TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach JF - MDPI Clean Technologies N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545700 DO - https://doi.org/10.3390/cleantechnol4020014 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Corrosion and Fatigue of Heat Treated Martensitic Stainless Steel 1.4542 used for Geothermal Applications JF - MATTER - International Journal of Science and Technology N2 - During capture and storage technology (CCS) as well as in geothermal energy production Steels need to withstand the corrosive environment such as: heat, pressure, salinity of the aquifer and CO2-partial pressure. 1.4542 shows unusual corrosion phenomena, but is still sufficiently resistant in corrosive environments. To better understand its behaviour differently heat treated coupons of 1.4542 and for comparison X20Cr13 and X46Cr13 were kept in the artificial brine of the Northern German Basin at T=60 °C. Ambient pressure as well as p=100 bar for 700 h - 8000 h in water saturated supercritical CO2 and CO2-saturated synthetic aquifer Environment was applied. Fatigue tests were performed via push-pull tests with a series of 30 specimens from 150 MPa to 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). FeCO3 and FeOOH are corrosion products also after dynamic corrosion tests. Martensitic microstructure offers good corrosion resistance in geothermal environment. The S-N-curve showing no typical fatigue strength and very steep slopes of possible fatigue strength for finite life. Possible influencing artefacts, such as Al-inclusions could not be correlated to early rupture despite specimens containing inclusions at the fracture surface and cross section reached lower number of cycles. Applied potential proofed to enhance fatigue life tremendously. KW - High Alloyed Steel KW - Pitting KW - Corrosion Fatigue KW - Corrosion KW - Endurance Limit PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503765 DO - https://doi.org/10.20319/mijst.2019.51.138158 SN - 2454-5880 VL - 5 IS - 1 SP - 138 EP - 158 PB - Global Research and Development Services Publishing CY - Rajasthan, India AN - OPUS4-50376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Wolf, M. A1 - Kranzmann, Axel T1 - The role of surface texture on the corrosion fatigue behavior of high alloyed stainless steel exposed to saline aquifer water environment JF - International journal of materials science and engineering N2 - Corrosion fatigue specimen with different surfaces (technical surfaces after machining and polished surfaces) of high alloyed martensitic stainless steel X46Cr13 (1.4043) and duplex stai nless steel X2CrNiMoN22 3 2 (1.4462) were compared at load amplitudes from 175 MPa to 325 MPa in the geothermal brine of the N orthern German Basin at 98 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO 3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness . At high stress amplitudes above 275 MPa technical surfaces (P50% at σa 300 MPa=5 × 10 5 ) resulted in more cycles to failure than polished (P50% at σa 300 MPa=1.5 × 10 5 ). The greater slope coefficient for technical surfaces k = 19.006 compared to polished surfaces k =8.78 demonstrate s earlier failure at given stress amplitude σa . KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment PY - 2019 DO - https://doi.org/10.17706/ijmse SN - 2315-4527 VL - 7 IS - 2 SP - 26 EP - 33 PB - IAP - International Academy Publishing CY - San Bernardino, CA AN - OPUS4-50365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -