TY - CONF A1 - Schilling, Markus T1 - Crafting High-Quality, Reliable, and FAIR Data: From Metadata, Schema and Ontologies to Data Management and Knowledge Transfer N2 - Following the new paradigm of materials development, design and optimization, digitalization is the main goal in materials sciences (MS) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web Technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. In this respect, the motivation for digital transformation in materials sciences stemming from the need to handle the ever-increasing volume and complexity of data will be elaborated on. By embracing digital tools and methodologies, researchers can enhance the efficiency, accuracy, and reproducibility of their work. The benefits of digital transformation in materials sciences are manifold, including improved data management, enhanced collaboration, and accelerated innovation. Being a core component of this transformation, ensuring data reliability and reproducibility is critical for the advancement of the field, enabling researchers to build on each other's work with confidence. Implementing FAIR data principles facilitates this by making data more accessible and usable across different platforms and studies. Furthermore, Semantic Web technologies (SWT) and ontologies play a crucial role in achieving these goals. Ontologies, typically consisting of the T-Box (terminological component) and A-Box (assertional component), provide a structured framework for representing knowledge. This presentation will outline the path of ontology creation and the formal transformation procedure, highlighting the various ontology levels that organize data into meaningful hierarchies. Real-world use cases presented, such as the Tensile Test Ontology (TTO) and the Orowan Demonstrator, illustrate the practical applications of these technologies. These examples will demonstrate how ontologies can be leveraged to standardize data and facilitate interoperability between different systems and research groups. Finally, in this presentation, Ontopanel is introduced, a tool designed to aid in the creation and management of ontologies. Ontopanel simplifies the process of developing and maintaining ontologies, making it accessible to researchers and practitioners in the field. By integrating these technologies and principles, the materials science community can move towards a more digital, interconnected, and efficient future making the knowledge and education on these topics very valuable. T2 - MaRDA MaRCN FAIR Train Workshop CY - Washington, DC, USA DA - 29.07.2024 KW - FAIR KW - Metadata KW - Digitalization KW - Data Interoperability KW - Ontology KW - Education KW - Workshop PY - 2024 AN - OPUS4-60720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - On an experimentalist's hard search for free volume N2 - This talk was given in honor of Prof. Frans Spaepen, faculty at Harvard University, at the occasion of his Staudinger Lecture and his honorary doctorate degree reception at ETH Zurich. It covers a 10 year long journey of how an experimentalist probes free-volume effects in metallic glasses. T2 - Symposium in honor of Frans Spaepen Honorary Doctorate ETH Zurich CY - Zurich, Switzerland DA - 08.12.2023 KW - Metallic glass KW - Deformation KW - Shear bands PY - 2023 AN - OPUS4-60717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Probing internal damage in glassy metals N2 - This talk covers strain localization in metallic glasses and how it can be probed non-destructively using acoustic emission and x-ray methods. The results are compared to other methods and contextualized in the context of shear-band dynamics during inhomogeneous flow of metallic glasses. T2 - Seminar Zerstörungsfreie Prüfung TU München 2023 CY - Online meeting DA - 29.06.2023 KW - Metallic glass KW - Deformation KW - Acoustic emission PY - 2023 AN - OPUS4-60718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Temperature-dependent intermittent plasticity of Nb microcrystals N2 - Intermittent microplasticity via dislocation avalanches indicates scale-invariance, which is a paradigm shift away from traditional bulk deformation. Recently, we have developed an experimental method to trace the spatiotemporal dynamics of correlated dislocation activity (dislocation avalanches) in microcrystals (Phys. Rev. Mat. 2 (2018) 120601; Phys. Rev. Mat. 3 (2019) 080601). Here we exploit the temperature sensitive deformation of bcc metals. A marked change of the slip-size distribution is observed in the studied microcrystals, with increasingly small event-sizes dominating with decreasing temperature. This shows how a reduction in thermal energy increasingly suppresses the length-scale of dislocation avalanches, indicating how long-range correlations become gradually limited to the scale of the lattice. Our results further show that the stress-strain response is composed of strain-increments that are either thermally activated or essentially athermal. Temperature-dependent small-scale testing in combination with state-of-the-art discrete dislocation dynamics (DDD) simulations of Nb microcrystals are used to reveal these insights. T2 - MS&T20 Virtual CY - Online meeting DA - 02.11.2020 KW - Microcrystals PY - 2020 AN - OPUS4-60700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Tracing structural dynamics in metallic glasses during cryogenic cycling N2 - Highly unrelaxed structural states of metallic glasses have often advantageous mechanical properties. Since metallic glasses continuously relax with time (age) or inherently are well relaxed after processing, methods to uniformly rejuvenate the material are needed. One approach that has received attention is the so-called cryogenic-cycling method, during which a metallic glass is repeatedly immersed into liquid nitrogen. In some cases, cryogenic cycling is truly efficient in increasing the stored excess enthalpy of metallic glasses, but it does not seem to be universally applicable to all alloys and structural states. The origins for these differences remain unclear due to our limited understanding of the underlying structural evolution. In order to shed more light onto the fundamental structural processes of cryogenic cycling, we pursue in-situ x-ray photon correlation spectroscopy (XPCS) to trace the atomic-scale structural dynamics of a Zr-based metallic glass in two different structural states (ribbon and bulk metallic glass). This method allows calculating the relaxation times as a function of time throughout the thermal cycling. It is found that the investigated glasses exhibit heterogeneous structural dynamics at 300 K, which changes to monotonic aging at 78 K. Cryogenic cycling homogenizes the relaxation time distribution for both structural states. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with long-time average structural relaxation times irrespective of the state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. Overall, a picture emerges that points towards heterogeneities in fictive temperature as a requirement for cryogenic energy storage. T2 - MRS Fall 2020 - Invited Talk CY - Boston, MA, USA DA - 27.11.2020 KW - Relaxation metallic glasses PY - 2020 AN - OPUS4-59542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Management of Reference Data of Creep of Ni-Based Superalloys Exemplified for CMSX-6 N2 - The identification of process-structure-property relationships of materials inevitably requires the combination of research data from different measurements. Therefore, the concepts related to FAIR (findable, accessible, interoperable, reusable) data handling, increasingly reported in literature, are particularly important in the materials science and engineering domain. However, they have not yet been integrated into a single, overarching methodological framework, particularly for reference data. Here, we introduce such a framework, which covers data generation, documentation, handling, storage, sharing, data search and discovery, retrieval, and usage. Furthermore, we prototypically implement it using a real dataset with creep data of a single-crystal CMSX-6 Ni-based superalloy. The implementation is traceable and permanently accessible through open repositories. The individual elements considered in the framework ensure the functionality and usability of the data and, thus, the adherence to the FAIR principles. In conjunction with this, we present a definition for reference data of materials. Our definition underlines particularly the importance of a comprehensive documentation, e.g., on material provenance, data processing procedures, and the software and hardware used, including software-specific input parameters, as these details enable data users or independent parties to assess the quality of the datasets and to reuse and reproduce the results. Reference data that is managed according to the proposed framework can be used to advance knowledge in the materials science and engineering domain, e.g., by identifying new process-structure-property relations. T2 - TMS 2025 Annual Meeting & Exhibition CY - Las Vegas, NV, USA DA - 22.03.2025 KW - Referenzdaten KW - Creep KW - Data schema KW - NFDI-MatWerk PY - 2025 AN - OPUS4-62849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wallis, Theophilus T1 - Density-Based Phase-Field Modeling of Grain Boundary Segregation and Structural Transitions N2 - Polycrystalline materials are central to everyday engineering applications and technological advancements. The mechanical and functional properties of these materials can be influenced either negatively or positively by the presence of grain boundaries (GBs). These properties are interconnected with the structure, chemistry, or a combination of both (referred to as chemo-structure) at the GB. Therefore, an in-depth understanding of GBs, and their associated phenomena is key to tuning these materials properties for desired applications. Nevertheless, the intricate and unique characteristics of GBs impose constraints on their general descriptions in existing models designed for studying and understanding them. In this dissertation, a comprehensive tool, the CALPHAD-integrated density-based phase-field (DPF) model \cite{darvishikamachali2020model}, that harnesses atomic-scale GB characteristics, is employed and extended to reveal a deeper understanding of the GB structure, chemistry, chemo-structural coupling and their potential contributions to GB phenomena such as GB structural (and/or chemo-structural) transitions and liquid metal embrittlement. Although GBs possess distinctive crystallographic properties that render them unique and individualistic, it is important to note that they cannot exist independently; rather, they are made of the same constituents as the corresponding bulk material. To this end, the DPF model uses a continuous atomic density field ($\rho$), derived from atomistic simulations, to characterize the GB with reference to its corresponding homogeneous bulk (grain interior). This perspective allows the DPF model to approximate the GB free energy functional based on available bulk thermodynamic data. The DPF model has been utilized to investigate a variety of systems, form unary to multi-component systems \cite{kamachali2024giant,darvishikamachali2020model,darvishikamachali2020segregation,wang2021density,li2020grain,wang2021incorporating,zhou2021spinodal}. Among several novelties in the elucidation of the thermodynamics and kinetics of GBs, the DPF model has shown that GBs can have their own miscibility gap. It further reveals a temporal co-evolution of low and high segregation levels at the GB, which can act as precursor states for the formation of new phases \cite{kwiatkowskidasilva2018phase, kwiatkowskidasilva2019thermodynamics}. In the recent publication on Fe-Mn \cite{darvishikamachali2020segregation} and in various other works \cite{kamachali2024giant,darvishikamachali2020model,darvishikamachali2020segregation,wang2021density,li2020grain,wang2021incorporating,zhou2021spinodal, ikeda2023segregation, ahmadian2023interstitial} of the DPF model, the variation of atomic density field was allowed normal to the GB plane. At the GB plane, the in-plane GB density $\rho^{GB}$ was treated as a constant average value, representing its intrinsic dependence on the GB nature and misorientation. Although this assumption provides a useful simplification in studying GB phenomena, it does have the drawback of overlooking the significance of the in-plane structure variation. This seems to be particularly central in the view of experimental observations that confirm relatively stable grain boundary composition fluctuation \cite{darvishikamachali2020segregation}. In this thesis, the significance and impact of the atomic structure of GBs on their thermodynamics is investigated. This is achieved in two ways: On one hand, by extending the CALPHAD-integrated density-based free energy functional to account for structural degrees of freedom of GBs, and on the other hand, by deducing and linking density-related GB properties to the GB structure through the results of atomistic simulation of the GBs. Naturally, the structure (atomic density) within the GB plane fluctuates. This variation may also be linked to changes in composition due to solute segregation at the GB. While the fact that the GB structure can undergo transitions (referred to as complexions) \cite{frolov2015segregation, cantwell2020grain, cantwell2014grain} is not entirely new, the quantitative measurements of co-existing GB phases are scarce. Recently, instances were reported where the coexistence of two in-plane GB phases was revealed through the application of high-resolution transmission electron microscopy and atomistic simulation \cite{frommeyer2022dual, meiners2020observations}. To this end, the potential of GB structural variation within the DPF model is introduced in this thesis, where the GB in-plane density $\rho^{GB}$ is described as a field, that can vary both in time and space. This extension enables the in-plane GB density $\rho^{GB}$ to evolve and exhibit two distinct low-energy states, denoted as $\rho^{GB} = \rho_1$ and $\rho^{GB} = \rho_2$, where $\rho_2 > \rho_1$. Separating these two structural states is an in-plane line defect. This way, the model allows the studies of the co-evolution between the chemical and structural states of the GB. As a proof of concept and benchmark study, the extended-DPF model is implemented for studying Fe-Mn system. The results show that the GB structure's capacity to respond to chemical variations, as incorporated in the DPF model, enhances the Mn segregation transition at the GB, even in the absence of any alterations to the GB structure. When the GB structure undergo changes (or is non-uniform), the model reveals a coupling between the GB structure and chemical evolution. The ability of the GB structure to change allows the coexistence of spinodally formed low- and high-Mn phases within the GB during segregation transition. The acquired equilibrium segregation isotherms provides insight into the range of alloy compositions where these GB phases remain stabilised. Moreover, the observations indicate that the tendency of the GB to undergo a structural transition (change) is associated with the energy of the in-plane line defect, between low- and high-density domains within the GB plane. The extended-DPF model is further applied to Zn-coated advanced high strength steels (Fe-Zn systems), where Zn segregation to the GB is known to cause severe performance degradation due to liquid metal embrittlement \cite{razmpoosh2021pathway, ikeda2022early, bhattacharya2018liquid}. The effect of GB type and its chemo-structural coupling on Zn segregation is investigated. The results showed a sharp Zn segregation that is strongly influenced by the nature of the GB itself, as well as the coupling between its chemistry and structure. Additionally, GB phase diagrams were constructed across a wide range of alloy compositions and temperatures. The impact of the GB type and chemo-structural coupling on the miscibility gap of GBs is discussed. The DPF model's ability to incorporate atomic-scale characteristics into the construction of Gibbs free energies at the mesoscale ensures it retains key physical insights when predicting microstructure properties. To this end, a robust investigation of the model’s parameters and outputs in comparison to atomistic simulations of GBs is presented. This not only serves as a gauge for the models reliability, but also provide a new framework in establishing an atomistically-informed density-based description of GBs. First, by examining a large dataset of GBs in BCC-Fe and -Mo from atomistic simulations, a connection between their discrete atomic structure and the continuous atomic density function $\rho$ is established. This is achieved by a systematic coarse-graining approach wherein an atomsitically-obtained density function (delta function) is substituted with a normalised Gaussian function, so that, a smooth and continuous atomic density profile in real space can be obtained, where the minimum is the average atomic density at the GB plane $\rho^{GB}$. The investigation revealed a linear proportional relationship between the GB excess free volume and $\rho^{GB}$. This correlation simplifies the computation of the excess free volume as the integration over the portion of the density profile where the atomic density is less than one. Furthermore, the GB energies calculated by atomistic simulations revealed a correlation with $\rho^{GB}$ for certain classification of GB types, therefore enhancing the model's predictive accuracy. Concurrently, the atomic-scale characteristics of GBs can be further harnessed in the DPF models by replacing the simple functional form of the potential energy as given in the original DPF model formulation with a material specific interatomic potential (expressed as a function of the atomic density $\rho$) from molecular dynamic simulations. This way, a reliable prediction of the atomic density gradient energy coefficient for mesoscale simulations can be obtained. KW - Grain boundary structure KW - Grain boundary chemistry KW - Density-based phase-field modelling KW - Grain boundary thermodynamics KW - Grain boundary segregation transition PY - 2025 SP - 1 EP - 134 CY - Aachen AN - OPUS4-64455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Semantic Technologies in Action: Integrating Mechanical and Microstructure Data in MSE N2 - Semantic technologies (ST) are a powerful tool for storing, processing, and querying data in a contextualized and interoperable manner. They enable machine-actionable and human-readable knowledge representations essential for advanced data management, retrieval, and reuse. As one of the key factors within the frame of the collaborative project platform MaterialDigital (PMD), the establishment of a virtual material data space and the semantic modeling of hierarchical, process-dependent material data is aimed at to serve as best-practice examples of knowledge representation through ontologies and knowledge graphs. In this presentation, the application of ST to a specific use case from the field of materials sciences and engineering (MSE) is demonstrated: the integration and analysis of data related to a 2000 series age-hardenable aluminum alloy. By semantically representing mechanical and microstructural data obtained from tensile tests and dark-field transmission electron microscopy across various aging times, an expandable knowledge graph was constructed that is aligned with the PMD Core Ontology (PMDco) and enriched through the Tensile Test (TTO) and Precipitate Geometry Ontologies. This semantically integrated dataset enables advanced analytical capabilities via SPARQL queries and reveals microstructure–property relationships consistent with the well-known Orowan mechanism. The approach highlights the potential of semantic data integration to support FAIR data principles and to foster a more data-centric and interoperable research infrastructure in MSE. T2 - MSE Research Data Forum 2025 CY - Siegburg, Germany DA - 08.07.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability PY - 2025 AN - OPUS4-63666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fotheringham, U. T1 - Digitalization of Glass Development N2 - Im Vortrag werden erste Ergebnisse aus dem vom BMFTR im Rahmen der MaterialDigital Initiative geförderten Projekt „GlasAgent“ vorgestellt, welches die Glasentwicklung mittels KI vorantreiben soll. In diesem Projekt werden mehrere Entwicklungszyklen inklusive des Recyclingprozesses durchlaufen und die Ergebnisse genutzt, um Datenbanken und Modelle zu verbessern. Mit diesen verknüpft und basierend auf der semantischen GlasDigital-Ontologie soll zukünftig ein Chatbot die Glasentwicklung schneller, präziser und nachhaltiger gestalten. T2 - PMD Vollversammlung CY - Berlin, Germany DA - 26.11.2025 KW - Glass KW - Workflow KW - Automation KW - MAP KW - Ontology KW - Simulation KW - Database PY - 2025 AN - OPUS4-65039 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - IUC02: Framework for Curation & Distribution of Reference Datasets (On the example of Creep Data of Ni Based superalloys) N2 - A research data management framework to conceptualize & implement a digital infrastructure for the Generation, Distribution, and Utilization of reference datasets of materials is presented. The documentation of the test data is often incomplete. This concerns, e.g., material’s manufacturing process or chemical composition, or test equipment’s description and its calibration status. Our concept addresses this issue by proposing the implementation of a requirements profile. A crucial part of the concept is to reach a community-agreement on the definition of reference data and on the underlying data schema and vocabulary. In this presentation a general workflow overview and the relevance of selected individual subworkflows is presented. T2 - MSE Research Data Forum 2025 CY - Siegburg, Germany DA - 08.07.2025 KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen PY - 2025 AN - OPUS4-64881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -