TY - JOUR A1 - Derlet, P. A1 - Bocquet, H. A1 - Maaß, Robert T1 - Viscosity and transport in a model fragile metallic glass N2 - How thermally activated structural excitations quantitatively mediate transport and microplasticity in a model binary glass at the microsecond timescale is revealed using atomistic simulation. These local excitations, involving a stringlike sequence of atomic displacements, admit a far-field shear-stress signature and underlie the transport of free-volume and bond geometry. Such transport is found to correspond to the Evolution of a disclination network describing the spatial connectivity of topologically distinct bonding environments, demonstrating the important role of geometrical frustration in both glass structure and its underlying dynamics. KW - Metallic glass KW - Viscosity PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.125601 SN - 2475-9953 VL - 5 SP - 1 EP - 7 PB - American Physical Society CY - College Park, MD AN - OPUS4-54152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qu, R. A1 - Maaß, Robert A1 - Liu, Z. A1 - Tönnies, D. A1 - Tian, L. A1 - Ritchie, R. A1 - Zhang, Z. A1 - Volkert, A. T1 - Flaw-insentive fracture of a micrometer-sized brittle metallic glass N2 - Brittle materials, such as oxide glasses, are usually very sensitive to flaws, giving rise to a macroscopic fracture strength that is much lower than that predicted by theory. The same applies to metallic glasses (MGs), with the important difference that these glasses can exhibit certain plastic strain prior to catas- trophic failure. Here we consider the strongest metallic alloy known, a ternary Co 55 Ta 10 B 35 MG. We show that this macroscopically brittle glass is flaw-insensitive at the micrometer scale. This discovery emerges when testing pre-cracked specimens with self-similar geometries, where the fracture stress does not de- crease with increasing pre-crack size. The fracture toughness of this ultra-strong glassy alloy is further shown to increase with increasing sample size. Both these findings deviate from our classical under- standing of fracture mechanics, and are attributed to a transition from toughness-controlled to strength- controlled fracture below a critical sample size. KW - Metallic glass KW - Fracture toughness KW - Size effect KW - Small-scale PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117219 VL - 218 PB - Elsevier Ltd. AN - OPUS4-53097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, A. A1 - Dufresne, E.M. A1 - Maaß, Robert T1 - Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass N2 - Subjecting metallic glasses repeatedly to liquid nitrogen temperature has become a popular method to homogeneously rejuvenate the material. Here we reveal the atomic-scale structural dynamics using in- situ x-ray photon correlation spectroscopy (XPCS) during and after cryogenic cycling of a Zr-based metallic glass in two structural states (plate and ribbon). Heterogeneous structural dynamics is observed at 300 K that changes to monotonic aging at 78 K. It is found that cryogenic cycling homogenizes the relaxation time distribution. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with longtime structural relaxation times irrespective of the structural state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. A structural picture emerges that points towards heterogeneities in the fictive temperature as a requirement for cryogenic energy storage. KW - Structural dynamics KW - Metallic glass KW - Relaxation KW - Rejuvenation KW - Cryogenic cycling PY - 2020 DO - https://doi.org/10.1016/j.actamat.2020.06.063 SN - 1359-6454 VL - 196 SP - 723 EP - 732 PB - Elsevier Ltd. AN - OPUS4-51311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, C. A1 - Ikeda, Yuki A1 - Maaß, Robert T1 - Strain-dependent shear-band structure in a Zr-based bulk metallic glass N2 - This work presents strong evidence for structural damage accumulation as a function of shear strain admitted by shear bands in a Zr-based bulk metallic glass. Analyzing the shear-band structure of shear- band segments that experienced shear strains covering four orders of magnitude with high-angle annular dark field transmission electron microscopy (HAADF-STEM) reveals strongly scattered data with on overall trend of increasing local volume dilatation with increasing shear strain. Locally, however, a variety of trends is observed, which underlines the strong heterogeneity of structural damage in shear bands in metallic glasses. KW - Transmission electron microscopy KW - Metallic glass KW - Shear bands KW - Shear-band structure KW - Shear strain PY - 2021 DO - https://doi.org/10.1016/j.scriptamat.2020.08.030 VL - 190 SP - 75 EP - 79 PB - Elsevier Ltd. AN - OPUS4-52454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - On an unusual career path and unusual transport in metallic glasses N2 - Planning an academic career is a bit like enjoying a box of chocolate – you never know what you are going to get next. In this talk, I will begin with sharing how luck, difficult decisions, fate, and family constraints affected my career path across continents, universities, the private sector, and to becoming a director at a national laboratory. This journey was certainly not planned and highlights how opportunities and compromises together allow you to make much more out of your engineering degree than you ever have dreamed of. After this unusual journey as a materials scientist, I am transitioning to the technical part of my talk, where we will discuss transport in metallic glasses. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via physical aging. As a function of time, relaxation may indeed constitute significant threads to safe applications, such as a complete loss of toughness. In the search for a physical understanding of aging, we exploit here the ability to track atomic-scale dynamics with coherent x-ray scattering. Conducted across temperatures and under the application of stress, the results reveal unexpected transport. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of atomic-scale dynamics that underly physical aging of metallic glasses. We find that classical Kohlrausch-Williams-Watts behavior is only suited for the short relaxation-time regime, whereas anomalous diffusion emerges at practically relevant times. We discuss these results in terms of the structural relaxation modes and propose a picture of a true microstructure in metallic glasses. T2 - Department Seminar IIT Delhi 2023 CY - Delhi, India DA - 15.12.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Das, Amlan A1 - Wang, Zengquan A1 - Dufresne, Eric A1 - Derlet, Peter M. T1 - Cluster dynamics and anomalous transport in metallic glasses N2 - Quenching a metallic liquid sufficiently fast can give rise to an amorphous solid, typically referred to as a metallic glass. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via structural relaxation. As a function of time, relaxation may indeed constitute significant threads to safe applications. Consequently, relaxation of glasses has a long history across different amorphous materials and typical characterization methods promote a picture of gradually evolving and smooth relaxation, as for example obtained from mechanical spectroscopy. However, the true structural dynamics and underlying mechanisms remain far from understood and have hampered a physically informed atomic-scale picture of transport and physical aging of glasses. Here we exploit the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS) and resolve an unprecedented spectrum of short- and long-term relaxation time scales in metallic glasses. Conducted across temperatures and under the application of stress, the results reveal anything else than smooth aging and gradual energy minimization. In fact, temporal fluctuations persist throughout isothermal conditions over several hundred thousand of seconds, demonstrating heterogeneous dynamics at the atomic scale. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of correlated atomic-scale dynamics that can underly the temporal fluctuations and structural decorrelations. Despite temporally heterogeneous, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law emerges. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the structural fast and slow relaxation modes as well as a true microstructure in metallic glasses. T2 - Department Seminar OSU 2023 CY - Columbus, OH, USA DA - 22.09.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Das, Amlan A1 - Wang, Zengquan A1 - Dufresne, Eric A1 - Derlet, Peter M. T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Inspired by the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS)1 and recent results of long-term atomistic simulations on material transport2, we reveal here an unprecedented spectrum of short- and long-term relaxation dynamics. Tracked along a 300 000 s long isotherm at 0.98Tg, a Zr-based bulk metallic glass exhibits temporal fluctuations that persist throughout the entire isotherm, demonstrating a continuous heterogeneous dynamics at the probed length scale. In concert with microsecond molecular dynamic simulations, we identify intermittent cluster dynamics as the origin for temporal signatures in the corresponding intensity cross-correlations. Despite temporally heterogeneous aging, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law better describes the data. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the underlying structural fast and slow relaxation modes and their manifestation in the temporal form of the structural decorrelations. T2 - 9th IDMRCS CY - Chiba, Japan DA - 12.08.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Rashidi, Reza A1 - Ott, Catherine A1 - Derlet, Peter M. A1 - Das, Saurabh M. A1 - Liebscher, Christian A1 - Samwer, Konrad T1 - Elastic Microstructures in Metallic Glasses N2 - Metallic glasses (MGs) are disordered solids that exhibit a range of outstanding mechanical, thermomechanical, and functional properties. Whilst being a promising class of structural materials, well-defined and exploitable structure-property relationships are still lacking. This offsets them strongly from the crystalline counterparts, for which length-scale based property determination has been key for decades. In recent years, both atomistic simulations and experiments have nurtured the view of heterogeneities that manifest themselves either as a structural partitioning into well-relaxed percolated network components and more frustrated domains in atomistic simulations, or as spatially-resolved property fluctuations revealed with atomic force microscopy. These signatures depend sensitively on the processing history and likely reflect emerging medium-range order fluctuations at the scale of 1-10 nanometers. Here we demonstrate and discuss the emergence of spatially resolved property fluctuations at length scales that are one to two orders of magnitude larger. Such long-range decorrelation length scales are hard to reconcile in a monolithic glass but may offer the perspective of experimentally easy-to-access length-scale based structure-property relationships. Whilst long-range property fluctuations can be seen in both the plastic and elastic response, we focus here on high-throughput elastic nanoindentation mapping across the surface of a Zr-based model glass. After a deconvolution of surface topography and curvature effects, the spatially-resolved elastic response reveals an elastic microstructure with a correlation length of ca. 150-170 nm. Analytical scanning-transmission electron microscopy (STEM) is used to link the elastic property fluctuations to the chemistry and structure of the MG. In concert, nano-elastic mapping and STEM suggests that structural variations in the glass are responsible for the unexpectedly large length scales. We discuss these findings in terms of the materials processing history and the perspective of exploiting nanoindentation-based spatial mapping to uncover structural length scales in atomically disordered solids. T2 - 7th International Indentation Workshop – IIW7 CY - Hyderabad, India DA - 17.12.2023 KW - Metallic glass KW - Nanoindentation KW - Microstructure PY - 2023 AN - OPUS4-60692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -