TY - JOUR A1 - Franchin, G. A1 - Zocca, Andrea A1 - Karl, D. A1 - Yun, H. A1 - Tian, X. T1 - Editorial: Advances in additive manufacturing of ceramics N2 - Recently, additive manufacturing of ceramics has achieved the maturity to be transferred from scientific laboratories to industrial applications. At the same time, research is progressing to expand the boundaries of this field into the territory of novel materials and applications. This feature issue addresses current progress in all aspects of additive manufacturing of ceramics, from parts design to feedstock selection, from technological development to characterization of printed components. KW - Additive manufacturing KW - Ceramic PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549361 SN - 2666-5395 VL - 10 SP - 1 EP - 2 PB - Elsevier CY - Amsterdam AN - OPUS4-54936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - 3-D Druck in Schwerelosigkeit – Patentanmeldung für den Bau für Werkzeug und Ersatzteilen im Weltall N2 - Präsentation der Aktivitäten an der BAM im Bereich 3-D Druck in Schwerelosigkeit. T2 - Besuch des Deutschen Patent- und Markenamtes DPMA München CY - Berlin, Germany DA - 19.07.2022 KW - Additive manufacturing KW - Microgravity KW - Patent KW - Powder KW - Additive Fertigung KW - 3D Druck KW - Schwerelosigkeit PY - 2022 AN - OPUS4-56314 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - How will we explore, work, and live on the moon? N2 - 3D-printed landing pads on the moon: Paving the road for large area sintering of lunar regolith. A prerequisite for lunar exploration and beyond is the manufacturing of objects directly on the moon, given the extreme costs involved in the shipping of material from Earth. Looking at processes, raw materials, and energy sources, equipment will certainly have to be brought from Earth at the beginning. Available on the moon are lunar regolith as raw material and the sun as an energy source. One of the first steps towards the establishment of a lunar base is the creation of infrastructure elements, such as roads and landing pads. We’ll introduce you to the ESA-project PAVER that demonstrates the sintering and melting of lunar regolith simulant material to produce large scale 3D printed elements that could be used during human and robotic lunar explorations. T2 - Berlin Science Week CY - Online meeting DA - 09.11.2022 KW - Additive manufacturing KW - Lunar regolith simulant KW - EAC-1A KW - Space exploration PY - 2022 UR - https://www.youtube.com/watch?v=StfLuVhKkUE AN - OPUS4-56377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - Solar sintering KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving PY - 2022 SP - 1 EP - 9 AN - OPUS4-56519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Meyer, Lena T1 - Laser beam melting additive manufacturing at μ-gravity N2 - At the Workshop "Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing" at the Institute of Materials Physics in Space, German Aerospace Center (DLR) in Cologne, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications in microgravity. T2 - Workshop 'Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing' CY - Cologne, Germany DA - 11.08.2022 KW - Additive manufacturing KW - In-space manufacturing KW - Microgravity KW - μ-gravity KW - Laser beam melting KW - Advanced manufacturing KW - Aerospace KW - Process monitoring PY - 2022 AN - OPUS4-56521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving KW - Solar sintering PY - 2022 AN - OPUS4-56529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Kolsch, Nico A1 - Günster, Jens T1 - Laser beam melting additive manufacturing at μ-gravity N2 - In-space manufacturing (ISM) provides the opportunity to manufacture and repair critical components on future human spaceflight missions. For explorations to Mars and beyond, ISM is a key strategy not only due to the long travel distances and high costs of supply from earth but also to be able to safely work in space for years. Human spaceflight is still dependent on shipments from earth that can fail for several reasons. ISM is a valuable alternative to ensure the timely and safe resupply of space missions. With additive manufacturing (AM) technologies, components are built directly from a 3D computer-aided-design (CAD) model which offers the advantages of freedom of design and the production of complex and ready-to-use parts. A virtual tool box with 3D models in space or the supply of information instead of components from earth to space can strongly benefit future missions. For industrial use, most research has focused on laser based additive manufacturing processes such as laser beam melting (LBM) where metallic powder particles are spread into a uniform powder bed and melted by a laser to the desired shape. In the absence of gravity, the handling of metal powders, which is essential for the process, is challenging. We present an evolution of an AM system, where a gas flow throughout the powder bed is applied to stabilize the powder bed. This is needed to compensate for the missing gravitational forces in microgravity experiments on parabolic flight campaigns. The system consists of a porous building platform acting as a filter for the fixation of metal particles in a gas flow. It is driven by reduced pressure established by a vacuum pump underneath the platform. The system creates a drag force that directs the particles towards the porous building platform, similar to the effect of the gravitational force. The AM system with its gas-flow-assisted powder deposition has been tested in several parabolic flight campaigns, and stainless-steel powder has successfully been processed during microgravity conditions. Different powder recoating mechanisms have been investigated to assess the homogeneous distribution of the powder as well as the attachment of the next layer to the powder bed. These mechanisms included different container designs with parallel double blades and with a V-shape at the bottom, and a roller recoating system. The samples presented are the first metal parts ever manufactured using LBM in μ-gravity. In addition to manufacturing in a μ-gravity environment, the experiments have shown the feasibility to manufacture components at different accelerations during the parabolic flight: hyper gravity (1.8 g), μ-gravity (< 0.01 g) and 1 g. Recent results will also be presented describing the application of this LBM setup in a parabolic flight campaign with mixed lunar, martian and µ-gravity acceleration, during which the processing of a lunar regolith simulant powder was tested. For ISM, the development and testing of the proposed AM system demonstrates that LBM can be considered a viable technology for the manufacturing of metal and ceramic parts in a μ-gravity or reduced-gravity environment. T2 - International Conference on Advanced Manufacturing CY - Online meeting DA - 07.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Laser beam melting KW - Microgravity KW - Stainless steel KW - Lunar regolith simulant PY - 2022 AN - OPUS4-54450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Waske, Anja A1 - Günster, Jens A1 - Widjaja, Martinus A1 - Neumann, C. A1 - Clozel, M. A1 - Meyer, A. A1 - Ding, J. A1 - Zhou, Z. A1 - Tian, X. T1 - Challenges in the Technology Development for Additive Manufacturing in Space N2 - Instead of foreseeing and preparing for all possible scenarios of machine failures, accidents, and other challenges arising in space missions, it appears logical to take advantage of the flexibility of additive manufacturing for “in-space manufacturing” (ISM). Manned missions into space rely on complicated equipment, and their safe operation is a great challenge. Bearing in mind the absolute distance for manned missions to the Moon and Mars, the supply of spare parts for the repair and replacement of lost equipment via shipment from Earth would require too much time. With the high flexibility in design and the ability to manufacture ready-to-use components directly from a computer-aided model, additive manufacturing technologies appear to be extremely attractive in this context. Moreover, appropriate technologies are required for the manufacture of building habitats for extended stays of astronauts on the Moon and Mars, as well as material/feedstock. The capacities for sending equipment and material into space are not only very limited and costly, but also raise concerns regarding environmental issues on Earth. Accordingly, not all materials can be sent from Earth, and strategies for the use of in-situ resources, i.e., in-situ resource utilization (ISRU), are being envisioned. For the manufacturing of both complex parts and equipment, as well as for large infrastructure, appropriate technologies for material processing in space need to be developed. KW - Additive manufacturing KW - Space KW - Process PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549204 SN - 2772-6657 VL - 1 IS - 1 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-54920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - Powder based Additive Manufacturing in Space N2 - Abstract of the event: 'The area of New Space is a vastly growing and dynamic field with a high innovative potential and many exciting ideas. After decades where activities in space were dominated and funded mainly by governmental agencies, a new industry is forming and new business models are being developed around ideas like satellite-based internet, space travel, space mining, geo-monitoring etc. For space applications, lightweight design is crucial to keep the costs at a minimum. This Innovation Day will introduce the field of New Space and present the variety of exciting opportunities that arise for composites based on their excellent lightweight potential.' Another research area is now arising in the field of 3D printing or additive manufacturing of fiber composite materials in space. At the event, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications. T2 - CU Innovation Day - New opportunities and applications in space with composites CY - Online meeting DA - 29.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Microgravity KW - Powder PY - 2022 AN - OPUS4-54559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, M. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Dollmeier, K. A1 - Dreyer, M. A1 - Klöden, B. A1 - Schlingmann, T. A1 - Schmidt, J. T1 - Reproducibility and Scattering in Additive Manufacturing: Results from a Round Robin on PBF-LB/M AlSi10Mg Alloy T1 - Reproduzierbarkeit und Streuung bei der additiven Fertigung: Ergebnisse eines Ringversuchs mit einer PBF-LB/M AlSi10Mg-Legierung N2 - The round robin test investigated the reliability users can expect for AlSi10Mg additive manufactured specimens by laser powder bed fusion through examining powder quality, process parameter, microstructure defects, strength and fatigue. Besides for one outlier, expected static material properties could be found. Optical microstructure inspection was beneficial to determine true porosity and porosity types to explain the occurring scatter in properties. Fractographic analyses reveal that the fatigue crack propagation starts at the rough as-built surface for all specimens. Statistical analysis of the scatter in fatigue using statistical derived safety factors concludes that at a stress of 36.87 MPa the fatigue limit of 107 cycles could be reached for all specimen with a survival probability of 99.999 %. N2 - Im Rahmen eines Ringversuchs wurde durch die Untersuchung der Pulverqualität, der Prozessparameter, der Gefügefehler, der Festigkeit und der Ermüdung die Zuverlässigkeit bestimmt, die Nutzer von AlSi10Mg-Proben erwarten können, die mit pulverbettbasiertes Schmelzen mittels Laser (engl. Laser Powder Bed Fusion) gefertigt worden sind. Abgesehen von einem Ausreißer wurden die erwarteten statischen Materialeigenschaften erreicht. Eine optische Gefügeprüfung diente dazu, die tatsächliche Porosität und Arten von Porosität zu ermitteln, um die bei den Eigenschaften auftretende Streuung zu erklären. Fraktographische Unterschungen zeigen eine bei allen Proben von der rauen Oberfläche im As-built-Zustand ausgehende Ermüdungsrissausbreitung. Aus der statistischen Analyse der Streuung bezüglich der Ermüdung unter Anwendung von statistischen abgeleiteten Sicherheitsfaktoren geht hervor, dass alle Proben die Dauerfestigkeit von 107 Zyklen bei einer Spannung von 36,87 MPa mit einer Überlebenswahrscheinlichkeit von 99,999 % erreichten. KW - Additive manufacturing KW - Reproducibility KW - Reliability PY - 2022 U6 - https://doi.org/10.1515/pm-2022-1018 SN - 2195-8599 VL - 59 IS - 10 SP - 580 EP - 614 PB - De Gruyter AN - OPUS4-55935 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -