TY - CONF A1 - Blaeß, Carsten A1 - Wilbig, Janka A1 - Müller, Ralf A1 - Nawaz, Q. A1 - Boccaccini, A.R. T1 - 3D printing of crystallizing bioactive glasses N2 - Artificial bone replacement by individual customized three-dimensional resorbable bioactive glass has not yet been widely established in the clinical use. This is mainly due to the antagonism of sintering ability and suitable bioactivity. Competitive crystallization often prevents the generation of dense sintered bodies, especially for additive manufactured 3D structures. Previous studies of the fluoride-containing glass F3 have shown its potential to combine both sintering ability and suitable bioactivity. Furthermore, the occurring sintering blockade by surface crystallization of Na2CaSi2O6 was tunable by glass particle size. In this study the glasses F3, F3-Cu with 1 mol% CuO added at the expense of CaO and the well-known 13-93 were chosen to determine the influence of surface crystallization on 3D printed sinter bodies. For this purpose, grain size fractions in range of smaller 32 µm to 315 µm in fraction size of 6-20 µm were sieved from jaw crushed glass frit as well as glass cubes were cut from casted blocks for all glasses. Sintering behavior of both pressed and printed powder compacts was observed via heating microscopy. Crystallization was determined by DTA and crystallization progress was monitored on fractured sinter bodies and polished cubes via electron and laser scanning microscopy as well as with diffractometry. Depending on grain size the formation of crystalline support framework along former grain boundaries shows the capability to stabilize fully densified sinter bodies before softening. Beside of this, the generation of complex hierarchic porosity was possible as well. T2 - ICG Berlin 2022 CY - Berlin, Germany DA - 03.07.2022 KW - Bioactive Glass KW - Crystallization KW - Sintering KW - 3D printing PY - 2022 AN - OPUS4-55253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Sintering of silver‑alkali zinc borate glass‑composites N2 - Since decades electric contacts based on silver metallization pastes are key components of photovoltaics and advanced microelectronics. For the metallization of commercial Si solar cells, high conductive silver glass pastes are cost effectively applicated by screen printing. Nevertheless, silver pastes are still one of the most crucial and expensive none Si materials in solar cells. Ever shorter time to market as well as increasing demands on reduced Ag consumption and line width require the targeted development of silver-glass-pastes with increased sinter ability and electrical conductivity. As a main difficulty, however, the liquid phase sintering of silver glass pastes is poorly understood so far. In the present study, the influence of different network modifier in alkali-zinc-borate paste glasses on liquid phase sintering of silver-glass-pastes was investigated. Low melting X2O-ZnO-B2O3 glasses with X = Na, Li and Rb (abbr. LZB, NZB, and RZB) were utilized to prepare silver-glass-composites containing 30 %Vol glass. Shrinkage behavior of the silver-glass-composites compared with that of pure silver and pure glass powder compacts was studied with heating microscopy. The powder compacts were uniaxially pressed and heated at 5 K/min to the glass softening temperature. Glass transformation temperature and viscosity of the glasses were respectively measured with dilatometry and rotational viscometry. The thermal behavior of the pure glasses was analyzed with thermal analysis. Additionally, the contact angle of glass on pure silver foil was determined by means of heating microscopy between room temperature and 830 °C. Thermal analysis of the alkali-zinc-borate-glasses under study has shown transformation temperatures between 450 °C (RZB), 460 °C (LZB) and 465 °C (NZB). For all glasses crystallization was found to start approximately at about 550 °C. However, different peak areas hint on a different degree of crystallization. Conformingly, the sintering behavior, measured in terms of area shrinkage, significantly differed for the silver-pastes under study. For silver-pastes with NZB or LZB-glass, sintering starts at 464 °C for NZB Ag pastes and at 451 °C for LZB Ag pastes and ends at 597 °C for NZB Ag paste and at 594 °C for LZB Ag paste. The sintering of the RZB Ag paste proceeds between 426 °C and 703 °C. The final densification was retarded possibly due to crystallization or swelling. The low sinter onset at 426 °C seems to correlate with the good wetting behavior of the RZB glass. Thus, the lowest apparent contact angle between the just densified powder compact sintered at a silver substrate was found for this glass. Moreover, microstructure analyses of the various composites indicate differences in silver dissolution and reprecipitation. T2 - Technology Crossover Extravaganza, HiTEC/CICMT/APEPS CY - Online meeting DA - 26.04.2021 KW - Silver-glass-metallization-paste KW - Sintering KW - Crystallization KW - Alkali ions KW - Sintering atmosphere PY - 2021 AN - OPUS4-52872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Surface-induced Crystallization of Glass N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Corresponding phenomena are discussed hypothetically or even controversial, and related studies are restricted to very few glasses. In this talk the state of the art on mechanisms of surface nucleation are summarized. On one hand, mechanical damaged surfaces show high nucleation activity, at which the nucleation occurs at convex tips and edges preferentially. On the other hand, solid foreign particles are dominant nucleation sites at low damaged surfaces. They enable nucleation at temperatures even far above Tg. The nucleation activity of the particles is substantially controlled by their thermal and chemical durability. But no systematic studies on initially oriented crystal growth or nucleation from defined active nucleation sites have been pursued, so far. Therefore, the main objective of a just started project is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. We shall answer the question whether preferred orientation of surface crystals is the result of oriented nucleation or caused by other orientation selection mechanisms acting during early crystal growth. In both cases, crystal orientation may be caused by the orientation of the glass surface itself or the anisotropy and orientation of active surface nucleation defects. As a first attempt we focused on possible reorientation of separately growing surface crystals during early crystal growth. First results show clear evidence that separately growing crystals can reorient themselves as they are going to impinge each other. T2 - Glasforum der Deutschen Glastechnischen Gesellschaft (DGG) CY - Würzburg, Germany DA - 11.06.2018 KW - Crystallization KW - Silicate Glasses KW - Surface Nucleation PY - 2018 AN - OPUS4-45593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Busch, R. T1 - Surface Initiated Microstructure Formation in Glass -Ceramics N2 - Übersicht zur Oberflächeninitiierten Mikrostrukturbildung in Glasoberflächen. Dabei wird auf die Kristallvorzugsorientierung senkrecht zur Oberfläche der sich unter Temperatureinfluss behandelten Glasproben eingegangen. Zudem werden die ersten Experimente zur Eingrenzung des Ursprungs dieser Orientierung vorgestellt. N2 - Overview about the surface initiated microstructure formation in glass surfaces. Samples which are exposed to a temperature treatment, can develop a crystalline microstructure above Tg at the surface. These separated crystals can be preferably oriented towards the surface of the sample. First experiments about the origin of these orientation phenomenon as well as the potentially causing mechanisms are presented and discussed within the presentation. T2 - AK Glasig-kristalline Multifunktionswerkstoffe 2019 CY - TU Clausthal, Germany DA - 21.02.2019 KW - Orientation KW - Glass KW - Crystallization KW - Diopside PY - 2019 AN - OPUS4-47537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -