TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baesso, Ilaria A1 - Altenburg, Simon A1 - Günster, Jens T1 - Co-axial online monitoring of Laser Beam Melting (LBM) N2 - Within the perspective of increasing reliability of AM processes, real-time monitoring allows part inspection while it is built and simultaneous defect detection. Further developments of real-time monitoring can also bring to self-regulating process controls. Key points to reach such a goal are the extensive research and knowledge of correlations between sensor signals and their causes in the process. T2 - BAM workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Laser Beam Melting KW - Process Monitoring KW - Co-axial monitoring KW - 3D imaging PY - 2019 AN - OPUS4-48517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, H. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Mädler, L. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology N2 - The PMD Core Ontology (PMDco) is a comprehensive set of building blocks produced via consensus building. The ontological building blocks provide a framework representing knowledge about fundamental concepts used in Materials Science and Engineering (MSE) today. The PMDco is a mid-level ontology that establishes connections between narrower MSE application ontologies and domain neutral concepts used in already established broader (top-level) ontologies. The primary goal of the PMDco design is to enable interoperability between various other MSE-related ontologies and other common ontologies. PMDco’s class structure is both comprehensive and extensible, rendering it an efficient tool to structure MSE knowledge. The PMDco serves as a semantic middle-layer unifying common MSE concepts via semantic mapping to other semantic representations using well-known key terms used in the MSE domain. The PMDco enables straight-forward documentation and tracking of science data generation and in consequence enables high-quality FAIR data that allows for precise reproducibility of scientific experiments. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the production, derivation, and attribution of resources. Via this foundation, the PMDco enables the integration of data from various data origins and the representation of complex workflows. In summary, the PMDco is a valuable advancement for researchers and practitioners in MSE domains. It provides a common MSE vocabulary to represent and share knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless tracing of science data. Overall, the PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain in general. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Ontology KW - Semantic Interoperability KW - FAIR KW - Automation PY - 2023 AN - OPUS4-58197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Behrens, H. A1 - Balzer, R. A1 - Dietrich, U. A1 - Fechtelkord, M. A1 - Müller, Ralf A1 - Deubener, J. T1 - Water in oxide glasses: from borosilicates to silicoborates N2 - In this poster, results are presented on the influence of water incorporation on the structure of B2O3 and SiO2 containing oxide glasses, which were found during the joint project at the locations Hanover, Clausthal and Berlin within the priority program SPP1594. T2 - 9th Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - IR KW - Glass KW - Water content KW - NMR PY - 2019 AN - OPUS4-50465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Effects of microstructure on crack healing in glass matrix composites N2 - Crack healing in glass ceramic solid oxide fuel cell (SOFC) sealants is of utmost importance as cracks caused by thermal cycling remain a bottleneck in developing durable SOFC. Whereas no or low crystal volume fraction seems most favorable for viscous crack healing, it does not for load bearing and undesired diffusion. On the other hand, crystals or filler particles can make the sealant less prone to these disadvantages but it could increase the effective composite viscosity and retard crack healing. Against this background, the influence of crystal volume fraction, phi, on viscous crack healing in glass matrix composites prepared from soda lime silicate glass and zirconia filler particles was studied. Vickers indention induced radial cracks were healed isothermally during interrupted annealing steps and monitored with optical microscopy. Due to the slow crystallization of the glass under study, phi could be kept constant during crack healing. For bulk glass samples (phi = =), the decrease in radial crack length was retarded by an initial increase in crack width due to crack rounding. Up to phi = 0.15 the increase in effective viscosity retarded this crack broadening thereby yielding faster crack healing. For phi > 0.15, crack broadening was progressively suppressed but the same was true for crack healing, which was fully prevented above phi = 0.3. Results indicate that optimum micro structures can prevent crack broadening limited by the global effective composite viscosity and this way promote crack healing limited by local glass viscosity. T2 - 93. Glastechnische Tagung CY - Nürnberg, Germany DA - 12.05.2019 KW - Crack healing KW - Glass matrix composite KW - Vickers indentation PY - 2019 AN - OPUS4-48543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Müller, Ralf T1 - Characterization of early crystallization stages in surface-crystallized diopside glass-ceramics N2 - Structure formation in glass-ceramics by means of surface crystallization is a challenging open question and remains elusive to definite answers. In several glass-ceramic systems, oriented crystal layers have been observed at the immediate surface, including diopside and some fresnoite systems. However, it is still open to debate, whether oriented surface crystallization is the result of oriented nucleation or growth selection effects. In the same vein, there is still discussion whether surface nucleation is governed by surface chemistry effects or by defects serving as active nucleation sites. In order to help answer these questions, annealing experiments at 850°C have been performed on a MgO·CaO·2SiO2 glass, leading to the crystallization of diopside at the surface. Different annealing durations and surface treatment protocols (i.a. lapping with diamond slurries between 16 µm and 1 µm grain size) have been applied. Particular focus has been put on earliest crystallization stages, with crystal sizes down to about 200 nm. The resultant microstructure has been analyzed by electron backscatter diffraction (EBSD) and two different kinds of textures have been observed, with the a- or b-axis being perpendicular to the sample surface and the c-axis lying in the sample plane. Even at shortest annealing durations, a clear texture was present in the samples. Additionally, selected samples have been investigated with energy-dispersive x-ray spectroscopy in the scanning transmission electron microscope (STEM-EDX). The diopside crystals have been found to exhibit distinguished submicron structure variations and the glass around the crystals was shown to be depleted of Mg. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - Glass KW - Crystallization KW - Diopside KW - EBSD KW - Orientation PY - 2019 AN - OPUS4-49296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for a yield function description of additively manufactured parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. From virtual experiments, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - Workshop on Additive Manufacturing, BAM CY - Berlin, Germany DA - 13.05.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-48064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Stephan-Scherb, Christiane T1 - Microstructural impact on high temperature oxidation behavior of Fe-Cr-C model alloys N2 - Chromia forming high alloyed ferritic-austenitic steels are being used as boiler tube materials in biomass and coal-biomass co-fired power plants. Despite thermodynamic and kinetic boundary conditions, microstructural features such as grain orientation, grain sizes or surface deformation contribute to the oxidation resistance and formation of protective chromium-rich oxide layers. This study elucidates the impact of microstructure such as the grain size and number of carbide precipitates on high temperature oxidation at 650°C in 0.5% SO2 atmosphere. Cold-rolled Fe-16Cr-0.2C material was heat-treated to obtain two additional microstructures. After exposure to hot and reactive gases for 10 h < t < 1000 h layer thicknesses and microstructure of oxide scales are observed by scanning electron microscopy and Energy-dispersive X-ray spectroscopy. The two heat treated alloys showed reasonable oxidation resistance after 1000 h of exposure. The oxidation rate was substantially higher for the alloy with a duplex matrix after heat treatment compared to the fine-grained material. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - Corrosion KW - Microstructure KW - Oxidation KW - Sulfidation PY - 2019 AN - OPUS4-49212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fleck, M. A1 - Tielemann, Christopher A1 - Scheffler, F. A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Surface crystallization of BT0.75S (fresnoite) glass in different atmosphere N2 - Fresnoite glass with excess SiO2 exhibits oriented surface crystallization, in contrast to the stoichiometric glass composition. Recent EBSD studies documented that the crystals in BTS (2BaO-TiO2-xSiO2, x=0-3) can occur in a distinct [101]-orientation perpendicular to the surface and claimed that this orientation is not a result of growth selection. During these previous studies, however, the effect of surface preparation and surrounding atmosphere during the crystallization experiments were not considered. As these parameters may influence crystal orientation, we studied the surface crystallization of a BTS glass (2BaO-TiO2–2.75SiO2) under controlled conditions with the help of light, electron and polarisation microscopy as well as EBSD. Heat treatments for one hour at 840°C of fractured BTS glass surfaces in air resulted in a large number of not-separable surface crystals. This large number of crystals can be caused by dust particles, which act as nucleation agents. As crystal growth velocity could further be influenced by humidity, our experiments are performed in a filtered and dried air atmosphere. The crystal morphology and orientation will be analysed in dependence of the sample preparation and a differing surrounding atmosphere. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - BTS KW - Fresnoit KW - Glass ceramic KW - Glass-ceramic KW - Glass PY - 2019 AN - OPUS4-49294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geyler, Paul A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Léonard, Fabien T1 - Machine learning assisted evaluation of the shape of VIAs in a LTCC multilayer N2 - The introduction of the 5G technology and automotive radar applications moving into higher frequency ranges trigger further miniaturization of LTCC technology (low temperature co-fired ceramics). To assess dimensional tolerances of inner metal structures of an industrially produced LTCC multilayer, computer tomography (CT) scans were evaluated by machine learning segmentation. The tested multilayer consists of several layers of a glass ceramic substrate with low resistance silver-based vertical interconnect access (VIA). The VIAs are punched into the LTCC green tape and then filled with silver-based pastes before stacking and sintering. These geometries must abide by strict tolerance requirements to ensure the high frequency properties. This poster presents a method to extract shape and size specific data from these VIAs. For this purpose, 4 measurements, each containing 3 to 4 samples, were segmented using the trainable WEKA segmentation, a non-commercial machine learning tool. The dimensional stability of the VIA can be evaluated regarding the edge-displacement as well as the cross-sectional area. Deviation from the ideal tubular shape is best measured by aspect ratio of each individual layer. The herein described method allows for a fast and semi-automatic analysis of considerable amount of structural data. This data can then be quantified by shape descriptors to illustrate 3-dimensional information in a concise manner. Inter alia, a 45 % periodical change of cross-sectional area is demonstrated. T2 - DKG Jahrestagung 2019 CY - Leoben, Austria DA - 06.05.2019 KW - Machine Learning KW - LTCC multilayer KW - 5G PY - 2019 AN - OPUS4-48289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Localized repairs for wind turbine rotor blades N2 - The effect of localized repairs on the structural integrity and thus the lifespan of wind turbine rotor blade shells is examined. T2 - SAMPE Symposium 2020 CY - Kassel, Germany DA - 17.02.2020 KW - GFRP KW - Wind turbine blade shells KW - Scarf joint repairs KW - Sandwich PY - 2020 AN - OPUS4-50480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Restoring structural integrity - localized repairs for wind turbine rotor blades N2 - The effect of localized repairs on the mechanical properties and thus the lifespan of wind turbine rotor blade shells is examined. T2 - SAMPE Symposium 2019 CY - Dresden, Germany DA - 06.02.2019 KW - Fatigue KW - Glass fiber reinforced polymers KW - Lightweight materials KW - Sandwich KW - Wind turbine blades PY - 2019 AN - OPUS4-47443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep Investigations on Aluminum Seals for Application in Radioactive Waste Containers N2 - In Germany spent nuclear fuel (SNF) and high level radioactive waste (HLW) are stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. Being licensed for up to 40 years of interim storage the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Schmid, Thomas A1 - Deubener, J. T1 - An overview of structural, physical and thermal properties of low melting zinc and lead borate glasses N2 - Low melting zinc borate glasses awake interest to replace lead borate glasses in the silver metallization pastes for solar cells or microelectronics. In the current study, characteristic properties of alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) were compared to an earth alkali zinc borate glass (CaO-ZnO-B2O3). Additionally, zinc oxide is partially substituted by lead oxide or cooper oxide in the borate glasses (Li2O-PbO-B2O3, Na2O ZnO CuO-B2O3). The alkali zinc borate glasses indicate less differences in Raman spectra, and thus in structural properties, in comparison to the Ca and Pb ions influence. LPbB (Tg = 401 °C) has a lower viscosity than LZB (Tg = 468 °C) and CaZB has the highest glass transition temperature (Tg = 580 °C). The Angell plot for the alkali zinc borate glasses shows a high fragility m = 80. Besides Tg, the density measured by means of the Archimedean principle, molar volume, and coefficient of thermal expansion (CTE) of the glasses were investigated. Trends could be found according to alkali ions or intermediate oxides. The density increases with decreasing alkali ion size from KZB (2.632 g/cm3) to LZB (2.829 g/cm3) and increases from LZB to LPbB (3.764 g/cm3). CTE ranges between 7.09 10-6 K-1 for CaZB and 11.5 10 6 K 1 for KZB and RZB. The differential thermal analysis (DTA) and X ray diffraction (XRD) indicate crystallization of various crystalline phases during heating with 5 K/min in most cases. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Borate glasses KW - Glass structure KW - Viscosity KW - Young´s Modulus KW - Alkali ions PY - 2021 AN - OPUS4-52867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Roßmöller-Felz, Mattis A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - In situ observation of silver precipitation in sodium zinc borate glass-forming melts N2 - Melting of Na2CO3-ZnO-B2O3 batches containing up to 16.8 wt% AgNO3 (5 mol% Ag2O in the target glass composition) was observed in situ by means of hot stage microscopy. In all batches metallic silver precipitation took place as most of the silver nitrate was reduced to metallic silver before Ag+ ions could be dissolved in the evolving borate melts. In turn, only traces of Ag+ (<300 ppmw) were dissolved in the sodium zinc borate glass melts under study. It is assumed that the oxidation to Ag+ was limited due to poor availability of reducible oxygen in the glass melts and presence of Na2O being a stronger base than Ag2O. Thus, the precipitated metallic silver formed droplets of different sizes. The larger droplets (d > 20 µm) were already settled at the bottom of the container and remained constant in size upon dwelling for 1 h at 1050 °C of about one hour and the subsequent cooling (45 K/min) to room temperature, whereas the smaller droplets (d < 20 µm) were mobile in the borate melt due to Marangoni and Stokes motion. For the latter droplets, coalescence was observed in situ. A growth of larger droplets at the expense of smaller ones, i.e., Ostwald ripening was also expected but could not be studied with the used experimental equipment. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Glass melt KW - Silver KW - Sodium zinc borate glass KW - Hot stage microscopy KW - Precipitation PY - 2022 AN - OPUS4-55732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Müller, Ralf A1 - Körner, S. T1 - Sintering of silver-glass composites N2 - High conductive silver metallization pastes are key components in advanced electronics and photovoltaics. Increasing demands on efficiency, miniaturization and ever shorter time-to-market require tailored glass-silver-pastes. In these pastes, low-melting glasses act as a sintering aid achieving better sintering, adhesion and contact formation for solar cells. Yet, the related liquid phase sintering of silver-glass-composites and the underlying mechanism of silver dissolution, transport and reprecipitation are rarely investigated. In this study, systematically varied low melting alkaline zinc borate, alkaline earth borate, and Pb- and Bi-glasses are investigated. Glass transition and crystallization are studied with dilatometry, DTA and XRD. Sintering of the pure glasses, pure silver and silver-glass-composites is analyzed with Hot Stage Microscopy, optical and electron microscopy. Since oxygen dissolved in silver powders can affect the silver dissolution as silver oxide in the matrix oxide glasses, the O2-content of silver powders is determined by Vacuum Hot Extraction. The glass transition temperature of the glasses under study varies between 370 °C and 590 °C whereas the sinter onset largely ranges between 400 °C and 600 °C. On the other hand, it scattered between 200 °C and 450 °C for selected commercial Ag-powders of different particle size and morphology. T2 - 93rd Annual Meeting of DGG in Conjunction with the Annual Meeting of  USTV CY - Nuremberg, Germany DA - 13.05.2019 KW - Silver glass paste KW - Sintering KW - Microstructure PY - 2019 AN - OPUS4-48906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Glass fracture surface energy calculated from crystal structure and bond-energy data N2 - Enhancing the fracture toughness is still one of the major challenges in the field of oxide glasses. To screen different glass systems for promising candidates, a theoretical expression for the fracture surface energy, G, linked to the fracture toughness, KIc, is thus of interest. Extending our earlier work on nucleation and surface energies [1], we present a simple approach for predicting the fracture surface energy of oxide glasses, G using readily available crystallographic structure data and diatomic bond energies. The proposed method assumes that G of glass equals the surface fracture energy of the weakest fracture (cleavage) plane of the isochemical crystal. For non-isochemically crystallizing glasses, an average G is calculated from the weighed fracture energy data of the constitutional crystal phases according to Conradt [2]. Our predictions yield good agreement with the glass density- and chemical bond energy-based prediction model of Rouxel [3] and with experimentally obtained G values known at present. [1] C. Tielemann, S. Reinsch, R. Maass, J. Deubener, R. Müller, J. Non-Cryst. Solids 2022, 14, 100093 [2] R. Conradt, J. Non-Cryst. Solids 2004, 345-346, 16 [3] R., Tanguy, Scripta Materialia 2017, 109-13, 137 T2 - DPG Spring Meeting of the Condensed Matter Section CY - Dresden, Germany DA - 26.03.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Surface Energy PY - 2023 AN - OPUS4-58414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Rabe, Torsten T1 - Limits of computer tomography aided characterization of different types of porous ceramic materials N2 - Ceramics with open porosity are attractive materials in many fields of applications covering medicine, catalysis, and filtration. Manifold technologies to produce porous ceramics are available, e.g. foaming and replica processes, resulting in various microstructures. Development and manufacturing of new materials is accelerating, while crucial characterization is becoming increasingly difficult and conventional measurements lack the desired speed. Computed tomography (CT) offers the possibility to three-dimensionally characterize entire samples with minimal sample preparation, while its main advantage is that it is non-destructive. Still, the assessment of quantitative results from CT measurements is not trivial. The poster presents CT characterizations of newly developed as well as commercially available openly porous ceramic samples. Properties such as porosity, permeability or pore characteristics were measured conventionally and compared to results calculated from CT-measurements using the commercial software VG StudioMax. The determined differences between measured and calculated values are presented and application areas as well as limits of the CT characterization are evaluated. T2 - Jahrestagung der Deutschen keramischen Gesellschaft 2021 CY - Online Meeting DA - 19.04.2021 KW - Ceramic KW - Porosity PY - 2021 AN - OPUS4-52724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Rabe, Torsten T1 - Superior granule properties by spray drying controlled destabilized slurries with ultrasound N2 - Homogeneous introduction of organic additives is a key of ceramic powder processing. Addition of organics to ceramic slurries holds advantages compared to dry processing like organic content reduction and a more homogeneous additive distribution on the particle surface. Investigations of the alumina slurries were primarily based on zeta potential measurements and sedimentation analysis by optical centrifugation. Both methods were combined to determine a suitable additive type, amount and composition, whereas the spray drying suitability has been ensured by viscosity measurements. Granules, yielded by spray drying of such ideally dispersed alumina slurries, are mostly hollow and possess a hard shell. Those granules cannot easily be processed and can only hardly be destroyed in the following shaping step, leading to sinter bodies with many defects and poor strength and density. The precise slurry destabilization, carried out after ideally dispersing the ceramic powder, shows a strong influence on the drying behavior of the granules and hence on the granule properties. A promising degree of destabilization and partial flocculation was quantified by optical centrifugation and resulted in improved granule properties. Spray drying the destabilized alumina slurries yielded homogeneous “non-hollow” granules without the above mentioned hard shell. Sample bodies produced of these granules exhibited a reduction of defect size and number, leading to better results for sinter body density and strength. The positive effect of the slurry destabilization has been further improved, by exchanging the atomizing unit from a two-fluid one to an ultrasound atomizer with only minor slurry adjustments necessary. The controlled destabilization and ultrasound atomization of the ceramic slurry show excellent transferability for zirconia and even ZTA (zirconia toughened alumina) composite materials. T2 - Partec 2019 CY - Nuremberg, Germany DA - 09.04.2019 KW - Destabilization KW - Slurry KW - Ultrasound KW - Atomization PY - 2019 AN - OPUS4-48291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kang, M. A1 - Czasny, M. A1 - Kober, D. A1 - Reschetnikow, A. A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Gurlo, A. T1 - Influence of mica particle content in composites for high voltage applications produced by additive manufacturing and mold casting N2 - The insulation system of high voltage electrical devices like generators and electrical motors has to withstand thermal, electrical, ambient and mechanical influences (TEAM) during operation. Especially the dielectric properties have to satisfy the requirements also under elevated temperatures and extreme environments. To provide this high quality, the conventional fabrication process uses partly manually applied insulation tapes combined with a cost-intensive and under safety concerns at least problematic vacuum pressure impregnation step (VPI). In order to reduce process costs by increasing the degree of automation and avoiding the VPI process, additively manufactured (AM) insulations were studied. This study focuses on the fabrication of ceramic/polymer compounds via AM technique. The AM technology used a rotating screw extrusion print head with air pressure to supply the paste. Plate-like samples with dimensions of 55 mm x 55 mm x1mm thickness were produced. This work focuses on the homogeneously high viscous paste with 12.5 to 50 volume % ratio of filler particles. Three types of mica powders as ceramic filler materials with different particle sizes from micro to mm scale were evaluated. The controlled volume % ratio of particles affects the paste viscosity which enables stacking of paste layers with a viscosity close to clay pastes. The mixed pastes were cured by heating and UV light to increase mechanical properties. A TG/DTA was performed, and electrical properties were investigated. First experiments with respect to the dielectric properties such as volume resistance, permittivity and dielectric strength revealed promising results and the possibility to use AM techniques for the fabrication of high voltage insulations for electrical machines. T2 - MaterialsWeek 2021 CY - Online meeting DA - 07.09.2021 KW - HV-Insulation KW - Polymer-Ceramic-Composite KW - Additive manufacturing PY - 2021 AN - OPUS4-54368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Subcritical crack growth in water bearing soda-aluminosilicate glasses N2 - The subcritical crack growth in water bearing soda-aluminosilicate glasses is compared to the crack growth in a commercial soda-lime silicate glass. The water speciation is shown for comparison of water species in the material. Differences will be discussed in the poster session. T2 - Glastechnische Tagung 2019 CY - Nürnberg, Germany DA - 13.05.2019 KW - Glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2019 AN - OPUS4-48343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Statistical analysis of Vickers induced subcritical crack growth in soda-lime silicate glasses N2 - Studies on Vickers induced subcritical crack growth are controversially discussed since the stresses that drive the crack growth are distributed three dimensionally within the material and cannot be retraced by available methods. Hence, empirical approaches are used to calculate mechanical material parameters such as the stress intensity factor KI. However, the results of these approaches show large deviations from those measured by standardized techniques such as double cantilever beam (DCB) or double cleavage drilled compression (DCDC). Yet, small specimen sizes and low specimen quantities can prevent the execution of DCB and DCDC measurements. Here we present an approach that is based on a statistical analysis of Vickers induced radial cracks. For this purpose more than 150 single radial cracks were analyzed. The cracks were generated in a commercial soda-lime silicate glass. The experiments were performed in a glovebox purged with dry nitrogen gas to minimize the influence of atmospheric water on crack growth. The temporally resolved evolution of the radial cracks was monitored in-situ using an inverted microscope equipped with a camera system directly below the Vickers indenter. An automated image analysis software was used to determine the crack length over time. The data show that the crack propagation and thereby the crack velocities are not uniformly but statistically distributed. These findings allow, using the statistical mean value of the distributions in combination with DCB data, a precise formulation of KI for each measured crack length. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Crack growth KW - Soda-lime silicate glass KW - Vickers PY - 2018 AN - OPUS4-45703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Subcritical crack growth in water bearing soda-lime silicate glasses N2 - The presence of water in the surrounding atmosphere of a propagating crack has a major influence on the subcritical crack growth. While these external phenomena are well understood, there is still a lack of knowledge on the influence of structurally bound water on crack propagation. Thus, our recent study aims on the analysis of crack propagation in water bearing soda-lime silicate glasses with up to 8 wt.% water. The samples were synthesized in an internally heated pressure vessel at 0.5 GPa. Since this preparation route limits the sample sizes, standard test geometries allowing for the determination of stress intensity factors, such as double cantilever beam, are not feasible. Thus, radial cracks in the hydrous glasses were initiated by Vickers indentation and crack growth was simultaneously captured with a camera system. An automated image analysis algorithm was used for the analysis of the crack length of each single video frame. To minimize influences by atmospheric water, all experiments were conducted in a glovebox purged with dry N2. About 150 cracks per glass composition were analyzed to provide statistical significance of the Vickers-induced SCCG. The results show that structurally bound water has a major influence on SCCG by means of crack lengths, growth rates and time of crack initiation. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Water speciation KW - Soda-lime silicate glass KW - Crack growth KW - Vickers PY - 2018 AN - OPUS4-45704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling, I. C. S. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Starch KW - Starch nanoparticle KW - Silver nanoparticle PY - 2020 AN - OPUS4-51828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Kranzmann, Axel T1 - Corrosion behaviour of Ni-Cr-Mo-W coatings in environments containing sulfur N2 - The ferritic steel 13CrMo4-5 due to good properties with relation to attractive price is frequently use in power plants industry. According EN10028-2 this steel can be used up to 570 °C because of its creep behavior but its corrosion resistance limits the use frequently to lower temperatures, depending on gas temperature and slag formation. The corrosion test were performed in environment containing mixture of gases like: O2, COx, SOx and ashes, with elements e.g. Na, Cl, Ca, Si, C, Fe, Al. Exposure time was respectively 240 h, 1000 h and 4500 h in temperature 600 °C. The oxide scale on the 13CrMo4-5 steel was significant thicker than for In686 coating and the difference increase according for longer exposure time. The microstructure, chemical and phase composition of the oxide scales were investigated by means of a light microscope, the electron scanning and transmission microscopes (SEM,TEM) equipped with the EDS detectors. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - High temperature KW - Corrosion resistance KW - Laser cladding KW - Inconel 686 KW - Aggressive environment PY - 2019 AN - OPUS4-49358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclęga, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Dymek, S. T1 - Microstructure characterization of the Inconel 686 clad layer after high-temperature corrosion tests in aggressive gases and ashes N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Laser Cladding KW - Inconel 686 KW - High temperature corrosion KW - Aggressive environement KW - Material oxidation PY - 2018 AN - OPUS4-45627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kranzmann, Axel A1 - Midtlyng, Jan A1 - Schlitte, I.-V. A1 - Escoda de Pablo, S. T1 - Corrosion of VM12 SHC in Salt melt N2 - Alkali and alkaline earth chlorides are discussed as heat storage media and are characterized by their low price and high availability. Disadvantages are a high corrosion rate and formation of Cr6+ ions in the melt, as observed in various binary chlorine salt melts. In our work the system NaCl-KCl-MgCl2 is considered. The storage capacity in this salt system is between 2 and 3 MWh per 10 t salt, depending on composition, melting temperature and working temperature. At the same time the system offers a eutectic line, which allows a high variance of the composition and possibly different corrosion rates can be observed. Corrosion tests in melts were carried out and the corrosion layers investigated. The tests with chloride melts on 12% Cr steel show an inner corrosion zone of up to 40 µm depth after 96 hours. The corrosion mechanisms and potential solutions are discussed. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Salt melt KW - Corrosion KW - VM12 SHC PY - 2019 AN - OPUS4-50759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Peetz, Andreas A1 - Kranzmann, Axel T1 - Interaction of Reactive Components in CO2 Streams with Transport Pipeline Steel X70 N2 - In context of CLUSTER project, impacts of impurities (SO2, NO2, O2, CO, H2S, H2, N2, Ar and H2O) in CO2 streams captured from different sources in a regional cluster on transport, injection and storage were investigated. Corrosion studies of oxidizing, reductive or mixed atmospheres towards transport pipeline steel X70 were carried out applying high pressure (10 MPa) at low temperatures (278 K or 313 K). T2 - GHGT-14 Conference CY - Melbourne, Australia DA - 22.10.2018 KW - Carbon capture KW - CCS KW - Carbon dioxide KW - Corrosion PY - 2018 AN - OPUS4-47017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Gemeinert, Marion A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial classification of powders N2 - The EU recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. Within the European Project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nanomaterial or non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nanomaterial or non-nanomaterial. The correct identification of a nanomaterial by VSSA method (positive test) is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape. For particles containing micro-pores or having a microporous coating, false positive results will be produced. Furthermore, broad particle size distributions – as typically for ceramic materials – as well as multi-modal size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and improve the method. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft mit Symposium Hochleistungskeramik CY - München, Germany DA - 10.04.2018 KW - VSSA KW - Nanoparticles PY - 2018 AN - OPUS4-45097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial identification of powders N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming (SEM, TEM). Within the European project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nano-/non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The correct identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions of the particles. For particles containing micro-pores or having a microporous coating false positive results will be produced. Furthermore, broad particle size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and to improve this good available and agglomeration tolerant method. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - VSSA KW - Nanomaterial screening KW - Nano-powder characterization PY - 2018 AN - OPUS4-45099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan T1 - Considerations for nanomaterial identification of powders using volume-specific surface area method N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming. For most measurement methods for particle size determination it is necessary to initially disperse the particles in a suitable liquid. However, as the particle size decreases, the adhesion forces increase strongly, making it more difficult to deagglomerate the particles and to assess accurately the result of this process. Therefore, the success of the deagglomeration process substantially determines the measurement uncertainty and hence, the comparability between different methods. Many common methods such as dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS) or ultrasound attenuation spectroscopy (US) can give good comparable results for the size of nanoparticles, if they are properly separated and stabilized (e.g. in reference suspensions). In order to avoid the use of hardly available and expensive methods such as SEM / TEM for all powders, an agglomeration-tolerant screening method is useful. One of the measurement methods well suited to probe the size of particulate powder is the determination of the volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method was associated also with some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions, but also with the degree of sphericity of the particles. For particles containing micro-pores or having a microporous coating, false positive results are induced. Furthermore, broad particle size distributions made necessary to additionally correct the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach was tested in relation with SEM and TEM measurements. The introduction of a correction term for deviations from sphericity and further additions improved the applicability of VSSA as a screening method. T2 - Partec CY - Nuremberg, Germany DA - 09.04.2019 KW - VSSA KW - Nanoparticles PY - 2019 AN - OPUS4-47874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evolution of CFRP stress cracks observed by in situ X-ray refractive imaging N2 - Modern air-liners and wind turbine rotor blades are made up primarily of fiber reinforced plastics. Failure of these materials heavily impairs the serviceability and the operational safety. Consequently, knowledge of the failure behavior under static and cyclic loads is of great interest to estimate the operational strength and to compare the performance of different materials. Ideally, the damage evolution under operational load is determined with in-situ non-destructive testing techniques. Here, we report in-situ synchrotron X-ray imaging of tensile stress induced cracks in carbon fiber reinforced plastics due to inter-fiber failure. An inhouse designed compact tensile testing machine with a load range up to 15 kN was integrated into the beamline. Since conventional radiographs do not reveal sufficient contrast to distinguish cracks due to inter-fiber failure and micro cracking from fiber bundles, the Diffraction Enhanced Imaging (DEI) technique is applied in order to separate primary and scattered (refracted) radiation by means of an analyzer crystal. This technique allows fast measurements over large fields-of-view and is ideal for in-situ investigations. T2 - 12th BESSY@HZB User Meeting 2020 CY - Online meeting DA - 10.12.2020 KW - Carbon Fiber Reinforced Plastics KW - Crack evolution KW - Diffraction Enhanced Imaging KW - In situ tensile test KW - X-ray refraction PY - 2020 AN - OPUS4-51802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in filled and unfilled polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. The fracture tests include the conventional tensile test, the macroscopic peel test and the single fiber peel – off test. T2 - PhD Day 2018 of BAM CY - Berlin, Germany DA - 31.05.2018 KW - Crack Propagation KW - Polymer PY - 2018 AN - OPUS4-48471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. This poster is the summary of the first part of the whole project. In the first part, the basic crack propagation theory for neat polymers is established and the special fracture experiment sample is prepared and tested at room temperature. In addition, the fracture experiment at room temperature is validated numerically. T2 - PhD Day 2019 of BAM CY - Berlin, Germany DA - 22.05.2019 KW - Crack Propagation KW - Polymer PY - 2019 AN - OPUS4-48472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The use of more and more varied fuels implies an increased list of criteria that need to be addressed when choosing a material for a combustion chamber and its supply pipes. The materials must be very resistant against corrosion, especially when the process takes place at temperatures above 500°C. In this work the influence of SO2 on the surface of the “Cantor alloy” is investigated. T2 - HEA-Symposium "Potential for industrial applications" CY - Dresden, Germany DA - 12.05.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - 4th International Symposium on Negative Thermal Expansion and Related Materials (ISNTE-4) CY - Padua, Italy DA - 04.07.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-1. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice CY - Linköping, Sweden DA - 21.08.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning T1 - Machine learning assisted characterization of a Low Temperature Co-fired Ceramic (LTCC) module measured by synchrotron computed tomography. N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Tagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 AN - OPUS4-51299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Kuchenbecker, Petra A1 - Würth, Christian A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - Fine iron oxide nanoparticles as a candidate reference material for reliable measurement of particle size N2 - Background, Motivation and Objective Nanomaterials are at the core of some of the 21st century’s most promising technologies. In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important. Furthermore, the European Commission has taken measures via the REACH Regulations to control the classification of nanomaterials. REACH Annexes which entered into force in January 2020 require manufacturers to register nanomaterials that are traded in larger quantities (at least 1 ton). Every powder or dispersion where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as a nanomaterial. This creates a need for both industrial manufacturers and research and analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is working on developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution, but also targeting other key parameters such as shape, structure (including porosity) and functional properties. Thus, candidate materials are considered to complement the already available spherical and monodisperse silica, Au and polystyrene reference nanoparticles, e.g. iron oxide and titanium oxide, with an average atomic number between those of silica and gold. Particularly for the imaging by electron microscopies, new nanoparticles of well-defined size in the range of 10 nm are decisive for the accurate particle segmentation by setting precise thresholds. Statement of Contribution/Methods Synthesis: Highly monodisperse iron oxide nanoparticles can be synthesized in large quantities by thermal decomposition of iron oleate or iron acetylacetonate precursors in high boiling solvents such as octadecene or dioctyl ether in the presence of oleic acid and oleylamine as capping agents. Scanning Electron Microscope: An SEM of type Supra 40 from Zeiss has been used including the dedicated measurement mode transmission in SEM (STEM-in-SEM) with a superior material contrast for the nanoparticle analysis. The software package ImageJ has been used for the analysis of the STEM-in-SEM images and to determine the particle size distribution. Dynamic Light scattering (DLS): Particles in suspension were measured in comparison by means of Zetasizer Nano (Malvern Panalytical; cumulants analysis) and NanoFlex (Microtrac; frequency power spectrum). Results/Discussion In this study iron oxide nanoparticles synthesized at BAM and pre-characterized by DLS, SEM (including the transmission mode STEM-in-SEM) are presented. The particles are spherical and highly monodisperse with sizes slightly larger than 10 nm. T2 - Nanosafe 2020 CY - Online meeting DA - 16.11.2020 KW - Reference nanomaterials KW - Imaging techniques KW - Size and size distribution KW - Reliable characterization KW - Iron oxide nanoparticles PY - 2020 AN - OPUS4-51767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mueller, Axel A1 - Duemichen, E. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Scholz, K. A1 - Bannick, C.-G. T1 - Analysing microplastics in samples of terrestrial systems N2 - The presence, fate and effects of microplastics (MP) in terrestrial systems are largely unknown. The few existing studies investigated either agricultural or industrial sites. Several techniques were used for analysis, primarly spectroscopic methods such as FTIR or Raman. Sample pretreatments like density separations are common to reduce matrix. A lack of harmonised and standardised sampling instructions for microplastic investigations in the terrestrial area was identified as particular critical, because different studies are barely comparable. The aim of the project is to develop a proposal for a harmonized procedure for sampling, sample preparation and the detection of microplastics in terrestrial matrices for total content determination. By detecting specific degradation products the thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) allows a direct determination of mass content of MP in environmental samples. T2 - SETAC 2018 CY - Rome, Italy DA - 13.05.2018 KW - Microplastics KW - Soil sample KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-44988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orlov, Nikolai A1 - Milkin, P. A1 - Evdokimov, P A1 - Putlayev, V. A1 - Günster, Jens A1 - Nicolaides, Dagmar T1 - Bioceramics from Ca3(PO4)2 - CaKPO4 - CaNaPO4 system for bone replacement and grafting N2 - Biomaterials for bone replacement and grafting should possess sufficient strength, be bioresorbable and demonstrate osteoconductivity/osteoinductivity. Nowadays, hydroxyapatite (HA) and tricalcium phosphate (TCP) are the most widespread ceramics for bone grafting at the market, however, their resorption is reported, in some cases, to be not enough. This is why the search for more soluble ceramics compared to HA and TCP looks rather viable. A possible way to increase ceramics solubility leads to partial substitution of Ca2+-ions in Ca3(PO4)2 by alkali castions, like Na+ or/and K+. Improvement of solubility stems from decreasing lattice energy of a substituted phase, as well as increase in hydration energy of the ions releasing from the phase to ambient solution. From this viewpoint, bioceramics based on compositions from Ca3(PO4)2 - CaKPO4 - CaNaPO4 ternary system seems to be prospective for bone replacement and grafting in sense of resorption properties. At the same time, one should bear in mind that solubility level (resorbability) is governed not only by reduction of lattice energy, but also by microstructure features. Grain sizes and porosity contribute much to dissolution rate making study of sintering of aforementioned ceramics highly important. T2 - Biomaterials and Novel Technologies for Healthcare, 2nd International Biennial Conference BioMaH CY - Frascati (Rome), Italy DA - 08.10.2018 KW - Bio Ceramics KW - Bioresorbable PY - 2018 AN - OPUS4-46035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Goedecke, Caroline A1 - Sojref, Regine T1 - Transformation of the antidiabetic drug metformin N2 - For years there have been more and more reports on the presence of drugs in the aquatic environment. Due to the demographic change, the consumption of pharmaceuticals has risen sharply. After taking the drugs, they are partly metabolized in the human body. However, the metabolism is not complete so that both the metabolites and non-metabolized amounts of the parent compounds are excreted. These compounds reach the waste water and afterwards the sewage treatment plants. In sewage treatment plants transformation products can be formed by the oxidative conditions during wastewater treatment processes. The transformation products may have a higher toxicity than the actual environmental pollutants and are often only partly removed during the waste water treatment. Since a lot of these compounds are still unknown, the transformation products are not detected by target analysis used in sewage treatment plants and are often released undetected in the aquatic ecosystems. The released substances may be subject to additional transformation processes in the environment. Pharmaceuticals produced in high amounts can be already detected in the μg/L range in water bodies worldwide. Metformin and its major transformation product guanylurea are one of the main representatives. Metformin is the drug of choice for treating type 2 diabetes. The drug therapy for diabetes mellitus has increased significantly in recent years. In the year 2015 1500 tons of metformin were prescribed in Germany (for statutory insured persons). Metformin is not metabolized in the human body and is excreted unchanged therefore concentrations between 57 μg/L and 129 μg/L are found in German waste water treatment plants influents. In this work the transformation of the antidiabetic drug metformin is investigated. The degradation of metformin is initialize by commercial water treatment techniques like UV-radiation or noncommercial techniques like heterogenous photocatalysis based on titanium dioxide. The degradation of metformin and resulting transformation products are analyzed by LC-MS/MS and LC-HRMS. T2 - SPEA 10 CY - Almeria, Spain DA - 04.06.2018 KW - Metformin KW - Photocatalysis PY - 2018 AN - OPUS4-47030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Arendt, F. A1 - Sierka, M. A1 - Diegeler, A. T1 - A new robot-assisted compositional screening method N2 - The system Na2O.B2O3-SiO2 (NBS) is the basis of many industrial glass applications and therefore one of the most studied systems at all. Glass formation is possible over a wide compositional range, but the system also contains ranges of pronounced phase separation and crystallization tendency. Despite its importance, experimental data are limited to few compositional areas. The general understanding and modelling of glass formation, phase separation, and crystallization in this system would therefore be easier if small step melt series could be studied. The efficient melting of such glass series is now possible with the new robotic glass melting system at the Federal Institute for Materials Research and Testing (BAM, Division Glasses). Using three exemplary joins within this NBS system, the small step changes of glass transition temperature (Tg), crystallization behavior as well as glass density (Roh) was studied. Additionally, experimental Tg and Roh data were compared with their modeled counterparts using SciGlass and a newly developed DFT model, respectively. T2 - Annual meeting of the French Union for Science and Glass Technology (USTV) and the 96th Annual Meeting of the German Society of Glass Technology - USTV-DGG joint meeting. CY - Orléans, France DA - 22.06.2023 KW - Robot-assisted galss melting KW - Sodiumborosilicate glasses KW - Density KW - Glass transformation temperature KW - Property simulation PY - 2023 AN - OPUS4-58724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, I. A1 - Piesker, B. A1 - Skrotzki, Birgit T1 - Influence of prestraining on the aging response of an Al-Cu-Li alloy N2 - The influence of prestraining on the aging response of an Al-Cu-Li alloy is investigated by preparation of different strain states (3 %, 4 %, 6 %) of the initial aging state. The Brinell hardness of the subsequently aged samples (up to 60 h aging time) was measured and it was found that the increasing dislocation concentration in the 3 different initial states leads to faster hardness increases and slightly higher maximum hardness. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Al-Cu-Li alloys KW - Degradation KW - Hardness PY - 2019 AN - OPUS4-48953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Digital material representation of alloy 2618A for the lifetime assessment of radial compressor wheels N2 - The concept of digital material representation is introduced and the aluminium alloy 2618A is discussed as an example of this concept regarding the simulation of material ageing based on nanoscaled precipitates. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Digital material representation PY - 2019 AN - OPUS4-48954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - The long-term ageing process of alloy 2618A N2 - The long-term ageing process of alloy 2618A was introduced and discussed The dark-field transmission electronmicroscopical resilts werde shown and evaluated regarding the precipitate radii. The influence of the precipitate radii regarding ageing was used for a preliminary ageing assessment. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - S-phase KW - Dark-field transmission electron microscopy (DFTEM) PY - 2018 AN - OPUS4-46123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Heidl, Daniel A1 - Skrotzki, Birgit T1 - Influence of heat treatment and creep loading on an Al-Cu-Li alloy N2 - The influence of heat treatment and creep loading on the microstructure of an Al-Cu-Li alloy was investigated. Especially the formation of different precipitates (T1 and Theta') were characterized and the microstructural changes under different ageing conditions (with and without external strain) were investigated to determine the effect od stress on the ageing process. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Aluminium KW - Degradation KW - Coarsening KW - Dark-field transmission electron microscopy PY - 2018 AN - OPUS4-46131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin A1 - Zocca, Andrea A1 - Günster, Jens T1 - Fully automated and decentralized fused filament fabrication of ceramics for remote applications N2 - Manufacturing of ceramic components in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of ceramic components with complex geometries. Parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. This poster presents an innovative approach: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the ceramic filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering of the ceramic parts and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic components in remote environments with increased efficiency and minimal human handling. T2 - yCAM 2024 CY - Tampere, Finnland DA - 06.05.2024 KW - Fused Filament Fabrication PY - 2024 AN - OPUS4-60057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheffler, F. A1 - Fleck, M. A1 - Santiago, C. F. A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Morphologies of Fresnoite surface crystals of BT0.75S glass under different atmospheric conditions N2 - Fresnoite glass-ceramics are characterized by piezoelectric, pyroelectric and non-linear optical properties. These properties can be adjusted by orienting the fresnoite crystals during crystallization. Crystallization begins at the surface. The first surface crystals are not oriented perpendicular and, therfore, produce a surface layer that has not the intended properties. To overcome this issue, the formation of fresnoite surface crystals at different atmospheric conditions was studied. T2 - 9th Int. Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Glass KW - Surface crystallization KW - Crystal orientation PY - 2019 AN - OPUS4-50460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Failure of PE-HD induced by liquid media (ESC) N2 - As the well-known damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) are the major causes for possible failure of polyolefin-based materials, especially for PE-HD, they are highly relevant and need to be considered thoroughly. Furthermore, due to slight but perceptible differences in damaging effect, a differentiation between SCG and ESC is expedient. SCG appears in “inert” or “neutral” media without a decisive influence of the surrounding medium whereas ESC occurs in “active” media, which influence the failure behavior and time to failure crucially. To characterize the inherent resistance of the material against those damage mechanisms, the well-established Full-Notch Creep Test (FNCT) is used. In this study, the FNCT – usually applied according to ISO 16770 [3] using a few universal model liquid media and mainly for pipe materials – is extended by investigations with appropriate parameters of selected relevant PE-HD container materials also in real media, such as the topical fuels diesel and biodiesel. The investigations were performed using a novel FNCT-device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. Especially, mechanical stress and temperature were varied systematically during FNCT and time to failure values, time-dependent elongation data as well as detailed fracture surface analysis by laser scanning microscopy (LSM) were combined for the first time (Fig. 1). Particularly, the fracture surface analysis provides a sound basis to characterize failure behavior, mainly regarding the balance between brittle crack propagation and ductile deformation. Therefore, fracture surface analysis is an essential tool for a decent assessment of SCG and ESC by FNCT measurements. T2 - 17th International Conference on Deformation, Yield and Fracture of Polymers (DYFP) CY - Kerkrade, The Netherlands DA - 25.03.2018 KW - Environmental stress cracking (ESC) KW - PE-HD KW - Full Notch Creep Test (FNCT) KW - Imaging techniques KW - Brittle / ductile fracture behavior KW - Crack propagation analysis PY - 2018 AN - OPUS4-44617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Böhning, Martin T1 - An optical criterion for the assessment of Full-Notch Creep Test (FNCT) fracture surfaces N2 - The full-notch creep test (FNCT) is a common method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD) container materials . The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of specimens mechanically loaded in a well-defined liquid environment. Since the craze-crack damage mechanism underlying the ESC process is associated with brittle failure, the occurrence of globally brittle fracture surfaces is a prerequisite to consider an FNCT measurement as representative for ESC . Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. Due to the experimental setup, an inevitable increase of the true mechanical stress and the associated appearance of small ductile parts on fracture surfaces is induced in any case. Hence, an FNCT experiment is considered as 'valid', if the corresponding fracture surface is predominantly brittle . Based on laser scanning microscopy (LSM) height data of FNCT fracture surfaces , a universal and easy-to-use phenomenological criterion was developed to assess the validity of distinct FNCT experiments. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. T2 - PPS Europe-Africa 2019 Regional Conference (PPS 2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Full-Notch Creep Test (FNCT) KW - Polyethylene, PE-HD KW - Fracture surface analysis KW - Environmental stress cracking (ESC) KW - Optical criterion KW - Brittle fracture PY - 2019 AN - OPUS4-50940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Schaarschmidt, J. A1 - von Hartrott, P. A1 - Bruns, M. A1 - Birkholz, H. A1 - Waitelonis, J. A1 - Hickel, Tilmann T1 - Seamless Science with the Platform MaterialDigital (PMD): Demonstration of Semantic Data Integration as Good Practices N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented on a prototypical basis which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this poster presentation illustrates demonstrators developed and deployed within the PMD project. Semantically anchored using the mid-level PMD Core Ontology (PMDco), they address data transformation leading to a novel data management which is based on semantic integrated data. The PMD data acquisition pipeline (DAP), which is fueled by traditional, diverse data formats, and a pipeline applying an electronic laboratory notebook (ELN) as data source are displayed. Additionally, the efficient combination of diverse datasets originating from different sources is demonstrated by the representation of a use case dealing with the well-known Orowan relation. T2 - 9. Dresdner Werkstoffsymposium CY - Dresden, Germany DA - 16.05.2024 KW - Semantic Data KW - Data Integration KW - Plattform MaterialDigital KW - Demonstrators KW - Electronic Lab Notebook PY - 2024 AN - OPUS4-60102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this poster presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - DVM Arbeitskreis Betriebsfestigkeit - Potenziale der Betriebsfestigkeit in Zeiten des technologischen und gesellschaftlichen Wandels CY - Munich, Germany DA - 11.10.2023 KW - Digitalization KW - Semantic Web Technologies KW - FAIR KW - Data Interoperability KW - PMD Core Ontology PY - 2023 AN - OPUS4-58602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Hanke, T. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Kupfer-Symposium CY - Jena, Germany DA - 29.11.2023 KW - Ontology KW - Semantic Web Technologies KW - Plattform MaterialDigital KW - PMDco PY - 2023 AN - OPUS4-59031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, Christiane T1 - Effect of corrosive atmosphere on the oxidation behavior of CrMnFeCoNi and CrCoNi alloys N2 - High- and medium-entropy alloys (HEAs and MEAs) constitute a new class of materials. Those with a face-centered cubic (fcc) structure from the Cr-Mn-Fe-Co-Ni system have excellent mechanical properties and are considered for high-temperature applications since diffusion in these alloys was reported to be sluggish. However, their corrosion resistance at high temperatures must still be evaluated to further qualify them for such kinds of applications. Various groups studied the oxidation behavior of HEAs and MEAs under (dry) laboratory and artificial air as well as CO2/CO mixtures in different temperature ranges. Adomako et al. carried out oxidation tests in dry air between 800 °C and 1000 °C for 24 h in equiatomic CrCoNi, CrMnCoNi, and CrMnFeCoNi alloys. The authors showed that CrCoNi exhibits the best corrosion resistance at 800 °C due to the formation of a protective Cr2O3 layer. The matrix below the oxide scale was reported to be correspondingly depleted in Cr. It was further shown that the addition of Mn and Fe to CrCoNi changes the phase composition of the oxide scale at 800 °C. A Mn2O3 layer was grown during oxidation on CrMnCoNi and CrMnFeCoNi and a Cr2O3 scale was formed at the matrix/oxide scale interface. Beneath these oxide layers, Mn- and Cr-depleted zones were detected. These phase morphologies demonstrate the inward diffusion of oxygen and outward diffusion of Cr and Mn resulting in the formation of Cr2O3 and Mn2O3. In the present study, the corrosion resistance of CrMnFeCoNi and CrCoNi were confirmed and additionally characterized under further oxidizing atmospheres at 800 °C including Ar-2 Vol.% O2, Ar-2 Vol.% H20, and Ar-2 Vol.% SO2 mixtures. T2 - 10th International Symposium on High-Temperature Corrosion and Protection of Materials CY - Online meeting DA - 28.03.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönauer-Kamin, Daniela A1 - Hetzel, K. A1 - Moos, R. A1 - Bresch, Sophie T1 - Powder-Aerosol deposited (PAD) calcium manganate as n-type thermoelectric material N2 - Currently, calcium manganate CaMnO3 and calcium cobaltite Ca3Co4O9 are being investigated as n-type resp. p-type semiconducting materials as oxidation- and temperature-resistant thermoelectric materials for oxide multilayer thermoelectric generators (TEGs). In order to manufacture multilayer TEGs, pressure-assisted sintering processes at high temperatures are necessary to achieve optimal thermoelectric material properties. To realize TEGs in planar film technology, another method to obtain dense ceramic layers directly from the synthesized starting powders without a subsequent high temperature step is emerging recently: the powder aerosol deposition (PAD) method. In the present work, it is investigated whether PAD is suitable to produce dense ceramic films from Sm-doped CaMnO3 and Ca3Co4O9 powders. The resulting thermoelectric properties are characterized as a function of temperature. CaMnO3 powder could successfully be processed by PAD with resulting layer thicknesses of 5- 6 µm without any high-temperature sintering steps of the films. The electrical conductivity and the Seebeck coefficient of the films were determined in-plane from room temperature to 600 °C in air. The results show a Seebeck coefficient of around -200 µV/K, which is comparable to results of pressed and sintered bars. At 400 °C, the electrical conductivity corresponds to the conductivity of the bar. At higher temperatures the conductivity is better than with the reference. Below 400°C, the electrical conductivity is somewhat lower than that of the reference sample, a mild thermal treatment of the PAD layer improves it. It is expected that the thermal conductivity of the PAD film will be lower compared to the bars due to the nano-crystalline film morphology. This should result in a significantly increased ZT value for the PAD layers and a higher efficiency of the TEG. The work shows that both CaMnO3 and Ca3Co4O9 can be successfully processed by PAD, and the PAD films show comparable thermoelectric properties. T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spanien DA - 14.09.2022 KW - Film depositition KW - Calcium cobaltite PY - 2022 AN - OPUS4-55771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shakeel, Y. A1 - Soysal, M. A1 - Vitali, E. A1 - Ost, P. A1 - Aversa, R. A1 - Ávila Calderón, Luis Alexander A1 - Engstler, M. A1 - Fell, J. A1 - Fritzen, F. A1 - Hermmann, H.-G. A1 - Laadhar, A. A1 - Olbricht, Jürgen A1 - Pauly, C. A1 - Roland, M. A1 - Skrotzki, Birgit T1 - NFDI-MatWerk - Reference Datasets N2 - Within NFDI-MatWerk (“National Research Data Infrastructure for Material Sciences”/ “Nationale Forschungsdateninfrastruktur für Materialwissenschaften und Werkstofftechnik“), the Task Area Materials Data Infrastructure (TA-MDI) will provide tools and services to easily store, share, search, and analyze data and metadata. Such a digital materials environment will ensure data integrity, provenance, and authorship. The MatWerk consortium aims to develop specific solutions jointly with Participant Projects (PPs), which are scientific groups or institutes covering different domains, from theory and simulations to experiments. The Data Exploitation Methods group of the Karlsruhe Institute of Technology-Steinbuch Centre of Computing, as part of TA-MDI, is developing specific solutions in close collaboration with three PPs. PP07, together with the University of Stuttgart, aims at the image-based prediction of the material properties of stochastic microstructures using large-scale supercomputers. PP13, in cooperation with the University of Saarland, focuses on tomographic methods at various scales in materials research. PP18, together with the Federal Institute for Materials Research and Testing (“Bundesanstalt für Materialforschung und -prüfung”), aspires to define the criteria for materials reference datasets and usage analytics. The requirements and goals are comparable for each PP: their research outputs, which are scientific datasets, should conform to the FAIR (Findable, Accessible, Interoperable, Reusable) principles. We aim to shape them from a data management perspective making use of the FAIR Digital Object concept, including structured metadata and storage solutions. The results will be a blueprint which will act as a reference for future datasets. Even though the collaboration is in an early stage, the initial steps already show the added value of this approach. This research has been supported by the Federal Ministry of Education and Research (BMBF) – funding code M532701 / the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number NFDI 38/1, project no. 460247524. T2 - HMC Conference 2022 CY - Online meeting DA - 05.10.2022 KW - NFDI KW - NFDI-MatWerk KW - Reference Data KW - FAIR KW - Creep PY - 2022 AN - OPUS4-56611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shakeel, Yusra A1 - Ávila Calderón, Luis Alexander A1 - Abdildina, Gulzaure A1 - Aversa, Rossella A1 - Blumenröhr, Nicolas A1 - Engstler, Michael A1 - Fell, Jonas A1 - Fritzen, Felix A1 - Hartmann, Volker A1 - Herrmann, Hans-Georg A1 - Jejkal, Thomas A1 - Joseph, Reetu A1 - Kirar, Ajay A1 - Laadhar, Amir A1 - Olbricht, Jürgen A1 - Ost, Philipp A1 - Pauly, Cristoph A1 - Pfeil, Andreas A1 - Roland, Michael A1 - Skrotzki, Birgit A1 - Soysal, Mehmet A1 - Stotzka, Rainer A1 - Vitali, Elias T1 - Creating Exemplary RDM Reference Datasets: Technical Process Overview N2 - The aim of the task area Materials Data Infrastructure (TA-MDI) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) is to shape scientific datasets obtained through the Participant Projects (PPs) from a data management perspective conforming to the FAIR principles, making use of the FAIR Digital Object (FAIR DO) concept, including structured metadata and storage solutions. As an example, they apply PP18 (BAM) as a use case to demonstrate the proposed technical workflow. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - NFDI KW - Reference Dataset KW - FAIR KW - Research Data Management PY - 2022 AN - OPUS4-57149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simkin, Roman A1 - Kranzmann, Axel A1 - Pfennig, Anja A1 - Heide, G. T1 - Oxidation behavior of FeCr model alloys in synthetic air at temperatures above 600 °C N2 - The life time of mechanical components in high temperature applications is basically determined by their workings. Corrosion determines the loss of material corresponding to the loss of the effective load-bearing section and consequently increasing stress levels. To improve the material selection for such applications a numerical life prediction corrosion model for different alloys and environments is needed. Based on the ferritic alloys FeCr and FeCrCo a first quantitative model is to be developed. For this purpose, the alloys are aged at 600°C, 650°C and 700°C in synthetic air under normal pressure for between 10 and 240 hours. The first objective is to establish a quantitative relationship between the oxidation rate as a function of composition and microstructure of the alloys. The influence of the inner interface as an essential parameter for transport by diffusion on the oxidation kinetics is discussed in this presentation. T2 - Gordon Research Conference CY - New London, New Hempshire, USA DA - 21.07.2019 KW - High temperature corrosion KW - Oxidation KW - Synthetic air KW - Modeling KW - FeCr- alloys PY - 2019 AN - OPUS4-49464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Kranzmann, Axel A1 - Reimers, W. T1 - Microstructure characterization of additive produced parts N2 - Due to the advantages of additive manufacturing (AM), it has been increasingly integrated into many industrial sectors. The application of AM materials for safety-critical parts requires the detailed knowledge about their microstructure stability under thermo-mechanical or mechanical load and knowledge on ageing process mechanisms. Ageing processes are characterized by change of the material microstructure that is to be initially investigated. This work deals with the Investigation of 316L stainless steel manufactured by selective laser melting (SLM). Describing Parameters must be defined and applied on the microstructure of these materials in their initial state and after loads were applied. The findings of this work form the basis for the investigation of AM material ageing. T2 - FEMS Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Additive manufacturing KW - Selective laser melting KW - 316L KW - Material characterization KW - Microstructure PY - 2018 AN - OPUS4-47176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Nolze, Gert T1 - Microstructure Characterization of Additively Manufactured Austenitic Steel 316L N2 - Additive manufacturing processes (AM) offer different advantages compared to conventional manufacturing processes. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), and the powder, used for the process, were investigated. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - Selective laser melting KW - Microstructure analysis KW - Metal powder characterization PY - 2019 AN - OPUS4-49884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Junge, P. A1 - Greinacher, M. A1 - Kober, D. A1 - Mieller, Björn T1 - Bulk vs thermal sprayed alumina for insulation applications: A comparison of electrical and dielectrical properties N2 - Additive manufacturing (AM) processes are opening new design possibilities for large scale electrical devices such as power generators. Conventional manufacturing methods use copper rods which are wrapped, vacuum impregnated, bend and welded. These processes are labor-intensive and time-consuming. The introduction of AM methods for manufacturing the copper conductor and electrical insulation can reduce the size of the generator head, the most complex part of the generator. In this study, the electrical and dielectrical properties of additively deposited ceramic layers are investigated and compared with the properties of conventionally fabricated bulk ceramics. The ceramic layers are thermally deposited by atmospheric plasma spraying of a commercially available alumina powder. Bulk ceramics are fabricated by dry pressing and sintering of the same powder. Microstructure and porosity were analyzed by scanning electron microscopy (SEM). Electrical and dielectrical properties such as DC resistance, dielectric strength, dielectric loss, and relative permittivity were determined according to the standards. The microstructures of sprayed and sintered alumina show significant differences with respect to grain form and porosity. The density of the bulk ceramic is lower than the density of the sprayed layer due to the coarse particle size (d50 = 33 μm). Therefore, data from dense samples of the same chemical composition but lower particle size alumina powder were used for comparison. T2 - Keramik 2022 CY - Online meeting DA - 07.03.2022 KW - High Voltage Insulation KW - Thermal Spray KW - Dielectric Spectroscopy KW - Atmospheric Plasma Spraying PY - 2022 AN - OPUS4-54446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Walter, P A1 - Stargardt, Patrick A1 - Höhne, Patrick A1 - Moos, R A1 - Mieller, Björn T1 - Comparison of design concepts for ceramic oxide thermoelectric multilayer generators N2 - Multilayer thermoelectric generators are a promising perspective to the conventional π-type generators. Ceramic multilayer technology is well established for production of microelectronics and piezo-stacks. Key features of ceramic multilayer technology are full-automation, cost-effectiveness, and the co-firing of all materials in one single step. This requires similar sintering temperatures of all used materials. The development of multilayer thermoelectric generators is a subject of current research due to the advantages of this technology. One of the challenges is the compatibility of the different materials with respect to the specific design. The presented study compares three different designs of multilayer generators based on a given set of material properties. Dualleg, unileg and transverse multilayer generators are compared to conventional π-type generators., the designs are evaluated regarding the expected maximum output power and power density using analytical calculations and FEM simulations. Additionally, the complexity of the production process and material requirements are assessed and design optimizations to simplify production are discussed. Besides the theoretical aspects, unileg multilayer generator prototypes were produced by tape-casting and pressure-assisted sintering. These prototypes are compared to other multilayer generators from literature regarding the power factors of the used material system and the power density. Improvements of the power output by design optimizations are discussed T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spain DA - 13.09.2022 KW - Thermoelectric oxides KW - Thermoelectric generator design PY - 2022 AN - OPUS4-55820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy using the CALPHAD method N2 - Introduction/purpose: Multi-principal-element alloys (MPEAs), also known as complex concentrated alloys (CCAs), have recently come to the attention of the scientific community due to some interesting and unexpected microstructures, and their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. Methods: In this contribution, the CALPHAD method is used to calculate phase equilibria for the AlMo0.5NbTa0.5TiZr CCA in the presence and absence of oxygen. Equilibrium phase amount evolution with temperature and Scheil Model for solidification (e.g. Fig.1a and Fig.1b, respectively) are analyzed, which are obtained using the databases TCNI9 and TTNI7 and the Gibbs energy minimizer in the Thermo-Calc software. Results: The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. Results obtained by both databases, as well as discrepancies between property phase and Scheil approaches are discussed on the base of experimental results. Conclusions: A modeling tool is used to support alloy characterization and development, providing also the possibility to feedback information to improve existing thermodynamic databases. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - CALPHAD databases analysis KW - Thermodynamic analysis KW - Complex concentrated alloy (CCA) PY - 2019 AN - OPUS4-49345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Influence of molecular orientation on the environmental stress cracking resistance N2 - Molecular orientation has a significant effect on the material properties of polymers. Preferential orientation of the microstructure (polymer chains or crystallites) in a specific direction or plane often enhances the material properties, especially if the high-strength covalent bonds are primarily exposed to loads instead of the weaker van der Waals bonds. However, the orientation-dependent microstructure and its mechanical behavior is in general already well understood by many scientific studies [1-3]. Isotropic materials are frequently required for an intrinsic material characterization without prevailing processing-induced properties, as is the case for Full Notch Creep Test (FNCT) [4] addressing environmental stress cracking (ESC) in high-density polyethylene (PE-HD) [5, 6]. Since ESC is one of the major limiting issues for long-term performance of PE-HD pipes and containers [7], which in contrast have a production-related preferential orientated microstructure due to extrusion or extrusion blow molding, it is important to additionally investigate the ESC resistance of such anisotropic microstructure. Investigations of the slow crack growth (SCG) with respect to the molecular orientation generally obtain a factor of 1.2 up to 4.7 between crack growth perpendicular to the extrusion direction and crack growth parallel to the extrusion direction 8. Based on FNCT investigations with an aqueous detergent solution as environmental medium, hot pressed sheets with isotropic morphology are compared with extruded sheets from which specimens with different orientation angles are taken. However, the time to failure obtained by FNCT is also significantly influenced by the different cooling conditions under which the final morphology is formed. The tendency of the specimen to fail due to ESC is investigated as a function of environmental medium temperature. For a more detailed analysis of the affecting parameters in the manufacturing process, the ESC resistance is discussed considering the differences in crystallinity as revealed by thermal analysis. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - Orientation-dependent microstructure KW - High-density polyethylene KW - Full Notch Creep Test PY - 2021 AN - OPUS4-53399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Oriented Surface Crystallization N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied by Rouxel in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Glass KW - Surface energy KW - Crystal orientation PY - 2022 AN - OPUS4-56074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tokarski, T. A1 - Nolze, Gert T1 - Exploring Unconventional Uses of Kikuchi Pattern Analysis N2 - The characterization of really unknown phases typically uses 70 to 150 reflectors for lattice metric calculation. The determination of the lattice parameters follows with 4% accuracy. Including a Z correction up to 1% can be reached. The precision of the lattice parameters ratios (a:b:c) is, however, better than 0.1%. T2 - Oxford Users Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kraus, David A1 - Kübler, Stefan A1 - Eisermann, René T1 - Multiaxial fatigue damage of glass fiber reinforced polymers N2 - Fiber reinforced polymers (FRPs) are a well established material in lightweight applications, e.g. in automotive, aerospace or wind energy. The FRP components are subjected to multiaxial mechanical as well as hygrothermal loads. Common operation temperatures are in the range of 213 K and 373 K (-60 °C and 100 °C) at a relative humidity of 10% to 90%. In spacecraft applications, the environmental conditions are even more extreme. However, the correlation between multiaxial mechanical loading and harsh environment conditions have to-date not been investigated in detail. The project aims to investigate the fatigue behavior of FRPs dependent on multiaxial mechanical loading, temperature, and humidity. Extensive experimental testing is performed on flat plate and cylindrical tube specimens, accompanied by numerical and analytical calculations. T2 - 24. Nationales SAMPE Symposium CY - Dresden, Germany DA - 06.02.2019 KW - Composite KW - Fatigue KW - Thermomechanics KW - Distributed fiber optic sensors PY - 2019 AN - OPUS4-47335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Assessment of EN AW-2618A for high temperature applications considering aging effects N2 - The alloy EN AW-2618A was assessed regarding its properties for high temperature applications considering aging effects. T2 - BAM TMF-Workshop 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Dark-field transmission electron microscopy (DFTEM) PY - 2019 AN - OPUS4-49808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Meyer, Christian A1 - Diegeler, A. A1 - Sorg, J. A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. T1 - Data-driven Workflow for Accelerated Glass Development (GlasDigital) N2 - As part of a joint project involving the Fraunhofer Institute for Silicate Research (ISC), the Friedrich Schiller University of Jena, the Clausthal University of Technology and the Federal Institute for Materials Research and Testing (BAM), digital tools are to be created for the development of new types of glass materials. Current processes for the production of glasses with improved properties are usually very cost- and energy-intensive due to the low degree of automation and are subject to long development cycles. The use of robotic synthesis processes in combination with self-learning machines is intended to overcome these problems in the long term. The development of new types of glass can then not only be accelerated considerably, but also be achieved with much less effort. In this talk, data generation via a robotic high-throughput glass melting system is presented, which should be the experimental basis for the ontology developed within the project GlasDigital. T2 - Materials Science and Engineering Congress (MSE 2022) CY - Darmstadt, Germany DA - 27.09.2022 KW - Oxidglas KW - Robotische Glasschmelzanlage PY - 2022 AN - OPUS4-56489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in silicate glass N2 - Premature failure of glass under load is caused by sub-critical crack growth (SCCG) originate from microscopic flaws at the surface. While SCCG is related to the humidity of the ambient atmosphere, leading to stress corrosion phenomena at the crack tip, the detailed mechanism and the effect of different network formers are still not fully understood. For more clarity, various soda silicate glasses with a second network former were investigated by double cantilever beam technique: Na2O*Al2O3*SiO2 (NAS), Na2O*B2O3*SiO2 (NBS), Na2O*PbO*SiO2 (NPbS). Three effects on the crack growth velocity, v, versus stress intensity, KI, curves were found out. The slope in region I, which is limited by corrosion, increases in the order NAS < NBS ≲ NPbS. The velocity range of region II reflecting the transition between corrosion effected and inert crack growth (region III), varies within one order of magnitude between the glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For comparison, crack growth at different humidity in commercial soda lime silicate glass (NCS) was measured. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Risswachstum KW - DCB KW - Glas PY - 2018 AN - OPUS4-45702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous soda-lime silicate glass N2 - Glass strength and fatigue is limited by surface cracks. As subcritical crack growth (SCCG) is governed by ambient humidity, stress corrosion at the crack tip is widely accepted to be the underlying mechanism. However, as water is known to have decisive effect on glass properties and can rapidly enter the crack tip near glass region, SCCG could be affected by such water related phenomena. We tried to mimic these effects studying water dissolution and speciation, mechanical properties, and SCCG in water-bearing glasses. For this purpose, glasses up to 8 wt% water have been prepared by means of high-pressure melting of glass powder - water mixtures. As part of this effort, SCCG in dry and hydrous commercial micros¬cope slide glass (CW = 6 wt%) was studied in double cantilever beam (DCB) geometry and sub-Tg relaxation was measured by Dynamic Mechanical Analysis (DMA). For SCCG in ambient air (24% r.h.), SCCG was promoted by the presence of 6wt% bulk water with respect to the dry glass. On the other hand, stress intensity values, KI, required to cause slow crack growth (v < 10-6 ms-1) resemble literature findings for float glass of similar composition in liquid water, which might represent the maximum possible promoting effect of ambient water on SCCG. For SCCG in vacuum (10-3 mbar), dissolved bulk water causes even more pronounced effects. Most strikingly, it strongly decreases the slope of the log v(KI)-curve, which is a measure of dissipated energy during fracture. A strong increase of sub-Tg relaxation with increasing water content was confirmed by DMA. As a consequence, slow crack growth occurs at KI values as measured in the dry glass whereas fast crack growth occurs at much larger KI than that of the dry glass. Kinks and shoulders shown by the inert log v(KI)-curve indicate that bulk water does not simply affect bulk mechanical properties. T2 - 9th Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehmann, N. A1 - Lenting, C. A1 - Stawski, Tomasz A1 - Agudo Jacome, Leonardo A1 - Jahn, S. T1 - Non classical nucleation in calcium sulfates Insights from the hyper arid Atacama Desert N2 - Gypsum (CaSO4∙2H2O) and anhydrite (CaSO4) are among the dominant evaporite minerals in the Atacama Desert [1]. They are distributed ubiquitously, and play a key role in local landscape evolution. The formation mechanism of especially anhydrite has been a matter of scientific debate for more than a century [2]. To date, there exists no model that can reliably predict anhydrite formation at earth’s surface conditions. While thermodynamics favor its formation [3], it is hardly achieved on laboratory time scales at conditions fitting the Atacama Desert. Long induction times for nucleation have recently been modeled by Ossorio et al. [4]. However, anhydrite can be readily found in the Atacama Desert. Recently, the mineral was synthesized in flow-through reactors as a byproduct of K-jarosite dissolution at high water activity (aw=0.98) and room temperature [5], even-though the thermodynamic stability field begins only under a value of ~0.8. Additionally, recent studies investigated the nano-structure of various calcium-sulfates, which advocate for highly non-classical crystallization behavior [6]. The specific roles of particulates, ionic or organic reagents working as catalysts for the non-classical crystallization pathway remain to be determined. Here, we present recent results from flow-through experiments as well as analyses of anhydrite samples from the Atacama Desert. Flow-through experiments were performed to systematically explore the domains of flow rate, composition, ionic-strengths and starting materials. Neither primary, nor secondary anhydrite was produced in any of these experiments. Analyses on Atacama samples reveal the existence of at least three distinct anhydrite facies, with differing mineralogy and micro- to nano-structures. The facies are (1) aeolian deposits with sub-µm grain sizes, (2) (sub-)surface nodules that formed from aeolian deposits and (3) selenites with secondary anhydrite rims. Possible mechanisms of their formation will be discussed. T2 - Goldschmidt2023 CY - Lyon, France DA - 13.07.2023 KW - Gypsum KW - Anhydrite KW - Atacama Desert KW - Local landscape evolution PY - 2023 AN - OPUS4-58988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jacome, Leonardo T1 - Damage induced by electric field of gold microparticles on silicon oxide substrate in the scanning electron microscope N2 - 1. Introduction A normally unwanted process that can arise when converging an electron beam onto, e.g. microparticles, has been called "damage induced by electric field" (DIEF) [1]. By DIEF, the convergent electron beam (CEB) imparts a high amount of energy to the microparticle locally and strongly interacts with its atoms. At a specific current density J, which can be controlled by the convergence angle α, the irradiated material begins to transform. The phenomenon of expelling nanomaterial from microparticles under the influence of a convergent electron beam (CB) in a transmission electron microscope (TEM) has been largely studied [2]. Several types of nanoparticles (NPs) have been observed for different metallic materials and metal oxides after specific CB protocols (P) in the TEM. Thus, DIEF can be used as a promising synthesis method controlled changes of micrometric material to create new nanometric material compositions and morphologies. While these reactions have been observed in situ at the high acceleration voltages associated with TEM, it remains unclear whether the SEM can also be used to fabricate NPs via DIEF. In contrast to TEM there is no possibility to statically convert the electron beam to a range of α to reach the needed J as in TEM. Instead, the scanning parameters and the magnification can be manipulated so as to find an integrated J. Considering that the scanning electron microscope (SEM) is easier to use, more accessible and cheaper than a TEM, here we explore the possibility to transfer the concepts of DIEF known to operate in the TEM for in situ NP generation SEM. 2. Objectives The main goal is to determine whether DIEF can be translated to the SEM perform to controlled in situ fabrication of nanoparticles from microparticles, using gold microparticles on amorphous SiO substrate as precursors. We determine what experimental parameters must be taken into account to create SEM-based CBPs for NP creation in the SEM with these materials. 3. Materials & methods Gold microparticles with diameter of around 1 to 3 µm were deposited on electron transparent amorphous SiO/SiO2 substrate. Using a convergent electron beam protocol (CBP) in a scanning electron microscope (SEM) at an acceleration voltage of 30 kV, the gold microparticles were irradiated until a production of NPs takes place as shown in figure 1. The beam current varied between 16 and 23 nA. 4. Results Depending on the CBP parameters, either only Au NPs or a mixture of Au and Si NPs are produced. The particle size ranges from a few nm up to 100 nm, and it depends on the distance of the NP to the initial position of the microparticle. Further beam parameters such as the dwell time, the effective irradiated volume and particle size determine whether NPs are produced or if the microparticles only are expelled from the substrate without reacting. 5. Conclusion The SEM can be used as an instrument for synthesizing nanomaterials via DIEF. Different CBP protocols can be applied for obtaining either gold nanoparticles or silicon + gold nanoparticles T2 - Microscopy Conference CY - Darmstadt, Germany DA - 26.02.2023 KW - Scanning electron microscopy (SEM) KW - Gold nanoparticles KW - Electron beam induced modification PY - 2023 AN - OPUS4-58261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Hesse, René A1 - Agudo Jacome, Leonardo A1 - Gonzalez-Martinez, I. T1 - Complex artificial features on a TEM transparent membrane N2 - The phenomenon of expelling nanomaterial from microparticles of different materials, such as Au, WO3 or B2O3 under the influence of a convergent electron beam (CB) of a transmission electron microscope (TEM) was reviewed by Ignacio Gonzalez-Martinez [1]. Converging the e-beam in a TEM means that a high amount of energy enters the microparticle at a very local place and interact with the matter. Obviously, during the convergent beam protocol, no imaging with the electron beam is possible, but at the end, nanoparticles with different appearances lie down next to the microparticle while its size is reduced. Hence, there is a blind spot in the observation, which we want to fill, as we want to help clarify the nature of the expelling phenomenon. One hypothesis that explains the phenomenon is the so-called damage (of the microparticle) induced by an electric field (DIEF). Within this theory, the material is ionized and expelled in form of ionic waves. Our aim is therefore to fabricate specimens with artificial microlandscapes, as schematically exemplified in figure 1a), using the focused ion beam (FIB) and micromanipulators, as experimental setups to follow the paths of the expelled material. As a first step towards the fabrication of such specimen, we make experimental feasibility studies for each fabrication method, FIB structuring with Ga+ ion beam and micromanipulated microparticle deposition. Bridges (gray regions in Fig. 1) are created by milling a commercially available electron transparent membrane (silicon oxide or carbon) of a Cu-TEM grid. Platinum or carbon walls (blue features in Fig. 1) are built to stand on those bridges. Microparticles (yellow sphere in Fig. 1) of gold or other material are deposited in the center of the bridges. Figure 2a) shows four square holes (black area) and between them the residual silicon oxide membrane bridges (dark grey). On top of the bridges, walls (light grey) are deposited. The width of the bridges is different, the walls overlap the holes as well as the distance between the walls is very small, so these and other parameters need to be optimized. Figure 2b) shows a square hole (black) with bridges (white) on the right side on top of a carbon membrane (grey). There are still some obstacles which needs to be eliminated. For instance, the deposition process of the walls is not reliable as visible at the wall on top where a hole arises instead of a wall. These studies are still in progress and the results are further discussed in terms of the applicability for the DIEF experiment in the TEM. T2 - 4th EuFN and FIT4NANO Joint Workshop / Meeting CY - Vienna, Austria DA - 27.09.2021 KW - Transmission electron microscope (TEM) KW - Sample preparation KW - Micromanipulation KW - Focussed ion beam growth KW - Nano-landscape PY - 2021 AN - OPUS4-58259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jacome, Leonardo T1 - Damage induced by electric field of microparticles in the electron microscope N2 - Damage induced by electric field (DIEF) that happens in the transmission electron microscope (TEM) when converging the electron beam (e-beam) on microparticles (MPs) can be used to synthesis new nanomaterial and nanomaterial compositions. The research questions are to clarify the limits and possibilities of the method regarding materials that can be produced, systems to which it is applicable and working beam parameters. Synthesis of nano-objects from microparticles using DIEF in TEM could be shown for different materials. Additionally, DIEF using the e-beam in a scanning electron microscope (SEM) can also be used to synthesis nano-objects. A deeper material analysis of this nano-objects was done using TEM and shows that the material of the nanoparticles (NPs) can be gold or/and silicon. Furthermore, the size of the NPs depends on the distance to the center of DIEF whereby the larger NPs are closer to the center. The areas of gold NPs are promising candidates for plasmonic or photonic devices for energy storage or transport. T2 - PhD-Day 2022 CY - Berlin, Germany DA - 06.09.2022 KW - Electron microscopy KW - Electron beam induced modification KW - Gold nanoparticles PY - 2022 AN - OPUS4-58264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Marzok, Ulrich A1 - Müller, Ralf T1 - Glass structures with low H2-diffusity N2 - Effective hydrogen storage capacities are prerequisite for an efficient energy provision using fuel cells. Since glass has low intrinsic hydrogen permeability, it is a promising material for hydrogen storage containers as well as hydrogen diffusion barriers. Previous studies on oxidic glasses suggest a correlation between the glass composition and hydrogen permeation that was derived mainly from silica glass. In the present study, we concentrate on the relationship between thermodynamic (i.e., configurational entropy) and topologic (i.e., free volume, network polymerization) parameters. Experimental data were gathered well below the glass transition temperature, excluding significant effects caused by structural relaxation and chemical dissolution of hydrogen. The results of seven analysed glasses on the SiO2-NaAlO2 joint showed that the hydrogen permeability in fully polymerized glasses cannot solely be derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen solubility and diffusion. Additionally, the results indicate that the configurational heat capacity ΔCp at Tg affects the hydrogen permeability of the investigated glasses. T2 - 92. Glastechnische Tagung der DGG CY - Bayreuth, Germany DA - 28.05.2018 KW - Hydrogen permeability KW - Atomic packing factor KW - Glass composition KW - Diffusion coefficient PY - 2018 AN - OPUS4-45900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Schwentenwein, M. A1 - Günster, Jens T1 - Quality Aspects of Additively Manufactured Medical Implants - Defect Detection in Lattice Parts N2 - Additive Manufacturing technologies are developing fast to enable a rapid and flexible production of parts. Tailoring products to individual needs is a big advantage of this technology, which makes it of special interest for the medical device industry and the direct manufacturing of final products. Due to the fast development, standards to assure reliability of the AM process and quality of the printed products are often lacking. The EU project Metrology for Additively Manufactured Medical Implants (MetAMMI) is aiming to fill this gap by investigating alternative and cost efficient non-destructive measurement methods. T2 - yCAM Forum CY - Mons, Belgium DA - 03.03.2019 KW - Additive Manufacturing KW - Metrology PY - 2019 AN - OPUS4-49141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Chemical characterization of aging processes in high energy-density lithium-ion batteries N2 - Introduction Lithium-ion batteries (LIBs) are one key technology to overcome the climate crisis and energy transition challenges. Demands of electric vehicles on higher capacity and power drives research on innovative cathode and anode materials. These high energy-density LIBs are operated at higher voltages, leading to increased electrolyte decay and the current collectors' degradation. Even though this fundamental corrosion process significantly affects battery performance, insufficient research is being done on the aluminum current collector. Fast and convenient analytical methods are needed for monitoring the aging processes in LIBs. Methods In this work glow-discharge optical emission spectrometry (GD-OES) was used for depth profile analysis of aged cathode material. The measurements were performed in pulsed radio frequency mode. Under soft and controlled plasma conditions, high-resolution local determination (in depth) of the elemental composition is possible. Scanning electron microscopy (SEM) combined with a focused ion beam (FIB) cutting and energy dispersive X-ray spectroscopy (EDX) was used to confirm GD-OES results and obtain additional information on elemental distribution. Results The aging of coin cells manufactured with different cathode materials (LCO, LMO, NMC111, NMC424, NMC532, NMC622, and NMC811) was studied. GD-OES depth profiling of new and aged cathode materials was performed. Quantitative analysis was possible through calibration with synthetic standards and correction by sputter rate. Different amounts of aluminum deposit on the cathode surface were found for different materials. The deposit has its origin in the corrosion of the aluminum current collector. The results are compatible with results from FIB-EDX. However, GD-OES is a faster and less laborious analytical method. Therefore, it will accelerate research on corrosion processes in high energy-density batteries. Innovative aspects - Quantitative depth profiling of cathode material -Monitoring of corrosion processes in high energy-density lithium-ion batteries - Systematic investigation of the influence of different cathode materials T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Lithium Ion Batteries KW - GD-OES KW - Depth-profiling PY - 2023 AN - OPUS4-58586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs.[1] Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - European Winter Conference on Plasma Spectrochemistry (EWCPS 2023) CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Lithium-ion batteries KW - Aging mechanisms KW - Depth-profiling PY - 2023 AN - OPUS4-56992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wojciak, K. A1 - Tokarski, T. A1 - Cios, G. A1 - Nolze, Gert T1 - Precision and accuracy during standard-less mapping of local lattice distortions using ebsd and calm technique N2 - Electron Back Scatter Diffraction (EBSD) is a very versatile analytical technique allowing for the characterization of material structure. Historically, diffraction images (Kikuchi patterns) registered during EBSD analysis were solved using Hough/Radon transformation. The last decade brought several novel techniques of experimental pattern analysis, focusing entirely on image analysis routines such as pattern matching, or various variants of High-Resolution EBSD. However, all the above-mentioned techniques require prior knowledge of the material structure to perform orientation analysis. The recently presented algorithm employed in Crystallographic Analysis of Lattice Metric (CALM) software, effectively removes this limitation enabling a standard-less analytical approach in EBSD systems. At its core, the CALM technique couples accurate detection of the Kikuchi bands position, with a rigid construction of reciprocal lattice resulting from translational crystal symmetry. A unique characteristic of the methodology also gives an opportunity for application in the analysis of continuous lattice changes, for example tetragonality mapping. During mapping, however, the geometry of the gnomonic projection (represented by the projection center) is continuously altered decreasing overall algorithm efficiency. The work presents an analysis of the projection center in terms of precision and accuracy. T2 - Oxford User Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Gedsun, A. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Stotzka, R. A1 - Skrotzki, Birgit A1 - Shakeel, Y. A1 - Hunke, S. A1 - Tsybenko, H. A1 - Aversa, R. A1 - Chmielowski, M. A1 - Hickel, T. T1 - IUC02 Framework for Curation and Distribution of Reference Datasets using Creep Data of Ni-Base Superalloys as an Example N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Syngle Crystal alloy KW - Creep KW - Metadata schema PY - 2023 AN - OPUS4-57923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Shakeel, Yusra A1 - Olbricht, Jürgen A1 - Aversa, Rossella A1 - Skrotzki, Birgit T1 - NFDI-MatWerk PP18 / IUC02 Reference Data: Creep Data of a single crystalline Ni-Base Alloy N2 - Reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) aims to develop, together with BAM and other Participant Projects (PP), a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for identifying reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Syngle Crystal alloy KW - Metadata schema PY - 2023 AN - OPUS4-57146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -