorough differential scanning calorimetry (DSC) experiments. The results showthat GPB zones and S-phase Al2CuMg grow up to < 1,000 h during which the GPB zones dissolve and S-phase precipitates form. For longer aging times, only S-phase precipitates coarsen, which can be well described using the Lifshitz–Slyozov Wagner theory of ripening. A thorough understanding of the underlying microstructural processes is a prerequisite to enable the integration of aging behavior into the established lifetime models for components manufactured from alloy 2618A. KW - Long-term aging KW - Transmission electron microscopy (TEM) KW - Differential scanning calorimetry (DSC) KW - Microstructure KW - S-phase KW - Ostwald ripening PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519899 DO - https://doi.org/10.1007/s10853-020-05740-x SN - 0022-2461 VL - 56 IS - 14 SP - 8704 EP - 8716 PB - Springer Nature AN - OPUS4-51989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tielemann, Christopher A1 - Busch, R. A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Avramov, I. A1 - Müller, Ralf T1 - Oriented surface nucleation in diopside glass JF - Journal of Non-Crystalline Solids N2 - Es wird die Texturbildung in kristallisierendem Diopsidglas im Zusammenhang mit der Oberflächenbeschaffenheit der unbehandelten Probe untersucht. Zudem wird der diskutiert, dass es sich bei der Texturbildung in Gläsern höchstwahrscheinlich um ein Nukleationsphänomen handelt welches auf die richtungsabhängige Grenzflächenenergie der kristallisierenden Phase zurückzuführen ist. N2 - Oriented surface crystallization on polished diopside glass surfaces has been studied with scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and laser scanning microscopy. An orientation preference of [001] parallel to the glass surface was detected for separately growing diopside crystals even as small as 700 nm in size. This finding shows that crystal orientation occurs in the outermost surface layer without crystal-crystal interaction and indicates that the crystal orientation is a result of oriented nucleation. Depending on surface preparation, monomodal crystal orientation distributions with [100] perpendicular to the surface or bimodal distributions with [100] and [010] perpendicular to the glass Surface were detected. It was also shown that the degree of crystal orientation increases with decreasing Surface roughness. The observed orientation of diopside crystals could be explained in terms of the interfacial energies of different crystal faces. KW - Surface energy KW - Glass ceramic KW - Glass KW - EBSD KW - Diopsid PY - 2021 UR - https://www.sciencedirect.com/science/article/pii/S002230932100020X DO - https://doi.org/10.1016/j.jnoncrysol.2021.120661 SN - 0022-3093 VL - 562 PB - Elsevier B.V. AN - OPUS4-53073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Klunker, Andre T1 - Phase field modeling of Hertzian cone cracks under spherica indentation JF - Strength of Materials N2 - A phase field model of brittle fracture has been developed to simulate the Hertzian crack induced by penetration of a rigid sphere to an isotropic linear-elastic half-space. The fracture formation is regarded as a diffusive field variable, which is zero for the intact material and unity if there is a crack. Crack growth is assumed to be driven by a strain invariant. The numerical implementation is performed with the finite element method and an implicit time integration scheme. The mechanical equilibrium and the phase field equations are solved in a staggered manner, sequentially updating the displacement field and the phase field variable. Numerical examples demonstrate the capability of the model to reproduce the nucleation and growth of the Hertzian cone crack. KW - Hertzian cracks KW - Phase field model KW - Contact mechanics PY - 2021 DO - https://doi.org/10.1007/s11223-021-00251-9 VL - 52 IS - 6 SP - 967 EP - 974 AN - OPUS4-52276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, M. A1 - Diercks, P. A1 - Manzoni, Anna Maria A1 - Čížek, J. A1 - Ramamurty, U. A1 - Banhart, J. T1 - Positron annihilation investigation of thermal cycling induced martensitic transformation in NiTi shape memory alloy JF - Acta Materialia N2 - Thermal cycling of a Ni-excess NiTi alloy was conducted between 50 °C and liquid nitrogen temperature to induce martensitic transformations and to reverse them after. The starting point was an annealed and slowly cooled state, the end point a sample thermally cycled 1500 times. Positron annihilation lifetime spectra and Coincidence Doppler Broadening profiles were obtained in various states and at various tem- peratures. It was found that the initial state was low in defects with positron lifetimes close to that of bulk NiTi. Cycling lead to a continuous build-up of a defect structure up to 20 0 −50 0 cycles after which saturation was reached. Two types of defects created during cycling were identified, namely pure dislo- cations and vacancies attached to dislocations. KW - Shape memory alloy KW - Thermal Cycling KW - Defects KW - Positron annihilation spectroscopy KW - Austenite-to-martensite phase transformation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533641 DO - https://doi.org/10.1016/j.actamat.2021.117298 VL - 220 SP - 117298 PB - Elsevier Ltd. AN - OPUS4-53364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Knobloch, Tim A1 - Altenburg, Simon A1 - Recknagel, Sebastian A1 - Bettge, Dirk A1 - Hilgenberg, Kai T1 - Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts JF - Metals N2 - Undetected and undesired microstructural variations in components produced by laser powder bed fusion are a major challenge, especially for safety-critical components. In this study, an in-depth analysis of the microstructural features of 316L specimens produced by laser powder bed fusion at different levels of volumetric energy density and different levels of inter layer time is reported. The study has been conducted on specimens with an application relevant build height (>100 mm). Furthermore, the evolution of the intrinsic preheating temperature during the build-up of specimens was monitored using a thermographic in-situ monitoring set-up. By applying recently determined emissivity values of 316L powder layers, real temperatures could be quantified. Heat accumulation led to preheating temperatures of up to about 600 °C. Significant differences in the preheating temperatures were discussed with respect to the individual process parameter combinations, including the build height. A strong effect of the inter layer time on the heat accumulation was observed. A shorter inter layer time resulted in an increase of the preheating temperature by more than a factor of 2 in the upper part of the specimens compared to longer inter layer times. This, in turn, resulted in heterogeneity of the microstructure and differences in material properties within individual specimens. The resulting differences in the microstructure were analyzed using electron back scatter diffraction and scanning electron microscopy. Results from chemical analysis as well as electron back scatter diffraction measurements indicated stable conditions in terms of chemical alloy composition and austenite phase content for the used set of parameter combinations. However, an increase of the average grain size by more than a factor of 2.5 could be revealed within individual specimens. Additionally, differences in feature size of the solidification cellular substructure were examined and a trend of increasing cell sizes was observed. This trend was attributed to differences in solidification rate and thermal gradients induced by differences in scanning velocity and preheating temperature. A change of the thermal history due to intrinsic preheating could be identified as the main cause of this heterogeneity. It was induced by critical combinations of the energy input and differences in heat transfer conditions by variations of the inter layer time. The microstructural variations were directly correlated to differences in hardness. KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Heat accumulation KW - Inter layer time KW - Cellular substructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529240 DO - https://doi.org/10.3390/met11071063 VL - 11 IS - 7 SP - 1063 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lin, Y.-Y. A1 - Schleifer, F. A1 - Holzinger, M. A1 - Ta, N. A1 - Skrotzki, Birgit A1 - Darvishi Kamachali, Reza A1 - Glatzel, U. A1 - Fleck, M. T1 - Quantitative Shape-Classification of Misfitting Precipitates during Cubic to Tetragonal Transformations: Phase-Field Simulations and Experiments JF - Materials N2 - The effectiveness of the mechanism of precipitation strengthening in metallic alloys depends on the shapes of the precipitates. Two different material systems are considered: tetragonal γ′′ precipitates in Ni-based alloys and tetragonal θ′ precipitates in Al-Cu-alloys. The shape formation and evolution of the tetragonally misfitting precipitates was investigated by means of experiments and phase-field simulations. We employed the method of invariant moments for the consistent shape quantification of precipitates obtained from the simulation as well as those obtained from the experiment. Two well-defined shape-quantities are proposed: (i) a generalized measure for the particles aspect ratio and (ii) the normalized λ2, as a measure for shape deviations from an ideal ellipse of the given aspect ratio. Considering the size dependence of the aspect ratio of γ′′ precipitates, we find good agreement between the simulation results and the experiment. Further, the precipitates’ in-plane shape is defined as the central 2D cut through the 3D particle in a plane normal to the tetragonal c-axes of the precipitate. The experimentally observed in-plane shapes of γ′′-precipitates can be quantitatively reproduced by the phase-field model. KW - γ″ phase KW - Phase-field simulation KW - Misfitting precipitate KW - Nickel-base alloy KW - Al-Cu alloy KW - θ′ phase KW - Precipitate shape PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522743 DO - https://doi.org/10.3390/ma14061373 VL - 14 IS - 6 SP - 1373 PB - MDPI AN - OPUS4-52274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M. A1 - Malolakis, I. A1 - Kalinka, Gerhard A1 - Deubener, J. A1 - Chakraborty, S. A1 - Meiners, D. T1 - Re-use potential of carbon fibre fabric recovered from infusible thermoplastic CFRPs in 2nd generation thermosetting-matrix composites JF - Composites Communications N2 - The research presented here attempts to assess the potential for re-using carbon fibre (CF) fabrics recovered from recycling infusible acrylic thermoplastic carbon fibre reinforced polymer composites (CFRPs) in a universal manner, i.e. by combining with a wide variety of matrices to manufacture 2nd generation composite laminates by resin infusion. The 2nd generation composites have been compared in terms of bulk and interfacial properties against counteparts processed with virgin carbon fibre fabric infused with the same matrices. Generally, an increase in damping (tanδ) was observed in all 2nd generation composites, which can be attributed to a residual thin thermoplastic layer present on the recovered fibres. The interfacial adhesion of the 2nd generation Composites was investigated by shear tests and scanning electron micsoscopy, and also appears to be less influenced by the type of matrix. KW - Composite recycling KW - Thermoplastic matrix KW - Thermosetting resin KW - Fibre/matrix bonding PY - 2021 DO - https://doi.org/10.1016/j.coco.2021.100974 VL - 28 SP - 100974 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-53639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M. A1 - Manolakis, I. A1 - Chatterjee, A. A1 - Kalinka, Gerhard A1 - Deubener, J. A1 - Pfnür, H. A1 - Chakraborty, S. A1 - Meiners, D. T1 - Reducing the raw material usage for room temperature infusible and polymerisable thermoplastic CFRPs through reuse of recycled waste matrix material JF - Composites Part B: Engineering N2 - In this work, a closed loop recycling process is investigated, which allows polymerised bulk thermoplastic matrix (Elium 150) from production waste (also referred to as recyclate) to be reused as additive in composite manufacturing by vacuum assisted resin infusion (VARI) of virgin Elium 150 monomer. It is shown that this process can save up to 7.5 wt% of virgin material usage in each processing cycle. At the same time, the thermal stability and stiffness of the composite increases with the proportion of recyclate introduced. Contemporarily, the shear and bending properties have also been observed to improve. Gel permeation chromatography (GPC) showed that the changes observed are due to an increase in molecular weight with the recyclate content. In particular, a correlation between the molecular weight and the shear properties of the composite was discovered using single fibre push-out tests. KW - Mechanical properties KW - Recycling KW - Carbon fibres KW - Fibre/matrix bond PY - 2021 DO - https://doi.org/10.1016/j.compositesb.2021.108877 SN - 1359-8368 VL - 216 SP - 108877 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-52711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Camin, B. A1 - Hansen, L. A1 - Heuser, M. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. A1 - Fedelich, Bernard T1 - Refinement and Experimental Validation of a Vacancy Model of Pore Annihilation in Single-Crystal Nickel-Base Superalloys during Hot Isostatic Pressing JF - Advanced Engineering Materials N2 - Initially, as-cast and homogenized single crystals of nickel-base superalloy CMSX-4 are subjected to hot isostatic pressing at 1288 °C. Two series of experiments are conducted: under the same pressure of 103 MPa but with different durations, between 0.5 and 6 h, and under different pressures, between 15 and 150 MPa, but for the same time of 0.5 h. The porosity annihilation is investigated metallographically and by high-resolution synchrotron X-ray tomography. The obtained experimental results are compared with the predictions of the vacancy model proposed recently in the group. Herein, the model is further refined by coupling with X-ray tomography. The model describes the evolution of the pore arrays enclosed in the 3D synchrotron tomograms during hot isostatic pressing and properly predicts the time and stress dependences of the pore annihilation kinetics. The validated model and the obtained experimental results are used for selecting the optimal technological parameters such as applied pressure and processing time KW - Superalloys KW - HIP KW - Single-Crystal KW - Diffusion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526859 DO - https://doi.org/10.1002/adem.202100211 VL - 23 IS - 7 SP - 211 AN - OPUS4-52685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belli, R. A1 - Hurle, K. A1 - Schürrlein, J. A1 - Petschelt, A. A1 - Werbach, K. A1 - Peterlik, H. A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Lohbauer, U. T1 - Relationships between fracture toughness, Y2O3 fraction and phase content in modern dental Yttria-doped zirconias JF - Journal of the European Ceramic Society N2 - The relationship between fracture toughness and Yttria content in modern zirconia ceramics was revised. For that purpose, we evaluated here 10 modern Y2O3-stabilized zirconia (YSZ) materials currently used in biomedical applications, namely prosthetic and implant dentistry. The most relevant range between 2-5 mol% Y2O3 was addressed by selecting from conventional opaque 3 mol% YSZ up to more translucent compositions (4-5 mol% YSZs). A technical 2YSZ was used to extend the range of our evaluation. The bulk mol% Y2O3 concentration was measured by X-Ray Fluorescence Spectroscopy. Phase quantification by Rietveld refinement considered two tetragonal phases or an additional cubic phase. A first-account of the fracture toughness (KIc) of the pre-sintered blocks is given, which amounted to 0.4 – 0.7 MPa√m. In the fully-densified state, an inverse power-law behavior was obtained between KIc and bulk mol% Y2O3 content, whether using only our measurements or including literature data, challenging some established relationships. A linear relationship between KIc and the fraction of the transformable t-phase was established within the range of 30–70 vol%. KW - Ceramics KW - Dental KW - Zirconia KW - Fracture toughness KW - X-ray-diffraction KW - Power law PY - 2021 DO - https://doi.org/10.1016/j.jeurceramsoc.2021.08.003 VL - 41 IS - 15 SP - 7771 EP - 7782 PB - Elsevier Ltd. AN - OPUS4-53107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Patzig, C. A1 - Krause, M. A1 - Höche, T. T1 - Sample preparation for analytical scanning electron microscopy using initial notch sectioning JF - Micron N2 - A novel method for broad ion beam based sample sectioning using the concept of initial notches is presented. An adapted sample geometry is utilized in order to create terraces with a well-define d step in erosion depth from the surface. The method consists of milling a notch into the surface, followed by glancing-angle ion beam erosion, which leads to preferential erosion at the notch due to increased local surface elevation. The process of terrace formation can be utilized in sample preparation for analytical scanning electron microscopy in order to get efficient access to the depth-dependent microstructure of a material. It is demonstrated that the method can be applied to both conducting and non-conducting specimens. Furthermore, experimental parameters influencing the preparation success are determined. Finally, as a proof-of-concept, an electron backscatter diffraction study on a surface crystallized diopside glass ceramic is performed, where the method is used to analyze orientation dependent crystal growth phenomena occurring during growth of surface crystals into the bulk. KW - 3D etching KW - Ion beam erosion Sectioning KW - EBSD KW - Sample preparation KW - Analytical scanning electron microscopy KW - SEM KW - Glass Ceramic KW - Glass KW - Diopsid PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103090 SN - 0968-4328 VL - 150 PB - Elsevier B.V. AN - OPUS4-53075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass JF - PLOS One N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521517 DO - https://doi.org/10.1371/journal.pone.0246511 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, J. A1 - Agea Blanco, B. A1 - Bruno, Giovanni A1 - Günster, Jens A1 - Zocca, Andrea T1 - Self-Organization Postprocess for Additive Manufacturingin Producing Advanced Functional Structure and Material JF - Advanced Engineering Materials N2 - Additive manufacturing (AM) is developing rapidly due to itsflexibility in producing complex geometries and tailored material compositions. However, AM processes are characterized by intrinsic limitations concerning their resolution and surface finish, which are related to the layer-by-layer stacking process. Herein, a self-organization process is promoted as an approach to improve surface quality and achieve optimization of 3D minimal surface lightweight structures. The self-organization is activated after the powder bed 3D printing process via local melting, thereby allowing surface tension-driven viscous flow.The surface roughness Ra (arithmetic average of the roughness profile) could bedecreased by a factor of 1000 and transparent lenses and complex gyroid structures could be produced for demonstration. The concept of self-organization is further elaborated by incorporating external magnetic fields to intentionally manipulate magnetic particles, which are mixed with the polymer before printing and self-organization. This concept can be applied to develop programmable materials with specific microtextures responding to the external physical conditions. KW - Additive Manufacturing KW - Self-organization KW - Triply Periodical Minimal Surface PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540588 DO - https://doi.org/10.1002/adem.202101262 VL - 24 IS - 6 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-54058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Haubrich, J. A1 - Avila, Luis A1 - Schoenstein, F. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature JF - International Journal of Fatigue N2 - Manufacturing defects, high residual stress (RS), and microstructures affect the structural integrity of laser powder bed fusion (LPBF) Ti-6Al-4V. In this study, the individual effect of these factors on fatigue performance at elevated temperature (300 °C) was evaluated. Material in as-built condition and subjected to post-processing, including two heat treatments and hot isostatic pressing, was investigated. It was found that in the absence of tensile RS, the fatigue life at elevated temperature is primary controlled by the defects; and densification has a much stronger effect than the considered heat treatments on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance KW - Computed tomography PY - 2021 DO - https://doi.org/10.1016/j.ijfatigue.2021.106239 SN - 0142-1123 VL - 148 SP - 106239 PB - Elsevier Ltd. AN - OPUS4-52369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ta, N. A1 - Bilal, M. U. A1 - Häusler, I. A1 - Saxena, A. A1 - Lin, Y.-Y. A1 - Schleifer, F. A1 - Fleck, M. A1 - Glatzel, U. A1 - Skrotzki, Birgit A1 - Darvishi Kamachali, Reza T1 - Simulation of the θ′ Precipitation Process with Interfacial Anisotropy Effects in Al-Cu Alloys JF - Materials N2 - The effects of anisotropic interfacial properties and heterogeneous elasticity on the growth and ripening of plate-like θ′-phase (Al2Cu) in Al-1.69 at.% Cu alloy are studied. Multi-phase-field simulations are conducted and discussed in comparison with aging experiments. The precipitate/matrix interface is considered to be anisotropic in terms of its energy and mobility. We find that the additional incorporation of an anisotropic interfacial mobility in conjunction with the elastic anisotropy result in substantially larger aspect ratios of the precipitates closer to the experimental observations. The anisotropy of the interfacial energy shows comparably small effect on the precipitate’s aspect ratio but changes the interface’s shape at the rim. The effect of the chemo-mechanical coupling, i.e., the composition dependence of the elastic constants, is studied as well. We show that the inverse ripening phenomenon, recently evidenced for δ’ precipitates in Al-Li alloys (Park et al. Sci. Rep. 2019, 9, 3981), does not establish for the θ′ precipitates. This is because of the anisotropic stress fields built around the θ′ precipitates, stemming from the precipitate’s shape and the interaction among different variants of the θ′ precipitate, that disturb the chemo-mechanical effects. These results show that the chemo-mechanical effects on the precipitation ripening strongly depend on the degree of sphericity and elastic isotropy of the precipitate and matrix phases. KW - Aging KW - Phase-field simulation KW - Interfacial anisotropy KW - Chemo-mechanical coupling KW - Precipitation KW - Elasticity KW - θ′-(Al2Cu) precipitate phase PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522672 DO - https://doi.org/10.3390/ma14051280 VL - 14 IS - 5 SP - 1280 PB - MDPI AN - OPUS4-52267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, X. A1 - Darvishi Kamachali, Reza A1 - Boyce, B.L. A1 - Clark, B.G. A1 - Raabe, D. A1 - Thompson, G.B. T1 - Spinodal Decomposition in Nanocrystalline Alloys JF - Acta Materialia N2 - For more than half a century, spinodal decomposition has been a key phenomenon in considering the formation of secondary phases in alloys. The most prominent aspect of the spinodal phenomenon is the lack of an energy barrier on its transformation pathway, offering an alternative to the nucleation and growth mechanism. The classical description of spinodal decomposition often neglects the influence of defects, such as grain boundaries, on the transformation because the innate ability for like-atoms to cluster is assumed to lead the process. Nevertheless, in nanocrystalline alloys, with a high population of grain boundaries with diverse characters, the structurally heterogeneous landscape can greatly influence the chemical decomposition behavior. Combining atom-probe tomography, precession electron diffraction and density-based phase-field simulations, we address how grain boundaries contribute to the temporal evolution of chemical decomposition within the miscibility gap of a Pt-Au nanocrystalline system. We found that grain boundaries can actually have their own miscibility gaps profoundly altering the spinodal decomposition in nanocrystalline alloys. A complex realm of multiple interfacial states, ranging from competitive grain boundary segregation to barrier-free low-dimensional interfacial decomposition, occurs with a dependency upon the grain boundary character. KW - Density-based Thermodynamics KW - Nanocrystalline alloys KW - Spinodal decomposition KW - Defects engineering PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117054 VL - 215 SP - 117054 PB - Elsevier Ltd. AN - OPUS4-52918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, C. A1 - Ikeda, Yuki A1 - Maaß, Robert T1 - Strain-dependent shear-band structure in a Zr-based bulk metallic glass JF - Scripta Materialia N2 - This work presents strong evidence for structural damage accumulation as a function of shear strain admitted by shear bands in a Zr-based bulk metallic glass. Analyzing the shear-band structure of shear- band segments that experienced shear strains covering four orders of magnitude with high-angle annular dark field transmission electron microscopy (HAADF-STEM) reveals strongly scattered data with on overall trend of increasing local volume dilatation with increasing shear strain. Locally, however, a variety of trends is observed, which underlines the strong heterogeneity of structural damage in shear bands in metallic glasses. KW - Transmission electron microscopy KW - Metallic glass KW - Shear bands KW - Shear-band structure KW - Shear strain PY - 2021 DO - https://doi.org/10.1016/j.scriptamat.2020.08.030 VL - 190 SP - 75 EP - 79 PB - Elsevier Ltd. AN - OPUS4-52454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Bäßler, Ralph T1 - Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C JF - Coatings N2 - Al2O3 has been widely used as a coating in industrial applications due to its excellent chemical and thermal resistance. Considering high temperatures and aggressive mediums exist in geothermal systems, Al2O3 can be a potential coating candidate to protect steels in geothermal applications. In this study, γ-Al2O3 was used as a coating on martensitic steels by applying AlOOH sol followed by a heat treatment at 600 °C. To evaluate the coating application process, one-, two-, and three-layer coatings were tested in the artificial North German Basin (NGB), containing 166 g/L Cl−, at 150 °C and 1 MPa for 168 h. To reveal the stability of the Al2O3 coating in NGB solution, three-layer coatings were used in exposure tests for 24, 168, 672, and 1296 h, followed by surface and cross-section characterization. SEM images show that the Al2O3 coating was stable up to 1296 h of exposure, where the outer layer mostly transformed into boehmite AlOOH with needle-like crystals dominating the surface. Closer analysis of cross-sections showed that the interface between each layer was affected in long-term exposure tests, which caused local delamination after 168 h of exposure. In separate experiments, electrochemical impedance spectroscopy (EIS) was performed at 150 °C to evaluate the changes of coatings within the first 24 h. Results showed that the most significant decrease in the impedance is within 6 h, which can be associated with the electrolyte penetration through the coating, followed by the formation of AlOOH. Here, results of both short-term EIS measurements (up to 24 h) and long-term exposure tests (up to 1296 h) are discussed. KW - Al2O3 KW - Geothermal KW - Martensitic steels KW - Behmite KW - Corrosion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525551 DO - https://doi.org/10.3390/coatings11050526 SN - 2079-6412 VL - 11 IS - 5 SP - 526 PB - MDPI CY - Basel AN - OPUS4-52555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Camin, B. A1 - Hansen, L. A1 - Chyrkin, A. A1 - Nolze, Gert T1 - Synchrotron Sub-μ X-ray Tomography of Kirkendall Porosity in a Diffusion Couple of Nickel-Base Superalloy and Nickel after Annealing at 1250 °C JF - Advanced Engineering Materials N2 - Kirkendall porosity that forms during interdiffusion in a diffusion couple of nickel-base superalloy CMSX-10 with pure nickel is investigated. The diffusion experiments are conducted at a temperature of 1250 °C, where the strengthening ƴ'-phase ist partially dissolved. The porosity is studied by X-ray sub-μ tomography with a spatial resolution of about 0.35³ μm³ at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. It is found that depending on the distance from the interface the Kirkendall pores take different shapes: octahedral, rounded pyramidal, drop shaped, dendritic, pear shaped, and joint shapes. Such a variety of pore morphologies indicates a complex multistage process of porosity nucleation and growth under vacancy supersaturation of different degrees. The experimental findings are interpreted on the basis of the results of diffusion modeling. It is shown that the kinetics of porosity growth is essentially influenced by the dissolution of the ƴ'-phase. KW - Diffusion KW - Nickel alloys KW - Porous materials KW - Synchrotron radiations KW - Three-dimensional tomographies PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521476 DO - https://doi.org/10.1002/adem.202001220 VL - 23 IS - 4 SP - 1220 PB - Wiley Online Library AN - OPUS4-52147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Cios, G. A1 - Tokarski, T. T1 - Tetragonality mapping of martensite in high-carbon steel by EBSD JF - Materials Characterization N2 - The locally varying tetragonality in martensite grains of a high-carbon steel (1.2 mass percent C) was resolved by electron backscatter diffraction (EBSD) with a spatial resolution in the order of 100 nm. Compared to spatially integrating X-ray diffraction, which yielded an average tetragonality fo c/a=1.05, the EBSD measurements in the scanning electron microscope allowed to image a local variation of the lattice papameter ration c/a in the range of 1.02 ≤ c/a ≤ 1.07. The local variation of tetragonality is confirmed by two different EBSD data analysis approaches based on the fitting of simulated to experimental EBSD patterns. The resulting EBSD-based tetragonality maps are pointing to a complex interaction of carbon concentration and local lattice distortions during the formation process of martensitic structures. KW - EBSD KW - Martensite KW - Tetragonal distortion KW - Pattern matching PY - 2021 DO - https://doi.org/10.1016/j.matchar.2021.111040 VL - 175 SP - 111040 PB - Elsevier Inc. AN - OPUS4-52343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plichta, T. A1 - Sirjovona, V. A1 - Zvonek, M. A1 - Kalinka, Gerhard A1 - Cech, V. T1 - The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite JF - Polymers N2 - High-performance fibre-reinforced polymer composites are important construction materials based not only on the specific properties of the reinforcing fibres and the flexible polymer Matrix but also on the compatible properties of the composite interphase. First, oxygen-free (a-CSi:H) and oxygen-binding (a-CSiO:H) plasma nanocoatings of different mechanical and tribological properties were deposited on planar silicon dioxide substrates that closely mimic E-glass. The nanoscratch test was used to characterize the nanocoating adhesion expressed in terms of critical normal load and work of adhesion. Next, the same nanocoatings were deposited on E-glass fibres, which were used as reinforcements in the polyester composite to affect its interphase properties. The shear properties of the polymer composite were characterized by macro- and micromechanical tests, namely a short beam shear test to determine the short-beam strength and a single fibre push-out test to determine the interfacial shear strength. The results of the polymer composites showed a strong correlation between the short-beam strength and the interfacial shear strength, proving that both tests are sensitive to changes in fibre-matrix adhesion due to different surface modifications of glass fibres (GF). Finally, a strong correlation between the shear properties of the GF/polyester composite and the adhesion of the plasma nanocoating expressed through the work of adhesion was demonstrated. Thus, increasing the work of adhesion of plasma nanocoatings from 0.8 to 1.5 mJ·m−2 increased the short-beam strength from 23.1 to 45.2 MPa. The results confirmed that the work of adhesion is a more suitable parameter in characterising the level of nanocoating adhesion in comparison with the critical normal load. KW - Mechanical properties KW - Plasma nanocoatings KW - Glass fibre KW - Polymer composite KW - Short-beam strength KW - Interfacial shear strength KW - Work of adhesion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521844 DO - https://doi.org/10.3390/polym13040593 VL - 13 IS - 4 SP - 593 PB - MDPI CY - Basel,Schweiz AN - OPUS4-52184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - The effect of dwell times on the thermomechanical fatigue life performance of grade P92 steel at intermediate and low strain amplitudes JF - Materials Science and Engineering: A N2 - Results of an extended TMF test program on grade P92 steel in the temperature range of 620 °C - 300 °C, comprising in-phase (IP) and out-of-phase (OP) tests, partly performed with symmetric dwells at Tmax/Tmin, are presented. In contrast to previous studies, the low-strain regime is also illuminated, which approaches flexible operation in a power plant with start/stop cycles. At all strain amplitudes, the material performance is characterized by continuous cyclic softening, which is retarded in tests at lower strains but reaches similar magnitudes in the course of testing. In the investigated temperature range, the phase angle does not affect fatigue life in continuous experiments, whereas the IP condition is more detrimental in tests with dwells. Fractographic analyses indicate creep-dominated and fatigue-dominated damage for IP and OP, respectively. Analyses of the (micro)hardness distribution in the tested specimens suggest an enhanced microstructural softening in tests with dwell times for the low- but not for the high-strain regime. To rationalize the obtained fatigue data, the fracture-mechanics-based D_TMF concept, which was developed for TMF life assessment of ductile alloys, was applied. It is found that the D_TMF parameter correlates well with the measured fatigue lives, suggesting that subcritical growth of cracks (with sizes from a few microns to a few millimeters) governs failure in the investigated range of strain amplitudes. KW - 9-12%Cr steel KW - Thermomechanical fatigue KW - Symmetric dwell periods KW - Low strain KW - Parametric modeling PY - 2021 DO - https://doi.org/10.1016/j.msea.2020.140593 VL - 805 SP - 140593 PB - Elsevier B.V. AN - OPUS4-52374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falk, Florian A1 - Sobol, Oded A1 - Stephan-Scherb, Christiane T1 - The impact of the microstructure of Fe-16Cr-0.2C on high-temperature oxidation – sulphidation in SO2 JF - Corrosion Science N2 - This study elucidates the impact of the microstructure of Fe-16Cr-0.2C on oxide layer formation at 650 ◦C in Ar-0.5 % SO2. A cold-rolled and two heat-treated states of the alloy were exposed for up to 1000 h. The samples were characterised in detail from microstructural and chemical perspectives using scanning electron microscopy (SEM), X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The microstructural modification of the alloy by heat-treatment was advantageous. It was found that Cr-carbides support chromia formation and reduce sulphidation when their area fraction is low and diameter is small. KW - Steel KW - Iron KW - SIMS KW - SEM KW - High temperature corrosion KW - Oxidation KW - Sulphidation PY - 2021 DO - https://doi.org/10.1016/j.corsci.2021.109618 VL - 190 SP - 109618 PB - Elsevier Ltd. AN - OPUS4-53001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L JF - Metallurgical and materials transactions A N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tokarski, T. A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Rychlowski, L. A1 - Bala, P. A1 - Cios, G. T1 - Transmission Kikuchi diffraction: The impact of the signal-to-noise ratio JF - Ultramicroscopy N2 - Signal optimization for transmission Kikuchi diffraction (TKD) measurements in the scanning electron microscope is investigated by a comparison of different sample holder designs. An optimized design is presented, which uses a metal shield to efficiently trap the electron beam after transmission through the sample. For comparison, a second holder configuration allows a significant number of the transmitted electrons to scatter back from the surface of the sample holder onto the diffraction camera screen. It is shown that the secondary interaction with the sample holder leads to a significant increase in the background level, as well as to additional noise in the final Kikuchi diffraction signal. The clean TKD signal of the optimized holder design with reduced background scattering makes it possible to use small signal changes in the range of 2% of the camera full dynamic range. As is shown by an analysis of the power spectrum, the signal-to-noise ratio in the processed Kikuchi diffraction patterns is improved by an order of magnitude. As a result, the optimized design allows an increase in pattern signal to noise ratio which may lead to increase in measurement speed and indexing reliability. KW - EBSD KW - SEM KW - Transmission Kikuchi diffraction KW - Sample holder PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531743 DO - https://doi.org/10.1016/j.ultramic.2021.113372 SN - 0304-3991 SN - 1879-2723 VL - 230 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses JF - Journal of non-crystalline solids N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derlet, P. A1 - Bocquet, H. A1 - Maaß, Robert T1 - Viscosity and transport in a model fragile metallic glass JF - Physical review materials N2 - How thermally activated structural excitations quantitatively mediate transport and microplasticity in a model binary glass at the microsecond timescale is revealed using atomistic simulation. These local excitations, involving a stringlike sequence of atomic displacements, admit a far-field shear-stress signature and underlie the transport of free-volume and bond geometry. Such transport is found to correspond to the Evolution of a disclination network describing the spatial connectivity of topologically distinct bonding environments, demonstrating the important role of geometrical frustration in both glass structure and its underlying dynamics. KW - Metallic glass KW - Viscosity PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.125601 SN - 2475-9953 VL - 5 SP - 1 EP - 7 PB - American Physical Society CY - College Park, MD AN - OPUS4-54152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria A1 - Schneider, M. A1 - Laplanche, G. T1 - Welding of high-entropy alloys and compositionally complex alloys - an overview JF - Welding in the World N2 - High-entropy alloys (HEAs) and compositionally complex alloys (CCAs) represent new classes of materials containing five or more alloying elements (concentration of each element ranging from 5 to 35 at. %). In the present study, HEAs are defined as single-phase solid solutions; CCAs contain at least two phases. The alloy concept of HEAs/CCAs is fundamentally different from most conventional alloys and promises interesting properties for industrial applications (e.g., to overcome the strength-ductility trade-off). To date, little attention has been paid to the weldability of HEAs/CCAs encompassing effects on the welding metallurgy. It remains open whether welding of HEAs/CCAs may lead to the formation of brittle intermetallics and promote elemental segregation at crystalline defects. The effect on the weld joint properties (strength, corrosion resistance) must be investigated. The weld metal and heat-affected zone in conventional alloys are characterized by non-equilibrium microstructural evolutions that most probably occur in HEAs/CCAs. The corresponding weldability has not yet been studied in detail in the literature, and the existing information is not documented in a comprehensive way. Therefore, this study summarizes the most important results on the welding of HEAs/CCAs and their weld joint properties, classified by HEA/CCA type (focused on CoCrFeMnNi and AlxCoCrCuyFeNi system) and welding process. KW - High-entropy alloy KW - Compositionally complex alloy KW - Welding KW - Properties KW - Review PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527068 DO - https://doi.org/10.1007/s40194-021-01110-6 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-52706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treninkov, И. A A1 - Petrushin, N. V. A1 - Epishin, А. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СТРУКТУРНО-ФАЗОВЫХ ПАРАМЕТРОВ НИКЕЛЕВОГО ЖАРОПРОЧНОГО СПЛАВА T1 - Experimental determination of temperature dependence of structural-phase parameters of nickel-based superalloy JF - ФИЗИЧЕСКИЕ ОСНОВЫ МАТЕРИАЛОВЕДЕНИЯ JF - Materialovedenie N2 - Методом рентгеноструктурного анализа в интервале температур 18—1150 °С определены температурные зависимости периодов кристаллических решеток γ- и γ'-фаз, их размерно-го несоответствия (мисфит) и объемной доли γ'-фазы экспериментального монокристал-лического жаропрочного никелевого сплава. Определены диапазоны температур, в которых происходят интенсивные изменения структурно-фазовых характеристик исследованного сплава. KW - рентгеноструктурный анализ KW - высокие температуры KW - жаропрочные нике- левые сплавы KW - монокристалл KW - γ- и γ'-фазы, период кристаллической решетки PY - 2021 DO - https://doi.org/10.31044/1684-579x-2021-0-7-3-12 IS - 7 SP - 3 EP - 12 AN - OPUS4-53110 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -