TY - JOUR A1 - Feng, Wen A1 - Gemming, Thomas A1 - Giebeler, Lars A1 - Qu, Jiang A1 - Weinel, Kristina A1 - Agudo Jácome, Leonardo A1 - Büchner, Bernd A1 - González-Martínez, Ignacio T1 - Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopy N2 - In this work we instigated the fragmentation of Au microparticles supported on a thin amorphous carbon film by irradiating them with a gradually convergent electron beam inside the Transmission Electron Microscope. This phenomenon has been generically labeled as “electron beam-induced fragmentation” or EBIF and its physical origin remains contested. On the one hand, EBIF has been primarily characterized as a consequence of beam-induced heating. On the other, EBIF has been attributed to beam-induced charging eventually leading to Coulomb explosion. To test the feasibility of the charging framework for EBIF, we instigated the fragmentation of Au particles under two different experimental conditions. First, with the magnetic objective lens of the microscope operating at full capacity, i.e. background magnetic field B = 2 T, and with the magnetic objective lens switched off (Lorenz mode), i.e. B = 0 T. We observe that the presence or absence of the magnetic field noticeably affects the critical current density at which EBIF occurs. This strongly suggests that magnetic field effects play a crucial role in instigating EBIF on the microparticles. The dependence of the value of the critical current density on the absence or presence of an ambient magnetic field cannot be accounted for by the beam-induced heating model. Consequently, this work presents robust experimental evidence suggesting that Coulomb explosion driven by electrostatic charging is the root cause of EBIF. KW - Electron beam-induced fragmentation KW - Coulomb explosion KW - X-ray diffraction KW - Lorenz transmission electron microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600247 DO - https://doi.org/10.1016/j.ultramic.2024.113978 SN - 0304-3991 VL - 262 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-60024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling, I. C. S. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Starch KW - Starch nanoparticle KW - Silver nanoparticle PY - 2020 AN - OPUS4-51828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Components in CO2 Streams with Transport Pipeline Steel X70 at High Pressure and Low Temperature N2 - Specific amounts of oxidizing and reductive impurities as well as some moisture were added to dense phase CO2 to replicate CO2 streams from sources in a CCS pipeline network. Due to the moisture content being only 50 ppmV no visible acid condensation took place. To simulate stress conditions at the inside pipeline surface due to fluid pressure (10 MPa) specimens were preloaded using a load frame. Experiments conducted at 278 K and at 313 K revealed the highest corrosion rate at lower temperature. Corrosive effect of impurities was strongest applying mixed atmosphere, containing oxidizing and reductive components, closely followed by CO2 streams with pure oxidizing character. By far, the lowest corrosion rate (10x lower) resulted from reductive atmosphere. In general, at constant temperature and pressure the CO2 stream composition strongly influences the morphology, thickness and composition of the corrosion products. Applying oxidizing or mixed impurities, iron hydroxides or oxides (e.g. goethite, hematite) occur as dominating corrosion products, capable to incorporate different amounts of sulfur. In contrast, using reductive atmosphere very thin corrosion layers with low crystallinity were developed, and phase identification by XRD was unfeasible. SEM/EDX analysis revealed the formation of Fe-O compounds, most likely attributed to the oxygen partial pressure in the system induced by CO2 (≥0.985 volume fraction) and volatile H2O. In addition to the surface covering corrosion layer, secondary phases had grown locally distributed on top of the layer. These compounds are characteristic for the applied atmosphere and vary in number, shape and chemical composition. T2 - 14th Greenhouse Gas Control Technologies Conference (GHGT-14) CY - Melbourne, Australia DA - 21.10.2018 KW - CCS KW - CO2 Corrosion KW - Pipelines PY - 2019 UR - https://ssrn.com/abstract=3365756 VL - 2019 SP - 1 EP - 15 AN - OPUS4-49711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, O. A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Corrosive CO2-stream components, challenging for materials to be used in CC(U)S applications N2 - This contribution provides current findings regarding materials susceptibility for CCUS applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2 stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide the following recommendations for certain parts. Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv). Corrosion rates increase with increasing water content (0.2 – 20 mm/a). Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior (predictable uniform corrosion). For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - WCO Webinar on the occasion of Corrosion Awareness Day - Corrosion and Low-Carbon Energies CY - Frankfurt, Germany DA - 24.04.2020 KW - CO2-corrosion KW - CCUS KW - Pipeline KW - Carbon Capture PY - 2020 AN - OPUS4-50699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Diegeler, A. A1 - Kilo, M. A1 - Müller, Ralf T1 - Digital material data based glass screening for the systematic development of new glasses N2 - Current German developments for accelerated glass development is presented to an international audience at GOMD 2023. The focus is on a screening device which is embedded in a digital infrastructure. T2 - GOMD CY - New Orleans, LA, USA DA - 04.06.2023 KW - Glass KW - Robotic melting PY - 2023 AN - OPUS4-60376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Suárez Ocano, Patricia T1 - Thermodynamic and microstructural stabilities at high temperatures and their effects on mechanical properties in an AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - Today’s industrial demands challenge the research and development sector to make advances in the design and properties of materials that can withstand harsh environments. The AlMo0.5NbTa0.5TiZr refractory high-entropy superalloy (RSA), with a remarkable morphological similarity to the γ/γ' microstructure of Ni-based superalloys and promising high-temperature compressive properties, has been considered as a candidate for structural applications. However, additional properties need to be investigated in order to assess the suitability of this alloy for high temperature applications. Therefore, this work investigates the thermodynamic and microstructural stabilities of the RSA at room temperature and between 900 and 1100 °C, and their influence on the mechanical properties. Although it is possible to improve the mechanical properties at 20 °C by tuning the cooling rate, long-term high temperature exposures lead to phase instabilities that negatively influence the creep behavior. N2 - Die heutigen industriellen Anforderungen erfordern Fortschritte bei Werkstoffdesign und -entwicklung, insbesondere für raue Umgebungen. Die hochentropische Refraktärsuperlegierung (RSA) AlMo0.5NbTa0.5TiZr, die eine bemerkenswerte morphologische Ähnlichkeit mit der γ/γ'-Mikrostruktur von Ni-Basis-Superlegierungen und vielversprechende Hochtemperatur-Druckeigenschaften aufweist, wurde als Kandidat für strukturelle Anwendungen erwägt. Weitere Eigenschaften müssen untersucht werden, um die Eignung dieser Legierung für Hochtemperaturanwendungen zu beurteilen. In dieser Arbeit werden die thermodynamischen und mikrostrukturellen Stabilitäten von RSA bei Raumtemperatur und zwischen 900 und 1100°C sowie deren Einfluss auf die mechanischen Eigenschaften untersucht. Obwohl es möglich ist, die mechanischen Eigenschaften bei 20 °C durch Abstimmung der Abkühlrate zu verbessern, führen langfristige Hochtemperaturexpositionen zu Phaseninstabilitäten, die das Kriechverhalten negativ beeinflussen. KW - Hochentropielegierung KW - Gefüge (Werkstoffkunde) KW - Mikrostruktur KW - Kriechen KW - Thermodynamische Stabilität KW - High entropy alloys KW - Microstructure KW - Creep KW - Thermodynamic stability PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:hbz:294-108415 DO - https://doi.org/10.13154/294-10841 SP - 1 EP - 170 CY - Bochum AN - OPUS4-59929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kianinejad, Kaveh A1 - Darvishi Kamachali, Reza A1 - Khedkar, Abhinav A1 - Manzoni, Anna A1 - Agudo Jácome, Leonardo A1 - Schriever, Sina A1 - Saliwan Neumann, romeo A1 - Megahed, Sandra A1 - Heinze, Christoph A1 - Kamrani, Sepideh A1 - Fedelich, Bernard T1 - Creep anisotropy of additively manufactured Inconel-738LC: Combined experiments and microstructure-based modeling N2 - The current lack of quantitative knowledge on processing-microstructure–property relationships is one of the major bottlenecks in today’s rapidly expanding field of additive manufacturing. This is centrally rooted in the nature of the processing, leading to complex microstructural features. Experimentally-guided modeling can offer reliable solutions for the safe application of additively manufactured materials. In this work, we combine a set of systematic experiments and modeling to address creep anisotropy and its correlation with microstructural characteristics in laser-based powder bed fusion (PBF-LB/M) additively manufactured Inconel-738LC (IN738LC). Three sample orientations (with the tensile axis parallel, perpendicular, and 45° tilted, relative to the building direction) are crept at 850 °C, accompanied by electron backscatter secondary diffraction (EBSD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. A crystal plasticity (CP) model for Ni-base superalloys, capable of modeling different types of slip systems, is developed and combined with various polycrystalline representative volume elements (RVEs) built on the experimental measurements. Besides our experiments, we verify our modeling framework on electron beam powder bed fusion (PBF-EB/M) additively manufactured Inconel-738LC. The results of our simulations show that while the crystallographic texture alone cannot explain the observed creep anisotropy, the superlattice extrinsic stacking faults (SESF) and related microtwinning slip systems play major roles as active deformation mechanisms. We confirm this using TEM investigations, revealing evidence of SESFs in crept specimens. We also show that the elongated grain morphology can result in higher creep rates, especially in the specimens with a tilted tensile axis. KW - Additive manufactured Ni-base superalloys KW - Creep KW - Crystal plasticity KW - Superlattice extrinsic stacking faults PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601576 DO - https://doi.org/10.1016/j.msea.2024.146690 SN - 0921-5093 VL - 907 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-60157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Kriech- und Bruchverhalten von additiv hergestelltem austenitischem Stahl 316L. Vergleich zum konventionellen Werkstoff. N2 - Eine kritische Aufgabe im Rahmen der Etablierung von Prozess-Struktur-Eigenschafts-Performance-Beziehungen bei der additiven Fertigung (AM) von Metallen ist die Ermittlung von zuverlässigen und gut dokumentierten Kennwerten zum Materialverhalten sowie das Schaffen von Wissen über die Struktur-Eigenschafts-Korrelation. Schließlich ist dies die Grundlage für die Entwicklung gezielterer Prozessoptimierungen und zuverlässigerer Lebensdauer-Vorhersagen. In diesem Zusammenhang zielt dieser Beitrag darauf ab, Daten und Erkenntnisse über das Kriechverhalten des austenitischen Edelstahls 316L zu liefern, der mittels Laser-Powder-Bed-Fusion (L-PBF) hergestellt wird. Um dieses Ziel zu erreichen, wurden Proben aus konventionellem warmgewalztem sowie AM-Material gemäß den bestehenden Normen für konventionelles Material geprüft und vor und nach dem Versagen mikrostrukturell charakterisiert. Die Probekörper wurden aus einzelnen Blöcken des AM-Materials gefertigt. Die Blöcke wurden mit einer Standard-Scan- und Aufbaustrategie hergestellt und anschließend wärmebehandelt. Das Kriechverhalten wird anhand der Kriechlebensdauer und ausgewählter Kriechkurven und Kennwerte beschrieben und vergleichend bewertet. Der Einfluss von Defekten und Mikrostruktur auf das Materialverhalten wird anhand von zerstörenden und zerstörungsfreien Auswertungen an ausgewählten Proben analysiert. Der AM-Werkstoff zeigt kürzere Kriechlebensdauern, erreicht das sekundäre Kriechstadium deutlich schneller und bei geringerer Dehnung und weist eine geringere Kriechduktilität im Vergleich zu seinem konventionellen Gegenstück auf. Das Kriechschädigungsverhalten des AM-Werkstoffs ist eher mikrostruktur- als defektgesteuert und ist durch die Bildung intergranularer Kriechrisse gekennzeichnet. Als kritische Merkmale werden die Versetzungsdichte sowie die Versprödung der Korngrenzen identifiziert. Die Mikro-Computertomographie (µCT) erweist sich als Alternative zur Metallographie, um die Kriechschädigung zu analysieren. T2 - Sitzung des DGM-Arbeitskreises Mechanisches Werkstoffverhalten bei hoher Temperatur CY - Online meeting DA - 07.10.2020 KW - 316L KW - Kriechen KW - Additive Fertigung KW - Mikrostruktur KW - Mikro-Computertomographie PY - 2020 AN - OPUS4-51824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jácome, Leonardo T1 - Damage induced by electric field of gold microparticles on silicon oxide substrate in the scanning electron microscope N2 - 1. Introduction A normally unwanted process that can arise when converging an electron beam onto, e.g. microparticles, has been called "damage induced by electric field" (DIEF) [1]. By DIEF, the convergent electron beam (CEB) imparts a high amount of energy to the microparticle locally and strongly interacts with its atoms. At a specific current density J, which can be controlled by the convergence angle α, the irradiated material begins to transform. The phenomenon of expelling nanomaterial from microparticles under the influence of a convergent electron beam (CB) in a transmission electron microscope (TEM) has been largely studied [2]. Several types of nanoparticles (NPs) have been observed for different metallic materials and metal oxides after specific CB protocols (P) in the TEM. Thus, DIEF can be used as a promising synthesis method controlled changes of micrometric material to create new nanometric material compositions and morphologies. While these reactions have been observed in situ at the high acceleration voltages associated with TEM, it remains unclear whether the SEM can also be used to fabricate NPs via DIEF. In contrast to TEM there is no possibility to statically convert the electron beam to a range of α to reach the needed J as in TEM. Instead, the scanning parameters and the magnification can be manipulated so as to find an integrated J. Considering that the scanning electron microscope (SEM) is easier to use, more accessible and cheaper than a TEM, here we explore the possibility to transfer the concepts of DIEF known to operate in the TEM for in situ NP generation SEM. 2. Objectives The main goal is to determine whether DIEF can be translated to the SEM perform to controlled in situ fabrication of nanoparticles from microparticles, using gold microparticles on amorphous SiO substrate as precursors. We determine what experimental parameters must be taken into account to create SEM-based CBPs for NP creation in the SEM with these materials. 3. Materials & methods Gold microparticles with diameter of around 1 to 3 µm were deposited on electron transparent amorphous SiO/SiO2 substrate. Using a convergent electron beam protocol (CBP) in a scanning electron microscope (SEM) at an acceleration voltage of 30 kV, the gold microparticles were irradiated until a production of NPs takes place as shown in figure 1. The beam current varied between 16 and 23 nA. 4. Results Depending on the CBP parameters, either only Au NPs or a mixture of Au and Si NPs are produced. The particle size ranges from a few nm up to 100 nm, and it depends on the distance of the NP to the initial position of the microparticle. Further beam parameters such as the dwell time, the effective irradiated volume and particle size determine whether NPs are produced or if the microparticles only are expelled from the substrate without reacting. 5. Conclusion The SEM can be used as an instrument for synthesizing nanomaterials via DIEF. Different CBP protocols can be applied for obtaining either gold nanoparticles or silicon + gold nanoparticles T2 - Microscopy Conference CY - Darmstadt, Germany DA - 26.02.2023 KW - Scanning electron microscopy (SEM) KW - Gold nanoparticles KW - Electron beam induced modification PY - 2023 AN - OPUS4-58261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Analysis of reaction layers and cooling simulations of co-fired thermoelectric multilayers N2 - Ceramic multilayer technology is an attractive approach for the cost-effective fabrication of thermoelectric generators. Therefore, efforts are being made to co-sinter two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, calcium cobaltite, calcium manganate and release tapes were pressure assisted sintered. A major challenge here is the cracking of calcium manganate during cooling. A relationship between the properties of the release tape used in pressure-assisted sintering and the cracking behavior was observed experimentally. To understand the origin of failure, formed reaction layers in the multilayer were analyzed by EDX and grazing incident XRD. Based on this analysis, bulk samples were prepared, and thermal expansion and Young's modulus and were determined thereon, if they were not known from the literature. The biaxial strength of the thermoelectric oxides was determined by the ball on three ball method. The thermal stresses during cooling of different multilayer designs were estimated by finite element simulations. The stresses caused by the reaction layers turned out to be negligible. The FEM study indicated further, and a validation experiment proved, that the thickness of the release tape has the main effect on thermal stresses during cooling in single material. For best performance, the design of a thermoelectric multilayer generator needs to consider thermoelectric performance and thermal stresses during cooling. T2 - Virtual Conference on Thermoelectrics CY - Online meeting DA - 20.07.2021 KW - Ceramic multilayer KW - Cooling simulations KW - Thermal stress KW - Thermoelectric PY - 2021 AN - OPUS4-52994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Weidner, Steffen A1 - Rurack, Knut A1 - Thünemann, Andreas A1 - Sturm, Heinz T1 - Polymerwissenschaften@BAM - Sicherheit macht Märkte N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine Ressortforschungseinrichtung, die zum Schutz von Mensch, Umwelt und Sachgüter, forscht, prüft und berät. Im Fokus aller Tätigkeiten in der Materialwissenschaft, der Werkstofftechnik und der Chemie steht dabei die technische Sicherheit von Produkten und Prozessen. Dazu werden Substanzen, Werkstoffe, Bauteile, Komponenten und Anlagen sowie natürliche und technische Systeme erforscht und auf sicheren Umgang oder Betrieb geprüft und bewertet. Schwerpunkt des Vortrages sind multimodale Polymeranalytik, nanoskalige Sensormaterialien und die Charakterisierung von technischen Eigenschaften von Polymeren sowie ihre Alterung und Umweltrelevanz. T2 - Institutsvortrag CY - Fraunhofer IAP, Potsdam, Germany DA - 18.05.2018 KW - Polymerwissenschaften PY - 2018 AN - OPUS4-45243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Mishurova, Tatiana A1 - Eddah, Mustapha A1 - Mieller, Björn A1 - Böttcher, Nils A1 - Bruno, Giovanni T1 - Tomographic Imaging Capabilities with hard X-Rays at BAMline (Bessy II) N2 - The BAMline at the synchrotron X-ray source BESSY II (Berlin, Germany) is supporting researchers especially in materials science. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. The imaging capabilities allow for in-situ and operando experiments. In this presentation the equipment, data handling pipeline as well as various examples from material science are presented. T2 - Correlative Materials Characterization Workshop 2023 CY - Brno, Czech Republic DA - 09.11.2023 KW - Tomography KW - X-ray imaging KW - Li-ion battery PY - 2023 AN - OPUS4-58958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Ávila Calderón, Luis A. A1 - Rehmer, Birgit A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Effect of heat treatment on the hierarchical microstructure and properties of 316L stainless steel produced by Laser Powder Bed Fusion (PBF-LB/M). N2 - Laser Powder Bed Fusion (PBF-LB/M) of AISI 316L stainless steel has gained popularity due to its exceptional capacity to produce complex geometries and hierarchical microstructures, which can increase the yield strength while maintaining good ductility. Nevertheless, owing to high thermal gradients encountered during the process, the as printed 316L stainless steel often exhibit microstructural heterogeneities and residual stresses, which can limit its performance in demanding environments. Hence, employing heat treatments which balance the reduction of residual stresses while retaining improved static strength may be beneficial in various scenarios and applications. This study investigates the impact of post-processing heat treatments on the microstructure of 316L stainless steel manufactured via PBF-LB/M, along with its correlation with micro-hardness properties. To this end, 6 different heat treatments, i.e., 450 °C for 4h, 700 °C for 1h, 700 °C for 3h, 800 °C for 1h, 800 °C for 3h, and 900 °C for 1h, were applied to different specimens and Vickers hardness measurements (HV1) were performed in all states. At 800 °C, although the cellular structure appears to be retained, there is an observable increase in cellular size. However, while treatments exceeding 900 °C indicate no significant grain growth compared to other conditions, the cellular structure is entirely dissolved, which leads to a reduced Vickers hardness. The effect of the heat treatments on other microstructural features such as grain size and morphology, melt pool boundaries (MPB), crystallographic texture, chemical segregation, dispersoids and phase stability are also discussed in the present work T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Heat treatment KW - Microstructure PY - 2024 AN - OPUS4-60304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Influence of testing conditions on dielectric strength of alumina N2 - Dielectric strength testing of ceramics is simple and yet challenging. The execution of a breakthrough voltage measurement of a given sample is fast and straightforward. ASTM D149 describes the standardized procedure. But, there are versatile effects of test conditions and sample properties that affect the result of such a measurement. As one example, ASTM D149 allows different sizes of test electrodes and does not unambiguously prescribe the condition of the electrodes. Thus, different electrode configurations are used in the field. We conducted several test series on alumina samples to comprehensively quantify the effect of test conditions and sample properties on dielectric strength results. In our study, testing of alumina substrates using different electrode configurations resulted in differences of mean values of up to 20%. Further test series on alumina focused on the effect of voltage ramp rate. The results are complemented by calculations of failure probability at different voltage levels and corresponding withstand voltage tests. We conclude that a communication and comparison of single dielectric strength values is insufficient and may be misleading. A meaningful comparison of dielectric strength studies from different sources requires a thorough consideration of test conditions. T2 - 93rd DKG Annual Meeting CY - Munich, Germany DA - 10.04.2018 KW - Alumina KW - Dielectric strength KW - Withstand voltage tests PY - 2018 AN - OPUS4-44692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mieller, Björn ED - Kollenberg, W. T1 - Sintern N2 - Unter Sintern versteht man allgemein die Überführung eines aus Pulver geformten Rohlings in ein Formteil mit angestrebter Mikrostruktur bzw. gewünschten Gebrauchseigenschaften durch thermische Prozesse. In diesem Kapitel werden die Grundlagen zu Triebkräften und Kinetik sowie die prinzipiellen Mechanismen für Stofftransport und Verdichtung vorgestellt. Die verschiedenen Sintermechanismen Festphasensintern, Flüssigphasensintern und Reaktionssintern werden erläutert und mit einem Überblick über Drucksinterverfahren ergänzt. Abschließend wird ein Überblick über technologische Einflussfaktoren auf die Sinterung gegeben. KW - Technische Keramik KW - Sintermechanismen PY - 2018 SN - 978-3-8027-2986-7 SN - 978-3-8027-3081-8 SP - Kap. 4.6, 510 EP - 525 PB - Vulkan Verlag GmbH CY - Essen ET - 3 AN - OPUS4-43656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Bresch, Sophie A1 - Marucha, P. A1 - Moos, R. A1 - Rabe, Torsten T1 - Sintering and interconnecting thermoelectric oxides for energy applications N2 - Today, more than 12% of the primary energy is lost in the form of waste heat. Thermoelectric generators (TEGs) can convert waste heat directly into electrical power by utilizing the Seebeck effect. The performance of such a generator is defined by a dimensionless figure of merit ZT of the thermoelectric pairs and the resistance R of the metallic contacts between these pairs. The figure of merit of thermoelectric oxides is considerably smaller compared to semiconductors. Still, thermoelectric oxides like calcium cobaltite (Ca3Co4O9) are attractive for applications at elevated temperatures in air. In contrast to the established π-type architecture of common TEGs, tape casting and multilayer technology may be applied for cost-effective manufacturing of oxide TEGs. Promising demonstrations of multilayer TEGs have been published in the last years. Still, the development of reliable and scalable manufacturing processes and proper material combinations is necessary. The aim of our project is to evaluate the feasibility of low temperature co-fired ceramics (LTCC) technology for a practical manufacturing of oxide multilayer TEGs of Ca3Co4O9 (p-type) and calcium manganate (CaMnO3, n-type). Ca3Co4O9 exhibits an undesired phase decomposition at 926 °C. Because of that, the application of sintering strategies and interconnect concepts well known from LTCC technology is a promising approach. We present results of pressure-assisted sintering of Ca3Co4O9 multilayer at 900 °C and axial pressures of up to 7.5 MPa. Ca3Co4O9 was produced by solid state reaction of CaCO3 and cobalt(II,III)oxide at 900 °C. Green tapes were prepared by a doctor-blade process, manually stacked and laminated by uniaxial thermocompression. Sintering was conducted in a LTCC sintering press between SiC setter plates. The thickness shrinkage was recorded by an in-situ technique. After sintering under 7.5 MPa, the microstructure of the single phase material shows a high density of 95 % and an advantageous alignment of the platelet grains. This results in good electrical conductivity and a comparatively high ZT of 0.018 at room temperature. However, the lowering of CaMnO3 sintering temperature from above 1200 °C to below 920 °C remains a challenge. To select a proper metal paste for interconnections of an oxide TEG, several pastes have been investigated regarding contact resistance of internal and external (soldered) connections in a preliminary study. Commercial pastes containing Ag, Au, Au/Pt, Ag/Pd, and Ag/Pd/Bi were manually applied and post-fired on sintered test bars of Ca3Co4O9 and CaMnO3 at 900 °C for 2 h. All tested pastes formed mechanically stable metallization after firing. For resistance measurement, 4-wire method and a custom-made probe head were used. The contacts on Ca3Co4O9 exhibit significantly (2-sample t-test, α = 5%) higher resistance compared to contacts on CaMnO3. Pure silver paste exhibits the lowest resistance for internal contacts on both materials, lower than 5 mΩ on CaMnO3. Ag/Pd/Bi paste resulted in conspicuously high variance of resistance. EDX analyses clarified an enrichment of Bi in the thermoelectric material near the interface and thereby the formation of an oxide layer with probably high electrical resistance. The thickness of that layer varies with the thickness of metallization. In conclusion, the use of Bi containing pastes is not advisable. Pure Ag paste shows the best results regarding resistance and solderability. T2 - CICMT 2018 CY - Aveiro, Portugal DA - 18.04.2018 KW - Thermoelectric oxide KW - Thermoelectric generator KW - Multilayer technology KW - Pressure-assisted sintering PY - 2018 AN - OPUS4-44740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Effect of a circular notch on [001] tensile creep behavior of the Ni-base superalloy single crystal LEK 94 at 1020 °C N2 - Ni-base superalloy single crystals have been used in turbine blades for hot sections of gas turbines for over four decades. In order to increase the efficiency of the turbines, a continuous increase in the inlet temperature of combustion gases into the turbine has driven the design of turbine blades to complicated shapes and the presence of a complex pattern of cooling channels. These three-dimensional shapes, together with the inhomogeneous distribution of stresses along the blade, induce an also complicated triaxial stress state, which does not compare to uniaxial tests that are performed to characterize high temperature properties such as creep. A round notch on a test piece represents a simple configuration that generates a quasi-isostatic stress state across the notch. In the present contribution, the effect of a sharp round notch on the microstructural micromechanisms within the notched region cylindrical bars, loaded along [001] at 1020 °C and 160 MPa net stress, is studied. To this end, a series of interrupted creep tests is conducted on plain and notched bars and the microstructure is compared. Results are discussed in terms of degree microstructural coarsening, and dislocation activity. The effect of notch generation via grinding is also discussed in these terms. The presence of carbides evolving in from residual carbon is also shown and discussed. .Funding by the German Research Association (DFG) [grant number AG 191/1] is acknowledge T2 - DGM-Arbeitskreis mechanisches Werkstoffverhalten bei hoher Temperatur CY - Hochschule Augsburg, Germany DA - 20.09.2018 KW - Superalloy single crystals KW - Microstructure KW - Electron microscopy KW - Creep KW - Multiaxial stress state PY - 2018 AN - OPUS4-46050 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Practical breakdown voltage calculations using dielectric breakdown strength reference values N2 - Dielectric breakdown is a catastrophic failure of ceramic substrates and insulators. The use of dielectric breakdown strength (DBS) reference values for the dimensioning of such components is not straightforward, as the DBS depends on sample thickness and electrode area. This fact also hampers a valid comparison of data taken from different literature sources. Based on the empirically confirmed proportionality of DBS to the reciprocal square root of sample thickness and an approach to account for the influence of electrode area on the failure probability, a practical equation is derived to calculate the breakdown voltage for arbitrary sample thickness and electrode area from one set of DBS reference data. To validate the equation, the AC DBS of commercial alumina substrates with thicknesses ranging from 0.3 mm to 1.0 mm was performed using different printed electrodes with varying areas. The breakdown voltages comprise a range from 18 kV for thick samples to 8.5 kV for thin samples, resulting in DBS values from 17 kV/mm for 1.0 mm thick samples to 29 kV/mm for 0.3 mm thin samples, all made from the same material. The influence of electrode area is comparatively smaller. The results calculated with the proposed equation are in reasonable accordance with the measured data. Thus, the equation can be applied for a proper comparison of literature DBS data measured in different setups and for a reasonable estimation of breakdown voltages in DBS tests and applications based on reference data. T2 - Electroceramics Conference XVII CY - Online meeting DA - 24.08.2020 KW - Ceramics KW - Dielectric breakdown KW - Weibull distribution PY - 2020 AN - OPUS4-51151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs.[1] Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - European Winter Conference on Plasma Spectrochemistry (EWCPS 2023) CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Lithium-ion batteries KW - Aging mechanisms KW - Depth-profiling PY - 2023 AN - OPUS4-56992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jácome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan-Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Gonzalez-Martinez, I. T1 - Complex artificial features on a TEM transparent membrane N2 - The phenomenon of expelling nanomaterial from microparticles of different materials, such as Au, WO3 or B2O3 under the influence of a convergent electron beam (CB) of a transmission electron microscope (TEM) was reviewed by Ignacio Gonzalez-Martinez [1]. Converging the e-beam in a TEM means that a high amount of energy enters the microparticle at a very local place and interact with the matter. Obviously, during the convergent beam protocol, no imaging with the electron beam is possible, but at the end, nanoparticles with different appearances lie down next to the microparticle while its size is reduced. Hence, there is a blind spot in the observation, which we want to fill, as we want to help clarify the nature of the expelling phenomenon. One hypothesis that explains the phenomenon is the so-called damage (of the microparticle) induced by an electric field (DIEF). Within this theory, the material is ionized and expelled in form of ionic waves. Our aim is therefore to fabricate specimens with artificial microlandscapes, as schematically exemplified in figure 1a), using the focused ion beam (FIB) and micromanipulators, as experimental setups to follow the paths of the expelled material. As a first step towards the fabrication of such specimen, we make experimental feasibility studies for each fabrication method, FIB structuring with Ga+ ion beam and micromanipulated microparticle deposition. Bridges (gray regions in Fig. 1) are created by milling a commercially available electron transparent membrane (silicon oxide or carbon) of a Cu-TEM grid. Platinum or carbon walls (blue features in Fig. 1) are built to stand on those bridges. Microparticles (yellow sphere in Fig. 1) of gold or other material are deposited in the center of the bridges. Figure 2a) shows four square holes (black area) and between them the residual silicon oxide membrane bridges (dark grey). On top of the bridges, walls (light grey) are deposited. The width of the bridges is different, the walls overlap the holes as well as the distance between the walls is very small, so these and other parameters need to be optimized. Figure 2b) shows a square hole (black) with bridges (white) on the right side on top of a carbon membrane (grey). There are still some obstacles which needs to be eliminated. For instance, the deposition process of the walls is not reliable as visible at the wall on top where a hole arises instead of a wall. These studies are still in progress and the results are further discussed in terms of the applicability for the DIEF experiment in the TEM. T2 - 4th EuFN and FIT4NANO Joint Workshop / Meeting CY - Vienna, Austria DA - 27.09.2021 KW - Transmission electron microscope (TEM) KW - Sample preparation KW - Micromanipulation KW - Focussed ion beam growth KW - Nano-landscape PY - 2021 AN - OPUS4-58259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Hanke, Thomas A1 - Eisenbart, Miriam T1 - Mechanical testing ontology (MTO) N2 - The materials mechanical testing ontology (MTO) was developed by collecting the mechanical testing vocabulary from ISO 23718 standard, as well as the standardized testing processes described for various mechanical testing of materials like tensile testing, Brinell hardness test, Vickers hardness test, stress relaxation test, and fatigue testing. Versions info: V2 developed using BFO+CCO top-level ontologies. V3 developed using PROVO+PMDco top-level ontologies. V4 developed using BFO+IOF top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/ontologies/mechanical-testing-ontology GitHub: https://github.com/HosseinBeygiNasrabadi/Mechanical-Testing-Ontology MatPortal: https://matportal.org/ontologies/MTO IndustryPortal: https://industryportal.enit.fr/ontologies/MTO KW - Ontology KW - Mechanical testing KW - FAIR data PY - 2023 UR - https://gitlab.com/kupferdigital/ontologies/mechanical-testing-ontology/ PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-58271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Ontology-Oriented Modeling of the Vickers Hardness Knowledge Graph N2 - This research deals with the development of the Vickers hardness knowledge graph, mapping the example dataset in them, and exporting the data-mapped knowledge graph as a machine-readable Resource Description Framework (RDF). Modeling the knowledge graph according to the standardized test procedure and using the appropriate upper-level ontologies were taken into consideration to develop the highly standardized, incorporable, and industrial applicable models. Furthermore, the Ontopanel approach was utilized for mapping the real experimental data in the developed knowledge graphs and the resulting RDF files were successfully evaluated through the SPARQL queries. KW - Data Mapping KW - FAIR Data KW - Ontology KW - Knowledge Graph KW - Vickers Hardness PY - 2024 DO - https://doi.org/10.4028/p-k8Gj2L VL - 149 SP - 33 EP - 38 PB - Trans Tech Publications Ltd CY - Switzerland AN - OPUS4-59981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Werner, Tiago A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Microstructure Based Study on the Low Cycle Fatigue Behavior of Stainless Steel 316L manufactured by Laser Powder Bed Fusion N2 - Due to the advantages of Laser Powder Bed Fusion (PBF-LB), i.e., design freedom and the possibility to manufacture parts with filigree structures, and the considerable amount of knowledge available for 316L in its conventional variant, the mechanical behavior, and related microstructure-property relationships of PBF-LB/316L are increasingly subject of research. However, many aspects regarding the - application-relevant - mechanical behavior at high temperatures are not yet fully understood. Here, we present the results of an experimental study on the LCF behavior of PBF-LB/316L featuring a low defect population, which makes this study more microstructure-focused than most of the studies in the literature. The LCF tests were performed between room temperature (RT) and 600 °C. The mechanical response is characterized by strain-life curves, and hysteresis and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, and optical and electron microscopy. The PBF-LB/M/316L was heat treated at 450 °C for 4 h, and a hot‑rolled (HR) 316L variant with a fully recrystallized equiaxed microstructure was tested as a reference. Besides, selected investigations were performed after a subsequent heat treatment at 900 °C for 1 h. The PBF-LB/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. At the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The main damage mechanisms are multiple cracking at slip bands (RT) and intergranular cracking (600 °C). Neither the melt pool boundaries nor the gas porosity have a significant influence on the LCF damage mechanism. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial hardening followed by a continuous softening. The additional heat treatment at 900 °C for 1 h led to decreased cyclic stresses, and a longer fatigue life. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - AGIL KW - 316L KW - Microstructure KW - Low Cycle Fatigue KW - Heat Treatment KW - Laser Poeder Bed Fusion PY - 2024 AN - OPUS4-60432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Jan Zia, Ghezal Ahmad A1 - Hanke, Thomas A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Improving the Reproducibility of Characterization and Quantification of Precipitates through Automated Image Processing and Digital Representation of Processing Steps N2 - The strength of age-hardenable aluminum alloys is based on the controlled formation of nm-sized precipitates, which represent obstacles to dislocation movement. Transmission electron microscopy (TEM) is generally used to identify precipitate types and orientations and to determine their size. This geometric quantification (e.g., length, diameter) is often performed by manual image analysis, which is very time consuming and sometimes poses reproducibility problems. The present work aims at the digital representation of this characterization method by proposing an automatable digital approach. Based on DF-TEM images of different precipitation states of alloy EN AW-2618A, a modularizable digital workflow is described for the quantitative analysis of precipitate dimensions. The integration of this workflow into a data pipeline concept is also presented. The semantic structuring of data allows data to be shared and reused for other applications and purposes, which enables interoperability. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Digital representation KW - Automatable digital approach KW - Digital workflow KW - Quantitative image analysis KW - Data pipeline concept KW - Semantic structuring KW - Interoperability KW - FAIR data management PY - 2024 AN - OPUS4-60427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Han, Ying A1 - Kruse, Julius A1 - Radners, Jan A1 - Madia, Mauro A1 - von Hartrott, Philipp T1 - Fatigue Behavior at Elevated Temperature of Alloy EN AW-2618A N2 - The influence of test temperature and frequency on the fatigue life of the alloy EN AW-2618A (2618A) was characterized. The overaged condition (T61 followed by 1000 h/230 °C) was investigated in load-controlled tests with a stress ratio of R = -1 and two test frequencies (0.2 Hz, 20 Hz) at room temperature and at 230°C, respectively. An increase in the test temperature reduces fatigue life, whereby this effect is more pronounced at lower stress amplitudes. Decreasing the test frequency in tests at high temperatures further reduces the service life. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Aluminium alloy KW - EN AW 2618A KW - Fatigue KW - Overaging KW - Damage behavior PY - 2024 AN - OPUS4-60426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Prewitz, M. A1 - Bardenhagen, A. T1 - H2 permeability of soda-lime, borosilicate and vitreous silica glasses for potential high pressure H2 storage applications N2 - Modern high-pressure H2 tanks consist of fiber-reinforced composite materials and a plastic lining on the inside. The use of glass would drastically increase the H2 barrier effect. This could be achieved with glass liners or fiber-reinforced polymer-bonded glass capillary storage tanks and would enable lower wall thicknesses, higher gravimetric storage densities and variable designs and thus a much more effective use of space. However, the decisive material parameters for the development of these technologies, such as the hydrogen permeation, are unknown. This study focuses on H2 diffusion in glasses of different chemical compositions. H2 permeation is measured by mass spectrometry. For this purpose, the mass spectrometer (MS), which is located in a high vacuum, is separated from the pressure side by the test specimen. Pure H2 gas is present on the pressure side, so that the mass flow is recorded qualitatively and quantitatively in the MS. The permeation coefficients are calculated from the sample geometry and the mass flow rates. The very low H2 permeation of glass is measured on bundles of thin-walled commercially available glass capillaries and compared with the hydrogen permeation data of the glass powder method. T2 - Jahrestagung der Deutschen Glastechnischen Gesellschaft 2024 CY - Aachen, Germany DA - 27.05.2024 KW - Gas permeation KW - Hydrogen gas KW - High pressure gas storage PY - 2024 AN - OPUS4-60420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Optical properties of glasses and ceramics N2 - Optical glasses and glass ceramics are present in many devices often used in our daily routine, such as the mobile phones and tablets. Since the 1960´s with the development of glass lasers, and more recently, within the search for efficient W-LEDs, sensors and solar converters, this class of materials has experienced extreme research progress. In order to tailor a material for such applications, it is very important to understand and characterize optical properties such as refractive index, transmission window, absorption and emission cross sections, quantum yields, etc. These properties can often be tuned by appropriate compositional choice and post-synthesis processing. In this lecture we will discuss the optical properties of glasses and glass ceramics, relevant to that end. T2 - 2nd CeRTEV Glass School CY - São Carlos, SP, Brazil DA - 22.04.2024 KW - Optical properties of glasses and ceramics PY - 2024 AN - OPUS4-60370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - From guest scintillators to luminescent host-guest hybrid materials and nanoparticles: Contributions from LEMAF N2 - An overview of the research work conducted at LEMAF - the laboratory of spectroscopy of functional materials in IFSC/USP Brazil under my leadership, before I joined BAM was given. T2 - FunGlass Graduate Program School CY - Oponice, Slovakia DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Structure property correlations KW - Host-guest hybrid materials KW - Scintillators KW - Persistent luminescent KW - Phosphors KW - Composite materials PY - 2024 AN - OPUS4-60368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - de Camargo, Andrea Simone Stucchi A1 - Contreras, A. A1 - Niebergall, R. A1 - Schottner, G. A1 - Kilo, M. A1 - Diegeler, A. A1 - Kempf, S. A1 - Puppe, F. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. A1 - Limbach, R. A1 - Pan, Z. A1 - Wondraczek, L. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Sierka, M. T1 - GlasDigital - Datengetriebener Workflow für die beschleunigte Glasentwicklung N2 - Im Projekt GlasDigital sollen digitale Werkzeuge für die Hochdurchsatzentwicklung neuartiger Glaswerkstoffe erarbeitet werden. Dies soll durch die Kombination robotischer Syntheseverfahren mit selbstlernenden Maschinen und ihre Einbindung in eine Ontologie-basierte digitale Infrastruktur realisiert werden. T2 - 4. Fachsymposium der Fachgruppe Glasapparatebauer CY - Mitterteich, Germany DA - 13.06.2024 KW - Glas KW - Ontology KW - Data Space KW - Simulation KW - Workflow KW - Robotische Schmelzanlage PY - 2024 AN - OPUS4-60388 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - de Camargo, Andrea Simone Stucchi A1 - Contreras, A. A1 - Niebergall, R. A1 - Schottner, G. A1 - Kilo, M. A1 - Diegeler, A. A1 - Kempf, S. A1 - Puppe, F. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Sierka, M. A1 - Limbach, R. A1 - Pan, Z. A1 - Wondraczek, L. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. T1 - Digital infrastructure for accelerated glass development N2 - Glasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design. This includes software tools for data mining as well as property and process modelling. The presentation provides an overview of how all these tools merge into a digital infrastructure and illustrates their usability using examples. All infrastructural parts were developed by a consortium consisting of the Fraunhofer ISC in Würzburg, the Friedrich-Schiller-University Jena (OSIM), the Clausthal University of Technology (INW) and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) as part of a joint project of the German research initiative MaterialDigital. T2 - 97. Glass-Technology Conference CY - Aachen, Germany DA - 27.05.2024 KW - Glass KW - Robotic melting KW - Ontologie KW - Simulation KW - Workflow KW - Data Space KW - Digital Twin PY - 2024 AN - OPUS4-60387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses sought by NMR, EPR & PL N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, expensive, and time consuming, it is desirable to gather fundamental understanding of structure and to develop structure-property relation models, which allow best and faster choices. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to some extent, based on structural information given by magnetic resonance (NMR and EPR) techniques associated to Raman and photophysical characterization. For the past 5 years, one of the interests of my research group at the University of São Paulo, in Brazil, has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides improved mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10-30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by F, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages i.e, the network structures are dominated by Ga-O-P or In-O-P linkages as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity in the vibronic band of Eu3+ and significant increase in the excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+ yielding intense emissions in the blue and green, respectively, compatible to the spectral region of highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the combination of NMR, EPR, Raman and PLE spectroscopies can be to provide structural information and to present the perspectives for their introduction in the research agenda of Division 5.6 – Glass, which I now lead, at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. T2 - GOMD 2024 - Glass and Optical Division Meeting, ACerS CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Glass Digital KW - Glasses KW - Robotic melting PY - 2024 AN - OPUS4-60357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Glass Digitalization: Contributions from BAM N2 - An overview of the Glass Digitalization efforts at BAM, within the framework of the Glass Digital consortium, was given. From the development of the robotic melting device to the ML capabilities, a description of the different stages of the developments and roles of project partner was presented. T2 - GlaCerHub Melting Day CY - Oponice, Slovakia DA - 12.06.2024 KW - Glass Digital KW - Robotic glass melting KW - Digitalization PY - 2024 AN - OPUS4-60365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Oriented Surface Crystallization in Glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied at the Institute of Physics of Rennes in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - ACerS GOMD 2024- Glass & Optical Materials Division Meeting CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Surface nucleation KW - Oriented surface crystallization KW - Surface energy PY - 2024 AN - OPUS4-60238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Undesired Foaming of Silicate Glass Powders N2 - The manufacture of sintered glasses and glass-ceramics, glass matrix composites, and glass-bounded ceramics or pastes is often affected by un-expected gas bubble formation also named foaming. Against this background, in this presentation the main aspects and possible reasons of foaming are shown for completely different glass powders: a barium silicate glass powders used as SOFC sealants, and bioactive glass powders using different powder milling procedures. Sintering and foaming were measured by means of heating microscopy backed up by XRD, differential thermal analysis (DTA), vacuum hot extraction (VHE), optical and electron microscopy, and infrared spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Different densification was reached followed by significant foaming starting partly immediately, partly at higher temperature. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the milling atmosphere significantly affects the foaming of uniaxially pressed powder compacts sintered in air. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750 °C, which hints on a thermally very stable species or mechanical trapping or encapsulating of CO2. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. T2 - Seminário de Laboratório de Materiais Vítreos (LaMaV) de Departamento de Engenharia de Materiais (DEMa), Universidade Federal São Carlos UFSCar) CY - Saint Charles, Brazil DA - 06.06.2024 KW - Bioactive KW - Foaming KW - Glass KW - Crystallization KW - Viscose sintering PY - 2024 AN - OPUS4-60245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Orientierte Oberflächenkristallisation in Gläsern N2 - Bislang wird das Phänomen der orientierten Oberflächenkristallisation kontrovers diskutiert und entsprechende Studien beschränken sich auf nur wenige Gläser. Für Silikatgläser haben wir eine gute Korrelation zwischen der berechneten Oberflächenenergie von Kristallflächen und der orientierten Oberflächenkeimbildung gefunden. Die Oberflächenenergien wurden unter der Annahme abgeschätzt, dass die Kristalloberflächen bei der Keimbildung den Kristallebenen mit minimaler Energie entsprechen, denen ein Riss beim Bruch folgt. Dieses Konzept wurde am Institut für Physik in Rennes erfolgreich bei der Berechnung der Bruchflächenenergien von Gläsern angewandt. Mehrere orientierte Keimbildungsphänomene lassen sich dadurch erklären, dass man annimmt, dass Kristalloberflächen mit hoher Energie dazu neigen, von der Schmelze benetzt zu werden. Dies minimiert die gesamte Grenzflächenenergie des Keims. Darüber hinaus werden wir die Entwicklung der Mikrostruktur beim weiteren Kristallwachstum und ihre Auswirkungen auf die bevorzugte Kristallorientierung diskutieren. T2 - 21. Treffen des DGG-DKG Arbeitskreises „Glasig-kristalline Multifunktionswerkstoffe“ CY - Mainz, Germany DA - 22.02.2024 KW - Oberflächenkeimbildung KW - Kristallorientierung KW - Grenzflächenenergie PY - 2024 AN - OPUS4-60237 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ECerSXVIII Conference Exhebition of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Ávila Calderón, Luis Alexander A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Formation of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2024 AN - OPUS4-60295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Spectroscopy Lectures N2 - As a guest professor of FUNGLASS, I delivered 3 lectures on spectroscopy to the Graduate School Program, the postdoctoral fellows and other researchers: 1) Introduction to spectroscopy applied to solid state materials (with focus on glass and glass ceramics); 2) Vibrational spectroscopy (Infrared and Raman); 3) Electron Paramagnetic Resonance T2 - FunGlass CY - Trencín, Slovakia DA - 03.06.2024 KW - Spectroscopy KW - Radiation-matter interaction KW - FT-IR KW - Raman KW - EPR PY - 2024 AN - OPUS4-60367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Gender equality in Sciences: Let´s teach our girls to be brave! N2 - A panorama of the global gender gap scenario in sciences, specially STEM, was given to illustrate the need for urgent actions (and suggestions of them) to correct biased treatment and promote females in their scientific careers. T2 - FunGlass School CY - Oponice, Slovakia DA - 10.06.2024 KW - Gender gap KW - Women in science KW - Female noble prize winners PY - 2024 AN - OPUS4-60366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Gender equality in sciences: Let's teach our girls to be brave! N2 - A global panorama of the Gender Gap in Sciences was presented along with recommendations on how to remediate unequal treatment of females in Science, and to prepare future generations for gender equality. T2 - Lunch Talk - Women@DGM: Gender Mindsets/Bias in an International Context CY - Online meeting DA - 14.06.2024 KW - Gender gap PY - 2024 AN - OPUS4-60369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, Andrea Simone Stucchi T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses for scintillation N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, time consuming, and expensive, it is desirable to develop glass compositions based on a fundamental understanding of the glass structure and to establish structure-property relation models. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The local vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to good extent, based on structural information given by magnetic resonance techniques (NMR and EPR), associated to Raman and photophysical characterization. For the past 5 years, while still employed at the University of São Paulo, in Brazil, one of the interests of my research group has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides better mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10 - 30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by fluorine, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages. That is, the network structures are dominated by Ga-O-P or In-O-P linkages, as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity of the vibronic band in Eu3+-doped glasses and marked increase in excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+, yielding intense emissions in the blue and green, respectively, compatible to the spectral region of the highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the NMR and EPR techniques can be to provide decisive structural information, and to present the research perspectives in my new role as the Head of Division 5.6 – Glass at BAM. T2 - Fachausschusses I „Physik und Chemie des Glases“, DGG CY - Jena, Germany DA - 02.11.2023 KW - Structure-property correlation KW - Fluoride phosphate glasses KW - Scintillators KW - High energy radiation PY - 2024 AN - OPUS4-60360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Galleani, Gustavo A1 - Lodi, Thiago A1 - Merízio, Leonnam A1 - de Jesus, Vinícius A1 - de Camargo, Andrea Simone Stucchi T1 - Scintillators, persistent luminescent and white light emitters: Progresses on UV and X-ray converting glasses and composites N2 - Recently, detection and conversion of high energy radiation such as ultraviolet and X-rays has gained renewed attention. In part, technological applications in radioimaging and tomography have developed considerably as to allow lower dosages and higher resolutions, which require optimized scintillators and dosimeters. On the other hand, the increasing effort to reduce carbon footprint in energy production has triggered an intensive search for materials that can be excited with sunlight, ranging from photocatalysts to solar concentrators. At LEMAF – Laboratory of Spectroscopy of Functional Materials at IFSC/USP, we have been developing bulk glasses, polycrystalline and composite materials designed to target both challenges and, in this work an overview of recent progresses and of the state of art of these materials will be given. For instance, the few available comercial scintillators are crystalline materials with costly and time consuming growth which hinders the development of new compositions. Glasses and glass ceramics, such as the NaPGaW composition developed in our lab, present high density, very good optical properties and high chemical stability which allow them radioluminescent response when doped with low concentrations of Ce3+, Eu3+ and Tb3+ offering a promise as alternatives to crystal scintillators. On the other hand, phosphor in glass (PiG) composites based on the persistent luminescent polycrystalline material Sr2MgSi2O7:Eu2+,Dy3+ (SMSO) embedded into NaPGa glasses offer interesting perspectives for the of UV light into visible, useful for white light generation (lighting), improved harvesting and conversion of solar light when coupled to c-Si PV cells and photocatalysis. These and other examples will be discussed. The glasses are prepared through the conventional melt quenching technique, followed by controlled heating when glass ceramics are desired. The persistent luminescent phosphor is prepared by the microwave assisted technique (MAS) much faster and with considerable energy consumption reduction than in the usual solid state synthesis. The materials are characterized from the structural, morphological and spectroscopic (optical – UV-Vis, PL, PLE, and structural – NMR, EPR) points of view such that structure-property correlations are constantly sought to feedback synthesis and processing. Fig. 1, illustrates two examples of scintillator glasses doped with Tb3+ and PiG composites doped with Eu2+ and Dy3+. T2 - 11th International Conference on f Elements (ICFE-11) CY - Strasbourg, France DA - 22.08.2023 KW - Scintillators KW - Persistent luminescence KW - White light emitters PY - 2023 AN - OPUS4-60361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - An overview of the work carried out at LEMAF - Laboratory of Spectroscopy of Functional Materials at IFSC/USP was given. The work presented focus on the design, production and functional characterization of multifunctional nanoparticles. T2 - NANOANDES - Latin American School on Nanomaterials and Appllications CY - Araraquara, SP, Brazil DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Upconversion nanoparticles KW - Quantum dots KW - Noble metal nanoparticles PY - 2023 AN - OPUS4-60363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galleani, Gustavo A1 - Lodi, Thiago A. A1 - Conner, Robin L. A1 - Jacobsohn, Luiz G. A1 - de Camargo, Andrea Simone Stucchi T1 - Photoluminescence and X-ray induced scintillation in Gd3+-Tb3+ co-doped fluoride-phosphate glasses, and derived glass-ceramics containing NaGdF4 nanocrystals N2 - The glass system (50NaPO3–20BaF2–10CaF2–20GdF3)-xTbCl3 with x = 0.3, 1, 3, 5, and 10 wt % was investigated. We successfully produced transparent glass ceramic (GC) scintillators with x = 1 through a melt-quenching process followed by thermal treatment. The luminescence and crystallization characteristics of these materials were thoroughly examined using various analytical methods. The nanocrystallization of Tb3+-doped Na5Gd9F32 within the doped fluoride-phosphate glasses resulted in enhanced photoluminescence (PL) and radioluminescence (RL) of the Tb3+ ions. The GC exhibited an internal PL quantum yield of 33 % and the integrated RL intensity across the UV-visible range was 36 % of that reported for the commercial BGO powder scintillator. This research showcases that Tb-doped fluoridephosphate GCs containing nanocrystalline Na5Gd9F32 have the potential to serve as efficient scintillators while having lower melting temperature compared to traditional silicate and germanate glasses. KW - Glass scintillator KW - Fluoride phosphate glasses KW - Gd3+ KW - Tb3+ PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603588 DO - https://doi.org/10.1016/j.omx.2023.100288 VL - 21 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-60358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - The research carried out at the Laboratory of Spectroscopy of Functional Materials at IFSC/USP, in Brazil, is focused on the synthesis and structural-property correlation of luminescent materials including rare-earth (RE) doped glasses, ceramics and hybrid host-guest materials. For the past five years, we have been particularly interested in the development of single- and multifunctional nanosystems based on core-shell upconversion nanoparticles (UCNP) associated with dyes, organometallic complexes and other organic molecules, for biophotonic and sensing applications. In these systems, we take advantage of energy transfer between the UCNPs and the molecules to either supress or enhance luminescent response. Examples include the possibility of bioimaging and photodynamic therapy of bacteria and cancer cells, simultaneous magnetothermia and thermometry, localized O2 sensing, fast detection and quantification of biological markers (e.g. kidney disease) and microorganisms. On what concerns the development of luminescent sensors - a recently started project, our aim is to develop paper-based platforms for point-of-care devices. In this presentation, an overview of our contributions for the past years and our future aims will be presented with several examples. T2 - ICL2023 - 20th International Conference on Luminescence CY - Paris, France DA - 27.08.2023 KW - Upconversion KW - Sensing KW - Theranostics KW - Nanoparticles KW - Photodynamic therapy PY - 2023 AN - OPUS4-60362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Optical properties of dental ceramics: Characterization via UV-Vis and photoluminescence spectroscopies N2 - When it comes to dental treatments, success is not only measured by attained functionality but, to a large extent, the associated aesthetics. This can become challenging for certain restorations and implants due to the complex optical characteristic of a tooth, which reflects, absorbs, diffuses, transmits, and even emits light. Thus, to get acceptable aesthetic results, favourable shade matching of ceramic restorations and implants should be achieved by strict control of optical response, which translates into a materials design question. Optical response is affected by several factors such as the composition, crystalline content, porosity, additives, grain size and the angle of incidence of light on the dental ceramics. The properties to be characterized are colour (and its stability), translucency, opalescence, refractive index, and fluorescence. Several techniques can be applied for the characterization of these properties and in this presentation, an overview will be given. Moreover, particular emphasis will be given on the capacitation of less familiarized public to UV-Vis absorption and photoluminescence (PLE) spectroscopies that are versatile and widely employed for functional and structural characterization of glasses and glass ceramic materials. T2 - 2nd BAYLAT Workshop of CERTEV - FAU CY - Nuremberg, Germany DA - 04.12.2023 KW - Optical properties KW - Dental ceramics KW - Optical spectroscopy PY - 2023 AN - OPUS4-60364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Chen, Y.-F. A1 - Arendt, F. A1 - Sierka, M. A1 - Kilo, M. A1 - Diegeler, A. A1 - Wondraczek, L. A1 - Pan, Z.-W. A1 - Limbach, R. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. A1 - de Camargo, Andrea Simone Stucchi T1 - GlasDigital N2 - Der aktuelle Stand (Sep 2023) des Projekts GlasDigital wird präsentiert. Der Fokus liegt hierbei auf einer knappen Übersicht, aus der die nachhaltigen Beiträge für die Innovationsplattform MaterialDigital hervorgehen. T2 - PMD Vollversammlung CY - Karlsruhe, Germany DA - 21.09.2023 KW - Glas KW - Robotische Schmelzanlage KW - Ontologie KW - Simulation PY - 2023 AN - OPUS4-60377 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Hanke, Thomas A1 - Chen, Yue T1 - Brinell test ontology (BTO) N2 - Brinell Test Ontology (BTO) has developed for representing the Brinell testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 6506-1 standard. Versions info: V2 developed using BFO+CCO top-level ontologies. V3 developed using EMMO+CHAMEO top-level ontologies. V4 developed using PROVO+PMDco top-level ontologies. V5 developed using BFO+IOF top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/brinell-hardness-test GitHub: https://github.com/HosseinBeygiNasrabadi/Brinell-Test-Ontology-BTO- MatPortal: https://matportal.org/ontologies/BTO IndustryPortal: https://industryportal.enit.fr/ontologies/BTO KW - Ontology KW - Knowledge graph KW - Data mapping KW - Brinell hardness KW - FAIR data PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/brinell-hardness-test UR - https://github.com/HosseinBeygiNasrabadi/Brinell-Test-Ontology-BTO- UR - https://matportal.org/ontologies/BTO UR - https://industryportal.enit.fr/ontologies/BTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Tensile stress relaxation test ontology (TSRTO) N2 - Tensile Stress Relaxation Test Ontology (TSRTO) has developed for representing the tensile stress relaxation testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 10319-1 standard. Versions info: V1 developed using BFO+CCO top-level ontologies. V3 developed using PROV+PMDco top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/relaxation-test GitHub: https://github.com/HosseinBeygiNasrabadi/Tensile-Stress-Relaxation-Test-Ontology-TSRTO MatPortal: https://matportal.org/ontologies/TSRTO IndustryPortal: https://industryportal.enit.fr/ontologies/TSRTO KW - Ontology KW - Tensile stress relaxation testing KW - FAIR data PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/relaxation-test UR - https://github.com/HosseinBeygiNasrabadi/Tensile-Stress-Relaxation-Test-Ontology-TSRTO UR - https://matportal.org/ontologies/TSRTO UR - https://industryportal.enit.fr/ontologies/TSRTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Vickers test ontology (VTO) N2 - Vickers Test Ontology (VTO) has developed for representing the Vickers testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 6507-1 standard. Versions info: V2 developed using BFO+CCO top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/vickers-hardness-test GitHub: https://github.com/HosseinBeygiNasrabadi/Vickers-Test-Ontology-VTO- MatPortal: https://matportal.org/ontologies/VTO IndustryPortal: https://industryportal.enit.fr/ontologies/VTO KW - Ontology KW - Knowledge graph KW - Data mapping KW - Vickers hardness KW - FAIR data. PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/vickers-hardness-test UR - https://github.com/HosseinBeygiNasrabadi/Vickers-Test-Ontology-VTO- UR - https://matportal.org/ontologies/VTO UR - https://industryportal.enit.fr/ontologies/VTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Tensile test ontology (TTO) N2 - Tensile Test Ontology (TTO) has developed for representing the Tensile testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 6892-1 standard. Versions info: V2 developed using BFO+CCO top-level ontologies. V3 developed using PROVO+PMDco top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/tensile-test GitHub: https://github.com/HosseinBeygiNasrabadi/Tensile-Test-Ontology-TTO- MatPortal: https://matportal.org/ontologies/TTO IndustryPortal: https://industryportal.enit.fr/ontologies/TTO KW - Ontology KW - Tensile testing PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/tensile-test UR - https://github.com/HosseinBeygiNasrabadi/Tensile-Test-Ontology-TTO- UR - https://matportal.org/ontologies/TTO UR - https://industryportal.enit.fr/ontologies/TTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Fatigue test ontology (FTO) N2 - Fatigue Test Ontology (FTO) has developed for representing the fatigue testing process, testing equipment requirements, test pieces charactristics, and related testing parameters and their measurement procedure according to DIN EN ISO 12106 standard. Versions info: V2 developed using PROVO+PMDco top-level ontologies. V3 developed using BFO+IOF top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/process-graphs/lcf-test GitHub: https://github.com/HosseinBeygiNasrabadi/Fatigue-Test-Ontology-FTO- MatPortal: https://matportal.org/ontologies/FTO IndustryPortal: https://industryportal.enit.fr/ontologies/FTO KW - Ontology KW - Fatigue testing KW - FAIR data PY - 2024 UR - https://gitlab.com/kupferdigital/process-graphs/lcf-test UR - https://github.com/HosseinBeygiNasrabadi/Fatigue-Test-Ontology-FTO- UR - https://matportal.org/ontologies/FTO UR - https://industryportal.enit.fr/ontologies/FTO PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-60547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with light into the volume of a ceramic powder compound, its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP), and other volumetric methods for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ICACC 2024 CY - Daytona Beach, Florida, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions, e.g. from fossil-fuel operated power plants or cement mills. Crucial points for a sustainable and future-proof CCUS procedure are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Most components that are in contact with CO2-stream consist of steel. Depending on the operating conditions (e.g. temperature, pressure, and CO2-stream composition) specific suitable steels should be used. The compressed CO2-stream is likely to contain process specific impurities; small amounts of SO2 and NO2 in combination with oxygen and water are most harmful. One approach, as currently preferred by pipeline operators, is to clean the CO2-stream to such levels, acceptable for carbon steel, commonly used as pipeline material. Another consideration would be, to use more corrosion resistant alloys for CO2-streams with higher amounts of impurities. Due to the absence of certified benchmarks for upper limits, systematic experiments with impurities in the CO2-stream were carried out reflecting mainly transport and injection conditions. Within the COORAL project (German acronym for “CO2 purity for capture and storage”) levels of impurities in the CO2-stream, being acceptable when using specific steels, were evaluated. Material exposure to dense or multiphase carbon dioxide (CO2) containing specific amounts of water vapor, oxygen (O2) sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) can be a challenge to steels. In some situations, condensation of impurities and reaction products from the CO2 stream can occur. CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection shall ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. This COORAL-work was extended by a follow-up project, called CLUSTER. Here the additional influence of impurities was investigated when merging CO2 streams from different sources, combined within a “so-called” cluster. Results are summarized within the following table regarding suitability for different parts of the process chain. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 SP - 1 EP - 2 AN - OPUS4-53460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - DKG Jahrestagung 2023 CY - Jena, Germany DA - 27.03.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited. (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv). Corrosion rates increase with increasing water content. (0.2 – 20 mm/a). Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior. � (predictable uniform corrosion) For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - EUROCORR 2021 CY - Budapest, Hungary DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 AN - OPUS4-53461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Čapek, J. A1 - Polatidis, E. A1 - Bruno, Giovanni T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - George, Janine A1 - Mieller, Björn A1 - Stawski, Tomasz T1 - ZrV2O7 negative thermal expansion (NTE) material N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material that exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). Therefore, it can be used to create composites with controllable expansion coefficients and prevent thermal stress, fatigue, cracking, and deformation at interfaces. We implement interdisciplinary research to analyze such material. We study the influence of the synthesis methods and their parameters on the sample's purity, crystallinity, and homogeneity. Moreover, we implement ab initio-based vibrational computations with partially treated anharmonicity in combination with experimental methods to follow temperature-induced structural changes and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder. T2 - SALSA Make and Measure Conference CY - Berlin, Germany DA - 13.09.2023 KW - NTE KW - Composites KW - TEM PY - 2023 AN - OPUS4-58367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Altmann, Korinna A1 - Marzik, Julian T1 - Roving-Alterung und mechanische Eigenschaften N2 - Im statistischen Mittel steht eine Windkraftanlage (WKA) in Deutschland alle 6 Jahre wegen eines Schadens an den Rotorblättern und verursacht Kosten von 20k€-40k€ infolge Ertragsausfall und Reparaturkosten. Bei über 30.000 WKA in Deutschland verursacht dies jährlichen Kosten von 100-200 Mio. €. Zu 70% sind die Ursachen Fertigungsfehler. Diesem Themenkomplex widmet sich FB-5.3 in Kooperation mit FBs der Zerstörungsfreien Prüfung (Abt. 8) schon seit Jahren. Im aktuellen Projekt geht es um einen vorzeitigen Verschleiß der Rotorblätter infolge der Verwendung gealterter Glasfaser-Rovings. (GF). Die Entwicklung moderner Windkraftanlagen hatte in Europa seinen Ursprung in den 90er Jahren. OEMs und GF-Hersteller waren dicht beisammen. Die Globalisierung des Marktes führt heute zu einer weltweiten Verschiffung der GF in feucht-warmen Containern. Je nach Beschaffenheit (Chemie) der Schlichten (Oberflächenbehandlung) von GF können diese stark altern (Hydrolyse-Effekte) und die Festigkeit kann im Bauteil um bis zu 50% abgemindert sein. In einer Kooperation mit der Rotorblattallianz, einem Zusammenschluss der OEMs, Halbzeugherstellern und Forschungsinstituten, wurden schon vor 5 Jahren in einem Forschungsprojekt (FB-5.3; VH 5538) die chemischen Mechanismen der Alterung exemplarisch für eine Glasfaser-Roving-Type aufgeklärt. Im aktuellen Projekt (FB-5.3; VH 5304) wird ein beschleunigtes Alterungsverfahren (erhöhte Temperatur und Feuchte) am Roving im un-impregnierten Zustand entwickelt und die Festigkeit nachfolgend nach Einbettung in eine Epoxid-Harz-Matrix bestimmt. Je nach Alterungszustand zeigt sich eine Abnahme der Zwischenfaserbruchfestigkeit von bis zu 50%. Nicht alle Glasfaser-Roving-Typen zeigen diesen Effekt. Es ist gelungen für OEMs und Halbzeughersteller ein handhabbares Verfahren zur innerbetrieblichen Qualitätssicherung zu entwickeln, da die wenigsten Firmen über komplexe Analyseverfahren, wie an der BAM, verfügen. T2 - Composite United - AG Faserverbund in der Windenergie CY - Braunschweig, Germany DA - 09.05.2023 KW - Faserkunststoffverbunde KW - Windenergie KW - Alterung PY - 2023 AN - OPUS4-58409 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - Wallis, Theophilius A1 - Ikeda, Yuki A1 - Saikia, U. A1 - Ahmadian, A. A1 - Liebscher, C. A1 - Hickel, Tilmann A1 - Maaß, Robert T1 - Giant segregation transition as origin of liquid metal embrittlement in the Fe-Zn system N2 - A giant Zn segregation transition is revealed using CALPHAD-integrated density-based modeling of segregation into Fe grain boundaries (GBs). The results show that above a threshold of only a few atomic percent Zn in the alloy, a substantial amount of up to 60 at.% Zn can segregate to the GB. We found that the amount of segregation abruptly increases with decreasing temperature, while the Zn content in the alloy required for triggering the segregation transition decreases. Direct evidence of the Zn segregation transition is obtained using high-resolution scanning transmission electron microscopy. Base on the model, we trace the origin of the segregation transition back to the low cohesive energy of Zn and a miscibility gap in Fe-Zn GB, arising from the magnetic ordering effect, which is confirmed by ab-initio calculations. We also show that the massive Zn segregation resulting from the segregation transition greatly assists with liquid wetting and reduces the work of separation along the GB. The current predictions suggest that control over Zn segregation, by both alloy design and optimizing the galvanization and welding processes, may offer preventive strategies against liquid metal embrittlement. KW - CALPHAD KW - Microstructure Design KW - Grain boundary engineering KW - Steels KW - Density-based Model KW - Segregation Engineering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584292 DO - https://doi.org/10.1016/j.scriptamat.2023.115758 SN - 1359-6462 SN - 1872-8456 VL - 238 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-58429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Einfluss von Haltezeiten auf die TMF-Lebensdauer von P92 bei mittleren und geringen Dehnungsamplituden N2 - Results of an extended TMF test program on grade P92 steel in the temperature range of 620 ◦C–300 ◦C, comprising in-phase (IP) and out-of-phase (OP) tests, partly performed with symmetric dwells at Tmax/Tmin, are presented. In contrast to previous studies, the low-strain regime is also illuminated, which approaches flexible operation in a power plant with start/stop cycles. At all strain amplitudes, the material performance is characterized by continuous cyclic softening, which is retarded in tests at lower strains but reaches similar magnitudes in the course of testing. In the investigated temperature range, the phase angle does not affect fatigue life in continuous experiments, whereas the IP condition is more detrimental in tests with dwells. Fractographic analyses indicate creep-dominated and fatigue-dominated damage for IP and OP, respectively. Analyses of the (micro)hardness distribution in the tested specimens suggest an enhanced microstructural softening in tests with dwell times for the low- but not for the high-strain regime. To rationalize the obtained fatigue data, the fracturemechanics-based DTMF concept, which was developed for TMF life assessment of ductile alloys, was applied. It is found that the DTMF parameter correlates well with the measured fatigue lives, suggesting that subcritical growth of cracks (with sizes from a few microns to a few millimeters) governs failure in the investigated range of strain amplitudes. T2 - DVM-Arbeitskreis Bauteilverhalten bei thermomechanischer Ermüdung - Workshop 2023 CY - Berlin, Germany DA - 20.09.2023 KW - 9–12%Cr steel KW - Thermomechanical fatigue KW - Symmetric dwell periods KW - Parametric modeling PY - 2023 AN - OPUS4-58431 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Schmies, Lennart T1 - Die Fraktographische Online-Datenbank der AG Fraktographie – Entwicklungsstand und weitere Planung N2 - Vortrag zum aktuellen Stand der fraktographischen online-Datenbank. Darstellung des AGM/DVM Gemeinschaftsausschusses REM in der Materialforschung und seiner Arbeitsgruppen Fraktographie, EBSD und 2D/3D-Prüfung. Ziele und Inhalte der fraktographischen Datenbank, Aufruf zum Mitmachen. Durchführung von Vergleichsversuchen, Entwicklung einer fraktographischen Symbolik, Ringversuch, Vorhaben iFrakto mit Entwicklung einer KI-gestützten Bruchflächenanalyse. T2 - Metallographietagung 2023 CY - Leoben, Austria DA - 13.09.2023 KW - Fraktographie KW - Machine Learning KW - Datenbank PY - 2023 AN - OPUS4-58467 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Günster, Jens T1 - A comparison of layerwise slurry deposition and (LSD-print) laser induced slip casting (LIS) for the additive manufacturing of advanced ceramics N2 - The presentation gives an overview of two slurry-based additive manufacturing (AM) technologies specifically developed for advanced ceramic materials. The “Layerwise Slurry Deposition” (LSD-print) is a modification of Binder Jetting making use of a ceramic slurry instead of a dry powder as a feedstock. In this process, a slurry is deposited layer-by-layer by means of a doctor blade and dried to achieve a highly packed powder layer, which is then printed by jetting a binder. The LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. The Laser Induced Slip casting (LIS) technology follows a novel working principle by locally drying and selectively consolidating layer-by-layer a ceramic green body in a vat of slurry, using a laser as energy source. LIS combines elements of Vat Photopolymerization with the use of water-based feedstocks containing a minimal amount of organic additives. The resulting technology can be directly integrated into a traditional ceramic process chain by manufacturing green bodies that are sintered without the need of a dedicated debinding. Both technologies offer high flexibility in the ceramic feedstock used, especially concerning material and particle size. Advantages and disadvantages are briefly described to outline the specific features of LSD-print and LIS depending on the targeted application. T2 - AM Ceramics CY - Vienna, Austria DA - 27.09.2023 KW - Additive Manufacturing KW - Dental KW - Ceramics KW - Feldspar PY - 2023 AN - OPUS4-58468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens A1 - Hoffman, Moritz A1 - Bogna Stawarczyk, Bogna T1 - Additive Manufacturing for dental restorations by layerwise slurry deposition (LSD-print) technology N2 - The growing market of custom-made dental restorations offers a major potential for an application of ceramic additive manufacturing (AM). The possibility to individualize patient specific design and to establish new efficient workflows, from model generation to manufacturing, can be fully exploited by AM technologies. However, for mass customization to be truly envisioned, ceramic AM needs to achieve a level of maturity, aesthetic quality, and productivity comparable to established manufacturing processes. In this presentation, the potential of the “layerwise slurry deposition” LSD-print technology for dental applications will be explored. It has been shown in the past years that the LSD-print can be applied to advanced ceramic materials such as alumina and silicon-infiltrated silicon carbide. For these materials, the LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics. The current development deals with the challenges of applying this technology to a feldspar dental material, comparing the quality of AM restorations with the equivalent material for an established CAD/CAM workflow. Preliminary results not only indicate that the AM material produced by LSD-print can be competitive in terms of mechanical properties, but also that aesthetically satisfactory restorations can be manufactured for veneers, inlays and onlays as well as single unit fixed dental prostheses (FDPs). The presentation focuses on the material and technological challenges alongside the process chain, from the printing process, to debinding, firing and finishing the restorations. T2 - XVIIIth Conference of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Layerwise slurry deposition KW - dental KW - ceramic PY - 2023 AN - OPUS4-58469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Platform MaterialDigital Core Ontology (PMDco): A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Patents4Science CY - Berlin, Germany DA - 05.10.2023 KW - Knowledge Representation KW - Semantic Interoperability KW - FAIR data management KW - Knowledge graph and ontologies KW - PMD Core Ontology PY - 2023 AN - OPUS4-58507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Das, Amlan A1 - Wang, Zengquan A1 - Dufresne, Eric A1 - Derlet, Peter M. T1 - Cluster dynamics and anomalous transport in metallic glasses N2 - Quenching a metallic liquid sufficiently fast can give rise to an amorphous solid, typically referred to as a metallic glass. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via structural relaxation. As a function of time, relaxation may indeed constitute significant threads to safe applications. Consequently, relaxation of glasses has a long history across different amorphous materials and typical characterization methods promote a picture of gradually evolving and smooth relaxation, as for example obtained from mechanical spectroscopy. However, the true structural dynamics and underlying mechanisms remain far from understood and have hampered a physically informed atomic-scale picture of transport and physical aging of glasses. Here we exploit the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS) and resolve an unprecedented spectrum of short- and long-term relaxation time scales in metallic glasses. Conducted across temperatures and under the application of stress, the results reveal anything else than smooth aging and gradual energy minimization. In fact, temporal fluctuations persist throughout isothermal conditions over several hundred thousand of seconds, demonstrating heterogeneous dynamics at the atomic scale. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of correlated atomic-scale dynamics that can underly the temporal fluctuations and structural decorrelations. Despite temporally heterogeneous, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law emerges. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the structural fast and slow relaxation modes as well as a true microstructure in metallic glasses. T2 - Department Seminar OSU 2023 CY - Columbus, OH, USA DA - 22.09.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Das, Amlan A1 - Wang, Zengquan A1 - Dufresne, Eric A1 - Derlet, Peter M. T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Inspired by the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS)1 and recent results of long-term atomistic simulations on material transport2, we reveal here an unprecedented spectrum of short- and long-term relaxation dynamics. Tracked along a 300 000 s long isotherm at 0.98Tg, a Zr-based bulk metallic glass exhibits temporal fluctuations that persist throughout the entire isotherm, demonstrating a continuous heterogeneous dynamics at the probed length scale. In concert with microsecond molecular dynamic simulations, we identify intermittent cluster dynamics as the origin for temporal signatures in the corresponding intensity cross-correlations. Despite temporally heterogeneous aging, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law better describes the data. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the underlying structural fast and slow relaxation modes and their manifestation in the temporal form of the structural decorrelations. T2 - 9th IDMRCS CY - Chiba, Japan DA - 12.08.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Rashidi, Reza A1 - Ott, Catherine A1 - Derlet, Peter M. A1 - Das, Saurabh M. A1 - Liebscher, Christian A1 - Samwer, Konrad T1 - Elastic Microstructures in Metallic Glasses N2 - Metallic glasses (MGs) are disordered solids that exhibit a range of outstanding mechanical, thermomechanical, and functional properties. Whilst being a promising class of structural materials, well-defined and exploitable structure-property relationships are still lacking. This offsets them strongly from the crystalline counterparts, for which length-scale based property determination has been key for decades. In recent years, both atomistic simulations and experiments have nurtured the view of heterogeneities that manifest themselves either as a structural partitioning into well-relaxed percolated network components and more frustrated domains in atomistic simulations, or as spatially-resolved property fluctuations revealed with atomic force microscopy. These signatures depend sensitively on the processing history and likely reflect emerging medium-range order fluctuations at the scale of 1-10 nanometers. Here we demonstrate and discuss the emergence of spatially resolved property fluctuations at length scales that are one to two orders of magnitude larger. Such long-range decorrelation length scales are hard to reconcile in a monolithic glass but may offer the perspective of experimentally easy-to-access length-scale based structure-property relationships. Whilst long-range property fluctuations can be seen in both the plastic and elastic response, we focus here on high-throughput elastic nanoindentation mapping across the surface of a Zr-based model glass. After a deconvolution of surface topography and curvature effects, the spatially-resolved elastic response reveals an elastic microstructure with a correlation length of ca. 150-170 nm. Analytical scanning-transmission electron microscopy (STEM) is used to link the elastic property fluctuations to the chemistry and structure of the MG. In concert, nano-elastic mapping and STEM suggests that structural variations in the glass are responsible for the unexpectedly large length scales. We discuss these findings in terms of the materials processing history and the perspective of exploiting nanoindentation-based spatial mapping to uncover structural length scales in atomically disordered solids. T2 - 7th International Indentation Workshop – IIW7 CY - Hyderabad, India DA - 17.12.2023 KW - Metallic glass KW - Nanoindentation KW - Microstructure PY - 2023 AN - OPUS4-60692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Rizzardi, Quentin A1 - Elfresh, Cameron A1 - Stauffer, Douglas A1 - Marian, Jaime T1 - Temperature-dependent intermittent plasticity of Nb microcrystals N2 - Intermittent microplasticity via dislocation avalanches indicates scale-invariance, which is a paradigm shift away from traditional bulk deformation. Recently, we have developed an experimental method to trace the spatiotemporal dynamics of correlated dislocation activity (dislocation avalanches) in microcrystals (Phys. Rev. Mat. 2 (2018) 120601; Phys. Rev. Mat. 3 (2019) 080601). Here we exploit the temperature sensitive deformation of bcc metals. A marked change of the slip-size distribution is observed in the studied microcrystals, with increasingly small event-sizes dominating with decreasing temperature. This shows how a reduction in thermal energy increasingly suppresses the length-scale of dislocation avalanches, indicating how long-range correlations become gradually limited to the scale of the lattice. Our results further show that the stress-strain response is composed of strain-increments that are either thermally activated or essentially athermal. Temperature-dependent small-scale testing in combination with state-of-the-art discrete dislocation dynamics (DDD) simulations of Nb microcrystals are used to reveal these insights. T2 - MS&T20 Virtual CY - Online meeting DA - 02.11.2020 KW - Microcrystals PY - 2020 AN - OPUS4-60700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Maiwald, Michael A1 - Prager, Jens A1 - Lugovtsova, Yevgeniya A1 - Schukar, Marcus A1 - Strohhäcker, J. A1 - Bresch, Sophie T1 - Sensoren und Analytik für Sicherheit und Prozesskontrolle in Wasserstofftechnologien N2 - Der Beitrag behandelt verschiedene Themen aus dem H2Safety@BAM-Kompetenzfeld Sensorik, Analytik und zertifizierte Referenzmaterialien (SensRef) mit Schwerpunkt auf Mess- und Prüfverfahren, die verschiedene Analyseverfahren, Sensortechnologien und Ultraschallwellen nutzen. Ein Teil davon ist das Euramet-Vorhaben "MefHySto" zur Metrologie der Wasserstoffspeicherung. Des Weiteren werden Verfahren zur Erkennung von freigesetztem Wasserstoff und zur Bestimmung des Wasserstoff-Luftverhältnisses mithilfe von Gassensoren behandelt. Ein weiterer Aspekt ist die zerstörungsfreie Fehlstellenerkennung mit einem integrierten Zustandsüberwachungssystem, das auf geführten Ultraschallwellen basiert und zur Überwachung der Lebensdauer von Composite-Behältern (Wasserstoffspeicher) dient. Zudem wird die Anwendung faseroptischer Sensorik zur Schadenfrüherkennung an Wasserstoffspeichern diskutiert. Dabei werden erkennbare Dehnungsänderungen an Druckbehältern als Indikatoren genutzt. T2 - DVGW-Kongress "H2 Sicherheit" CY - Online meeting DA - 15.03.2023 KW - Faseroptische Sensorik KW - Gassensorik KW - Geführte Ultraschallwellen KW - Leckdetektion KW - Metrologie zur Wasserstoffspeicherung KW - Structural Health Monitoring (SHM) KW - Zerstörungsfreie Prüfung KW - SensRef KW - H2Safety@BAM PY - 2023 AN - OPUS4-57529 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Zia, Ghezal Ahmad A1 - Schilling, Markus A1 - Waitelonis, J. A1 - v. Hartrott, P. A1 - Hanke, T. A1 - Skrotzki, Birgit T1 - Towards interoperability: Digital representation of a material specific characterization method N2 - Certain metallic materials gain better mechanical properties through controlled heat treatments. In age-hardenable aluminum alloys, the strengthening mechanism is based on the controlled formation of nanometer sized precipitates, which hinder dislocation movement. Analysis of the microstructure and especially the precipitates by transmission electron microscopy allows identification of precipitate types and orientations. Dark-field imaging is often used to image the precipitates and quantify their relevant dimensions. The present work aims at the digital representation of this material-specific characterization method. Instead of a time-consuming, manual image analysis, a digital approach is demonstrated. The integration of an exemplary digital workflow for quantitative precipitation analysis into a data pipeline concept is presented. Here ontologies enable linking of contextual information to the resulting output data in a triplestore. Publishing digital workflow and ontologies ensures the reproducibility of the data. The semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. T2 - TMS - 7th World Congress on Integrated Computational Materials Engineering (ICME) CY - Orlando, Florida, USA DA - 21.05.2023 KW - Ontology KW - Semantic Interoperability KW - Digtial Representation KW - Data Management KW - Reproducibility KW - FAIR PY - 2023 AN - OPUS4-57548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - v. Hartrott, P. A1 - Waitelonis, J. A1 - Birkholz, H. A1 - Grundmann, J. A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit T1 - FAIR data in PMD: Development of MSE mid-level and standard-compliant application ontologies N2 - The efforts taken within the project ‘platform MaterialDigital’ (PMD, materialdigital.de) to store FAIR data in accordance with a standard-compliant ontological representation (‘application ontology’) of a tensile test of metals at room temperature (ISO 6892-1:2019-11) will be presented. This includes the path from developing an ontology in accordance with the respective standard, converting ordinary data obtained from standard tests into the interoperable RDF format, up to connecting the ontology and data. The semantic connection of the ontology and data leads to interoperability and an enhanced ability of querying. For further reusability of data and knowledge semantically stored, the PMD core ontology (PMDco) was developed, which is a mid-level ontology in the field of MSE. The semantic connection of the tensile test application ontology to the PMDco is also presented. Moreover, Ontopanel, a tool for domain experts facilitating visual ontology development and mapping for FAIR data sharing in MSE, is introduced briefly. T2 - World Congress on Integrated Computational Materials and Engineering (ICME) CY - Orlando, Florida, USA DA - 21.05.2023 KW - Digitalization KW - Semantic Web Technologies KW - FAIR KW - Data Interoperability KW - PMD Core Ontology KW - Tensile Test Ontology PY - 2023 AN - OPUS4-57549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Thuy, Maximilian A1 - Brauch, N. A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Böhning, Martin T1 - Environmental Stress Cracking of PE-HD Induced by Liquid Test Media Representing Crop Protection Formulations N2 - Packaging containers for dangerous goods that include aggressive liquids require that any packaging material that is based on high-density polyethylene has a high degree of stability and durability. This work is focused on testing the environmental stress cracking of the high-density polyethylenes used for such containers in contact with crop protection formulations, in particular, two model liquids established in Germany as standardized test media representatives for crop protection formulations containing the various admixtures typical for such products. One of the liquids is water-based and contains mostly surface-active ingredients, while the other is solvent-based and includes some emulsifiers. Originally established for pin impression tests, these model liquids and their individual components were here used for the first time as environmental media in the Full Notch Creep Test, which addresses the resistance against environmental stress cracking. The Full Notch Creep Test was carried out on five high-density polyethylene types with both model liquids, and also on one selected material with its components. The evaluation was focused on the fracture surface structures, which were visualized by a scanning electron microscope and by optical in situ imaging of the notch opening. While the water-based model liquid and its surface-active individual components induced environmental stress cracking with the characteristic pattern for a craze-crack mechanism and so-called brittle fracture on the surface, the solvent-based model liquid and its soluble ingredients exhibited rather ductile failure behavior, caused by the plasticizing effect on the polymer that reduced the yield stress of the high-density polyethylene. For both cases, fracture surface analysis, together with side views of the crack opening, showed a clear relation between surface pattern, notch deformation (e.g., by blunting), or crack opening due to crack growth with time to failure and the solubility of the liquids in high-density polyethylene. KW - Environmental stress cracking KW - Fracture surface KW - Full Notch Creep Test KW - Crop protection formulations KW - High-density polyethylene PY - 2023 DO - https://doi.org/10.1520/STP164320210095 SP - 317 EP - 341 PB - ASTM International CY - West Conshohocken, PA (USA) AN - OPUS4-57459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Riechers, Birte A1 - Maaß, Robert T1 - nanoindentation data associated with the publication "On the elastic microstructure of bulk metallic glasses" in Materials&Design 2023 N2 - This dataset consists of indentation data measured with a conospherical tip in a Hysitron-Bruker TI980 Nanoindenter on the surface of a <100> Silicon wafer and a polished cross-sectional cut of a Zr65Cu25Al10 bulk metallic glass. It is associated with the following publication: Birte Riechers, Catherine Ott, Saurabh Mohan Das, Christian H. Liebscher, Konrad Samwer, Peter M. Derlet and Robert Maass "On the elastic microstructure of bulk metallic glasses" Materials and Design xxx, (2023) 111929. https://doi.org/10.1016/j.matdes.2023.111929 All experimental information can be found in this paper and in the accompanying supplementary information. This electronic version of the data was published on the "Zenodo Data repository" found at http://zenodo.org/deposit in the community "Bundesanstalt fuer Materialforschung und -pruefung (BAM)". The authors have copyright to these data. You are welcome to use the data for further analysis, but are requested to cite the original publication whenever use is made of the data in publications, presentations, etc. Any questions regarding the data can be addressed to birte.riechers@bam.de who would also appreciate a note if you find the data useful. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 DO - https://doi.org/10.5281/zenodo.7818224 PB - Zenodo CY - Geneva AN - OPUS4-57352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this poster presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - DVM Arbeitskreis Betriebsfestigkeit - Potenziale der Betriebsfestigkeit in Zeiten des technologischen und gesellschaftlichen Wandels CY - Munich, Germany DA - 11.10.2023 KW - Digitalization KW - Semantic Web Technologies KW - FAIR KW - Data Interoperability KW - PMD Core Ontology PY - 2023 AN - OPUS4-58602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönauer-Kamin, D. A1 - Bresch, Sophie A1 - Paulus, D. A1 - Moos, R. T1 - Powder Aerosol deposited (PAD) calcium cobaltite as textured p type thermoelectric material N2 - Oxide thermoelectric semiconducting materials like p-type calcium cobaltite Ca3Co4O9 are investigated as oxidation- and temperature-resistant thermoelectric materials for thermoelectric generators (TEGs). To realize TEGs in planar film technology, the powder aerosol deposition (PAD) method is emerging recently. PAD is a method to obtain dense ceramic films directly from the synthesized starting powders without a subsequent high temperature step. In the present work, Ca3Co4O9 (CCO) powders are processed by PAD to ceramic films at room temperature. The thermoelectric properties of the films (film thickness 10 – 20 µm) are characterized from room temperature to 900°C. Additionally, the layer morphology and texture of the films will be investigated. As result, the Seebeck coefficient of the CCO-PAD film is comparable to pressed and sintered CCO-bulk materials during the 1st heating cycle to 900°C. The morphology of the films after the thermal treatment shows strong aligned crystallites resulting in a strong texture of the films. The electrical conductivity increases strongly during the 1st heating cycle to 900°C and stays almost constant afterwards. Compared to CCO-bulks, the films provide higher electrical conductivity which could be explained by the oriented crystal growth in-plane direction of the film. The relationship between thermoelectric properties and layer morphology as a function of thermal annealing parameters will be further investigated. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Layer depostion KW - Texture KW - Heat treatment PY - 2023 AN - OPUS4-57285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ti-6Al-4V N2 - The elastic properties (Young's modulus, shear modulus) of titanium alloy Ti-6Al-4V were investigated between room temperature and 400 °C in an additively manufactured variant (laser-based directed energy deposition with powder as feedstock, DED-LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, microstructure, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - Ti-6Al-4V PY - 2023 DO - https://doi.org/10.5281/zenodo.7813732 PB - Zenodo CY - Geneva AN - OPUS4-57286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718 N2 - The elastic properties (Young's modulus, shear modulus) of Ni-based alloy Inconel IN718 were investigated between room temperature and 800 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - IN718 PY - 2023 DO - https://doi.org/10.5281/zenodo.7813824 PB - Zenodo CY - Geneva AN - OPUS4-57287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of austenitic stainless steel AISI 316L N2 - The elastic properties (Young's modulus, shear modulus) of austenitic stainless steel AISI 316L were investigated between room temperature and 900 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled sheet). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L PY - 2023 DO - https://doi.org/10.5281/zenodo.7813835 PB - Zenodo CY - Geneva AN - OPUS4-57288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Eddah, Mustapha A1 - Bajer, Evgenia A1 - Markötter, Henning A1 - Kranzmann, Axel T1 - Destructive and non-destructive 3D-characterization of inner metal structures in ceramic packages N2 - Ceramic multilayer packages provide successful solutions for manifold applications in telecommunication, microsystem, and sensor technology. In such packages, three-dimensional circuitry is generated by combination of structured and metallized ceramic layers by means of tape casting and multilayer technology. During development and for quality assurance in manufacturing, characterization of integrity, deformation, and positioning of the inner metal features is necessary. Visualization with high resolution and material contrast is needed. Robot-assisted 3D-materialography is a useful technique to characterize such multimaterial structures. In that, many sections of the specimen are polished and imaged automatically. A three-dimensional representation of the structure is created by digital combination of the image stack. A quasi non-destructive approach is to perform X-ray computer tomography (CT) with different beam energies. The energies are chosen to achieve a good imaging of either the metal features, or the ceramic matrix of the structure. The combination of the respective tomograms results in a high contrast representation of the entire structure. Both methods were tested to characterize Ag and Ag/Pd conductors in a ceramic multilayer package. The results were compared in terms of information content, effort, and applicability of the methods. T2 - 98th DKG Annual Meeting - CERAMICS 2023 CY - Jena, Germany DA - 27.03.2023 KW - Ceramics KW - Synchrotron CT KW - 3D materialography PY - 2023 AN - OPUS4-57268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cysne Barbosa, Ana Paula A1 - Azevedo do Nascimento, Allana A1 - Pavasarytė, Lina A1 - Trappe, Volker A1 - Melo, D. T1 - Effect of addition of thermoplastic self-healing agent on fracture toughness of epoxy N2 - Self-healing agents have the potential to restore mechanical properties and extend service life of composite materials. Thermoplastic healing agents have been extensively investigated for this purpose in epoxy matrix composites due to their strong adhesion to epoxy and their ability to fill in microcracks. One of the most investigated thermoplastic additives for this purpose is poly(ethylene-co-methacrylic acid) (EMAA). Despite the ability of thermoplastic healing agents to restore mechanical properties, it is important to assess how the addition of thermoplastic healing agents affect properties of the original epoxy material. In this work, EMAA was added to epoxy resin and the effect of the additive on fracture toughness of epoxy was evaluated. Results indicate that although added in low concentrations, EMAA can affect fracture toughness. T2 - 6th Brazilian Conference on Composite Materials CY - Tiradentes, Minas Gerais, Brazil DA - 14.08.2022 KW - Epoxy KW - Self-healing KW - Thermoplastic KW - Fracture PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572707 SN - 978-65-00-49386-3 DO - https://doi.org/10.29327/566492 SN - 2316-1337 SP - 219 EP - 222 AN - OPUS4-57270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Lindemann, Franziska A1 - Koppert, Ralf A1 - Mieller, Björn T1 - Chemical resistance of commercial LTCC against thin film etching media N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate robust multilayer circuits. Typically, thick-film technology is applied for metallization. For specific sensor applications, thin films are deposited directly on the as-fired LTCC-surface. These deposited thin films are structured either by lift-off or by etching. The latter is less error-prone and thus preferred in industry provided the selected materials allow it. 200 nm Ni-thin films were deposited on three different commercial constrained-sintered LTCC (CT708, CT800 and DP951) by electron beam physical vapour deposition. The thin-films were structured by covering corresponding sections with a UV-curable photo resisn and subsequent etching of the uncovered surface, leaving behind the desired structure. The etched Ni-thin film showed high difference in failure rate and sheet resistance regarding the used LTCC-material. DP951 had the lowest sheet resistance and no failure, whereas the CT800 had a failure rate of 40 %. The LTCC with high failure rate showed a strong chemical attack by the used etching medium. To address this phenomenon, the chemical resistance of the three different commercial LTCC (CT708, CT800 and DP951) against four different commonly used etching media (sulphuric acid, phosphoric acid, aqua regia, and hydrofluoric acid) is investigated. The dissolved ions are analyzed by ICP-OES to correlate the LTCC-composition and its chemical resistance. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Glass-ceramics KW - Hydrogen sensors KW - Acids PY - 2023 AN - OPUS4-57273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Materials applications of iron aluminide (FeAl), (WAFEAL) T1 - Werkstoffanwendungen für Eisenaluminide (FeAl), (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. N2 - Die zunehmende geopolitische Bedeutung der Ressourcenverfügbarkeit sowie die Anforderungen an einen geschlossenen Materialkreislauf treiben die Materialforschung voran, um konventionelle Werkstoffe mit weniger kritischen Zusätzen zu legieren oder sogar vollständig mit nachhaltigeren Alternativen zu substituieren. Eine potenzielle Alternative stellen die intermetallischen Eisenaluminid-Legierungen (FeAl) dar. Im Labormaßstab wurden bereits viele Legierungskonzepte für verbesserte Hochtemperatureigenschaften oder Duktilität erfolgreich gießtechnisch umgesetzt. Eine erfolgreiche Erprobung von FeAl-Legierungen im industriellen Maßstab stand zu Beginn des Projekts aber weiterhin aus. Ziel des Vorhabens war daher die Entwicklung von simulationsgestützten Gießkonzepten in industrienahe Gießprozesse anhand der Modelllegierung Fe-26Al-4Mo-0,5Ti-1B und die Eingrenzung der prozesstechnischen Verfahrensgrenzen durch Warmrissversuche. Erkenntnisse hieraus wurden in einen praxisorientierten, für zukünftige Anwender in KMUs zugänglichen Handlungskatalog für die gießgerechte Auslegung von Bauteilen aus Eisenaluminiden überführt. Fokus wurde insbesondere auf das Feinguss- und Kokillengussverfahren im Schleuderguss gesetzt. Neben zahlreicher Konstruktions- und Gießprozessparameter wurden auch Wärmebehandlungen und Legierungszusätze (Al, Mo, B) variiert, um den Einfluss von Legierungselementen auf Gießbarkeit, Mikrostruktur und mechanische Kennwerte zu bestimmen. Eine umfangreiche Basis an Daten aus Mikrostrukturanalysen (Mikroskopische Bildgebung, Bestimmung von Korngrößen sowie Phasenzusammensetzungen und -anteilen, Fraktographie), mechanischen Tests (Härtemessungen, Druckversuch, Zugversuch, Warmzugversuch, Kriechversuch) sowie Messungen thermophysikalischer Eigenschaften konnte für die Modelllegierung erzeugt werden. Korrelationen dieser Informationen mit Prozessvariablen erlaubten Schlussfolgerungen zu Härtungsmechanismen und Duktilität in der Legierung und wie sie prozesstechnisch in Gieß- und Bauteilauslegung gesteuert werden können. Der erfolgreiche Abguss von hochkomplexen Bauteilgeometrien mit dünnen Wandstärken sowie optimierte Legierungszusammensetzungen zeigen Perspektiven auf neue Anwendungsfelder auf. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 VL - R604 SP - 1 EP - 32 PB - FVV e. V. CY - Frankfurt a.M. AN - OPUS4-57247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Skrotzki, Birgit T1 - Materials Applications FeAl (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation-based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 AN - OPUS4-57248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolsch, Nico A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Günster, Jens T1 - Enabling online quality control of powder deposition for 3d printing in microgravity N2 - 3D printing or additive manufacturing in space is of great value for long-term human spaceflight missions and space stations, conveniently offering access to a ‘virtual warehouse’ of tools and spare parts on the push of a button. The process only needs one type of feedstock such as powder or filament and only as much material as the final part requires, giving it a huge weight benefit over traditional subtractive methods. While 3D printers are already operational on the ISS since 2014, the utilized processes are only capable of manufacturing relatively low strength parts from polymers not suitable for many tools or critical components. To gain access to high quality metal prints, a modified Laser Powder Bed Fusion (LPBF) process was developed to stabilize the critical powder bed in microgravity through a gas flow [2]. This setup was able to generate a (miniature) steel wrench during parabolic flights, but a reliable layer deposition has raised challenges due to the combination of gas flow parameters with microgravity conditions. Furthermore, the quality and density of the powder bed, which is critical for the process, cannot be examined afterward on the ground. This is due to hyper gravity phases during the flight that are influencing the properties of the powder bed. In this paper, the challenges of the layer deposition are revised, and the subsequent evolution of the recoating system explained. Later, the challenges of an in-situ quality control, evaluation, and quantification of the properties of the powder bed are examined. As a solution, a high-resolution line-scanner is proposed and its implementation int the compact LPBF system demonstrated. Its ability to measure common defects such as ridges in the deposited layer is shown in experiments at normal gravity. As an illustration, Figure 1 shows an extreme case of the formation of ridges. T2 - European Conference on Spacecraft Structures Materials and Environmental Testing CY - Toulouse, France DA - 28.03.2023 KW - Additive manufacturing KW - In-space manufacturing KW - Online quality control KW - Microgravity KW - Powder deposition PY - 2023 AN - OPUS4-57249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Particle size determination of a commercially available CeO2 nano powder - SOPs and reference data N2 - Compilation of detailed SOPs for characterization of a commercially available CeO2 nano powder including - suspension preparation (indirect and direct sonication), - particle size determination (Dynamic Light Scattering DLS and Centrifugal Liquid Sedimentation CLS) with reference data, respectively. For sample preparation and analysis by Scanning Electron Microscopy (SEM) of this powder see related works (submitted, coming soon). KW - Wet dispersion KW - Nano powder KW - Particle size KW - CeO2 KW - Ceria KW - DLS KW - CLS PY - 2023 DO - https://doi.org/10.5281/zenodo.10061079 PB - Zenodo CY - Geneva AN - OPUS4-58785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - SOP and reference data for determination of the Volume-specific Surface Area (VSSA) of a commercially available CeO2 nano powder N2 - Detailed SOP and reference data for the determination of the VSSA of a commercially available CeO2 nano powder: specific (BET-) Surface Area by gas adsorption (Ar and N2) skeletal (true solid state) density by gas pycnometry. Estimation of the particle size by VSSA screening method. KW - Nano powder KW - VSSA KW - Volume specific surface area KW - Screening method KW - Ceria KW - CeO2 PY - 2023 DO - https://doi.org/10.5281/zenodo.10061235 PB - Zenodo CY - Geneva AN - OPUS4-58786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radners, Jan A1 - Han, Ying A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - Aluminum High Temperature Fatigue N2 - The high operating temperatures of radial compressor wheels in exhaust gas turbochargers lead to a change in the original microstructure of the heat-resistant aluminum alloy EN AW-2618A (overaging). This is caused by thermal loads that are close to the age hardening temperature and can even exceed it for a short time. The aging mechanisms have been investigated together with low cycle fatigue (LCF), thermomechanical fatigue (TMF) and creep up to max. 190 °C in previous research projects. The be-havior of the alloy under high cycle fatigue (HCF) and the influence of load spectra have hardly been investigated. Since the operating temperatures of centrifugal compressors are expected to increase in the future, this research project investigated the HCF behavior at 230 °C, a test temperature significantly higher than the age hardening temperature. The objectives of the project were to establish a suitable experimental database, to understand the relevant microstructural processes, and to further develop and adapt suitable models and evaluation methods. In addition to a basic characterization of the HCF behavior in the initial condition T61, the experimental investigation program included targeted mechanical tests to isolate the influencing factors of mean stress (𝑅=−1, 𝑅=0.1), material overaging (T61, 10 h/230 °C, 1000 h/230 °C), test temperature (20 °C, 230 °C), test frequency (0.2 Hz, 20 Hz) as well as variable amplitudes. On this basis, the models and evaluation methods developed in the previous projects were adapted and further developed to reflect thermal and mechanical loads in the lifetime assessment. T2 - The FVV Transfer + Networking Event (Herbst 2023) CY - Würzburg, Germany DA - 04.10.2023 KW - Aluminum alloys KW - Fatigue KW - EN AW-2618A PY - 2023 SP - 1 EP - 30 AN - OPUS4-58562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Arendt, F. A1 - Sierka, M. A1 - Diegeler, A. T1 - A new robot-assisted compositional screening method N2 - The system Na2O.B2O3-SiO2 (NBS) is the basis of many industrial glass applications and therefore one of the most studied systems at all. Glass formation is possible over a wide compositional range, but the system also contains ranges of pronounced phase separation and crystallization tendency. Despite its importance, experimental data are limited to few compositional areas. The general understanding and modelling of glass formation, phase separation, and crystallization in this system would therefore be easier if small step melt series could be studied. The efficient melting of such glass series is now possible with the new robotic glass melting system at the Federal Institute for Materials Research and Testing (BAM, Division Glasses). Using three exemplary joins within this NBS system, the small step changes of glass transition temperature (Tg), crystallization behavior as well as glass density (Roh) was studied. Additionally, experimental Tg and Roh data were compared with their modeled counterparts using SciGlass and a newly developed DFT model, respectively. T2 - Annual meeting of the French Union for Science and Glass Technology (USTV) and the 96th Annual Meeting of the German Society of Glass Technology - USTV-DGG joint meeting. CY - Orléans, France DA - 22.05.2023 KW - Robot-assisted galss melting KW - Sodiumborosilicate glasses KW - Density KW - Glass transformation temperature KW - Property simulation PY - 2023 AN - OPUS4-58724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. T1 - Hydrogen Permeability of Tectosilicate Glasses for Tank Barrier Liners N2 - The permeation of hydrogen gas was studied in meta-aluminous (tectosilicate) glass powders of Li2O×Al2O3×SiO2 (LAS), Na2O×Al2O3×SiO2 (NAS) and MgO×Al2O3×SiO2 (MAS) systems by pressure loading and vacuum extraction in the temperatures range 210–310 °C. With this method, both the solubility S and the diffusivity D were determined, while the permeability was given by the product SD. For all glasses, S was found to decrease with temperature, while D increased. Since the activation energy of diffusion of H2 molecules exceeded that of dissolution, permeation increased slightly with temperature. When extrapolated to standard conditions (25 °C), the permeability of tectosilicate glasses was found to be only 10-22–10-24 mol H2 (m s Pa)-1, which is 8–10 magnitudes lower than most polymers. Thin glass liners of these compositions are expected to be the most effective barrier for tanks of pressurised hydrogen. KW - Hydrogen permeation KW - Aluminosilicate glasses KW - Hydrogen storage tank KW - Glass liner PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587284 DO - https://doi.org/10.52825/glass-europe.v1i.425 VL - 1 SP - 1 EP - 11 AN - OPUS4-58728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Müller, Ralf T1 - The contribution of the Platform MaterialDigital (PMD) in building up a Materials Data Space - Application to glass design and manufacturing N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. A great challenge in establishing a materials data space lies in the complexity and diversity of materials science and engineering. It must be able to handle data from different knowledge areas over several magnitudes of length scale. The Platform MaterialDigital (PMD) is expected to network a large number of repositories of materials data, allowing the direct contact of different stakeholders as materials producers, testing labs, designers and end users. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. In the frame of a large joint initiative, PMD works intensively together with currently near 20 research consortia in promoting this exchange (www.material-digital.de). In this presentation we will describe the status of our Platform MaterialDigital. We will also present in more detail the activities of GlasDigital, one of the joint projects mentioned above dealing with the digitalization of glass design and manufacturing. (https://www.bam.de/Content/EN/Projects/GlasDigital/glasdigital.html) T2 - Onto Commons Workshop CY - Berlin, Germany DA - 04.04.2023 KW - Ontology KW - Data space PY - 2023 AN - OPUS4-58732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. A1 - Contreras Jaimes, A. A1 - Diegeler, A. A1 - Niebergall, R. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - UST-DGG joint meeting CY - Orléans, France DA - 23.05.2023 KW - Glass melting KW - Thermo-optical measurement PY - 2023 AN - OPUS4-58733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -