TY - JOUR A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Maaß, Robert A1 - Deubener, J. A1 - Müller, Ralf T1 - Internal nucleation tendency and crystal surface energy obtained from bond energies and crystal lattice data N2 - We present an easy-to-apply method to predict structural trends in the internal nucleation tendency of oxide glasses. The approach is based on calculated crystal fracture surface energies derived from easily accessible diatomic bond energy and crystal lattice data. The applicability of the method is demonstrated on literature nucleation data for isochemically crystallizing oxide glasses. KW - Glass KW - Nucleation tendency KW - Fracture surface energy KW - Crystal lattice KW - Bond energy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548814 DO - https://doi.org/10.1016/j.nocx.2022.100093 SN - 2590-1591 VL - 14 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-54881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Seamless Science in Platform MaterialDigital (PMD): Demonstration of Semantic Data Integration as Good Practices N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented on a prototypical basis which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this poster presentation illustrates demonstrators developed and deployed within the PMD project. Semantically anchored using the mid-level PMD Core Ontology (PMDco), they address data transformation leading to a novel data management which is based on semantic integrated data. The PMD data acquisition pipeline (DAP), which is fueled by traditional, diverse data formats, and a pipeline applying an electronic laboratory notebook (ELN) as data source are displayed. Additionally, the efficient combination of diverse datasets originating from different sources is demonstrated by the representation of a use case dealing with the well-known Orowan relation. T2 - Materials Science and Engineering Congress 2024 CY - Darmstadt, Germany DA - 24.09.2024 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Demonstrators PY - 2024 AN - OPUS4-61136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzer, Marco A1 - Johansen, Sidsel M. A1 - Christensen, Johan F.S. A1 - Smedskjaer, Morten M. A1 - Cicconi, Maria Rita A1 - de Ligny, Dominique A1 - Müller, Ralf A1 - de Camargo, Andrea S.S. A1 - Maaß, Robert T1 - Direct connection between secondary relaxation mode and fracture toughness in alkali-aluminosilicate glasses N2 - Oxide glasses are intrinsically brittle, lacking sufficient atomic-scale mechanisms that can relax mechanical stresses in the vicinity of a propagating crack. As a result, fracture is typically well-captured by considering local bond rupture at the crack tip. Here we demonstrate that barrier energies related to the low-temperature 𝛾-relaxation mode in alkali-aluminosilicate glasses are inversely related to the fracture toughness measured via standardized three-point bending fracture experiments. This holds true for both a series with varying cations (Li, Na, K) and one with varying Li concentration. The structural rationale for this finding is gained via Raman spectroscopy. The findings suggest that a fundamental structural relaxation mode measured on bulk specimens can serve as an effective guideline for fracture toughness of oxide glasses. Data for additional silicate glasses support this conclusion. KW - Fracture toughness KW - Oxide glass KW - Mechanical properties KW - Alkali-aluminosilicate glasses KW - Internal friction PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651540 DO - https://doi.org/10.1016/j.mtadv.2025.100669 SN - 2590-0498 VL - 29 SP - 1 EP - 10 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-65154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moschetti, Michael A1 - Lemiasheuski, Anton A1 - Bajer, Evgenia A1 - Porohovoj, Ilja A1 - Göbel, Artur A1 - Pfennig, Anja A1 - Bettge, Dirk A1 - Maaß, Robert T1 - Robot-Assisted Automated Serial-Sectioning and Imaging for 3D Microstructural Investigations N2 - Comprehensive materials characterization requires precise structural knowledge beyond traditional methods. The robot-assisted automated serial-sectioning and imaging (RASI) platform, developed at BAM, provides automated 3D metallographic reconstructions, enabling detailed microstructural analysis of technical materials. This article showcases RASI’s capabilities through several case studies, including characterization of lamellar graphite in gray cast iron, porosity in sintered steel, melt pool morphology in additively manufactured 316L stainless steel, defects in metal-ceramic packages, and oxidation behavior in an Fe-12Cr-2Co alloy. By automating sample handling, mechanical serial-sectioning, etching, and optical imaging, RASI captures complex 3D microstructures with high precision and at high speed. This approach reveals microstructural features missed by 2D analysis, even using stereological assumptions. Specifically, statistically rare and large microstructural features, such as secondary phases or interconnected pores, become apparent, which 2D methods cannot reveal. The generated volumetric data can furthermore serve as quantitative reference datasets (i.e., the ‘ground truth’) essential for validating other 3D characterization techniques and computational models, helping to bridge the gap between predictive simulations and real-world material behavior. RASI’s modular design makes it a flexible tool that provides realistic 3D insights into materials, which can be used for advanced materials research, process optimization, and quality control. KW - 3D metallography KW - Automated microstructure characterization KW - Image segmentation KW - Mechanical polishing based serial-sectioning KW - Process-microstructure-property relationships KW - Quantitative microstructure PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649614 DO - https://doi.org/10.1002/adem.202502202 SN - 1527-2648 VL - 28 IS - 2 SP - 1 EP - 14 PB - Wiley-VCH GmbH AN - OPUS4-64961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Wallis, Theophilus A1 - Maaß, Robert A1 - Darvishi Kamachali, Reza T1 - Thermodynamics of grain boundary segregation transition and their relevance for liquid metal embrittlement in Fe-Zn system N2 - Grain boundaries (GBs) are common sites of failure in polycrystalline materials. Recently, a massive Zn segregation transition at Fe GBs was discovered and shown to act as a potent precursor of liquid metal embrittlement (LME) in the Fe-Zn system (Kamachali et al., Scripta Materialia 238 (2024) 115758). In this study, we elaborate on how temperature, GB type and the chemo-structurally coupled phase decomposition at the GB impact this segregation transition. CALPHAD and atomistic simulation data were utilized as inputs to conduct quantitative density-based thermodynamic modeling and phase-field simulations across various GBs, alloy compositions, and temperatures. We reveal that once the segregation transition becomes possible, the GB structural variation stabilizes spinodally formed Zn-rich phases within the GB region, with a higher tendency in disordered GBs. GB phase diagrams were constructed to identify and analyze the range of critical temperatures and alloy compositions associated with the segregation transition. The phase diagrams reveal that the miscibility gap for more disordered GB expands and, although the segregation transition is inevitable and occurs for all GBs, the barrier to triggering it is lower for more disordered GBs. Based on our thermodynamic analyses, potential processing modifications and GB engineering strategies for mitigating segregation-induced LME are thoroughly discussed. KW - Thermodynamics KW - Phase-Field Modelling KW - Steels PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634145 DO - https://doi.org/10.1016/j.actamat.2025.121134 SN - 1359-6454 VL - 296 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-63414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chang, Yen-Ting A1 - Sharda, Abhi A1 - Rosalie, Julian M. A1 - Maaß, Robert A1 - Charpagne, Marie A. T1 - A bcc refractory high-entropy alloy: the ideal case of smooth plastic flow N2 - Single crystalline metals exhibit correlated dislocation dynamics, irrespective of lattice system. This collective evolution of dislocation structures is intermittent and scale-free, implying divergent length scales that play a critical role in failure initiation and therefore microstructural design. Here we report on a HfNbTaTiZr refractory high-entropy alloy, that lacks criticality in the collective dislocation response. This unusual behaviour manifests itself in almost quenched-out microplastic stress-strain fluctuations and sluggish dislocation avalanching, otherwise only seen in complex engineering alloys. These findings demonstrate how the high-entropy paradigm can serve as a role model to effectively suppress unwanted plastic fluctuations in metals deformation. KW - Plasticity KW - Dislocations KW - Avalanches KW - Refractory high-entropy alloys PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630241 DO - https://doi.org/10.1080/21663831.2025.2497860 SN - 2166-3831 SP - 1 EP - 8 PB - Taylor & Francis Group AN - OPUS4-63024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Riechers, Birte A1 - Maaß, Robert A1 - Michalchuk, Adam A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Beyond conventional calorimetry: Unlocking thermal characterization with fast scanning techniques N2 - Fast scanning calorimetry (FSC) has emerged as a transformative technique in thermal analysis, enabling the investigation of rapid and kinetically driven thermal transitions that are inaccessible to conventional differential scanning calorimetry. This review highlights the capabilities enabled by FSC for studying a wide range of materials under extreme thermal conditions, including polymers, pharmaceuticals, metallic glasses, nanocomposites, and hydrogels. By employing ultrafast heating and cooling rates, FSC allows for the suppression of crystallization, resolution of weak transitions, and analysis of thermally labile or size-limited samples. The technique is particularly valuable for probing glass transitions, relaxation phenomena, and phase behavior in systems with complex morphologies or confined geometries. Case studies demonstrate the use of FSC in characterizing vitrification, physical aging, and interfacial dynamics, as well as its application in emerging fields such as additive manufacturing, supramolecular systems, and neuromorphic materials. Together, these examples underscore the role that FSC plays in advancing the understanding of structure-property relationships across diverse material classes. KW - Flash DSC KW - Calorimetry KW - Glass transition PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647405 DO - https://doi.org/10.1016/j.tca.2025.180177 VL - 754 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-64740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qu, R. A1 - Maaß, Robert A1 - Liu, Z. A1 - Tönnies, D. A1 - Tian, L. A1 - Ritchie, R. A1 - Zhang, Z. A1 - Volkert, A. T1 - Flaw-insentive fracture of a micrometer-sized brittle metallic glass N2 - Brittle materials, such as oxide glasses, are usually very sensitive to flaws, giving rise to a macroscopic fracture strength that is much lower than that predicted by theory. The same applies to metallic glasses (MGs), with the important difference that these glasses can exhibit certain plastic strain prior to catas- trophic failure. Here we consider the strongest metallic alloy known, a ternary Co 55 Ta 10 B 35 MG. We show that this macroscopically brittle glass is flaw-insensitive at the micrometer scale. This discovery emerges when testing pre-cracked specimens with self-similar geometries, where the fracture stress does not de- crease with increasing pre-crack size. The fracture toughness of this ultra-strong glassy alloy is further shown to increase with increasing sample size. Both these findings deviate from our classical under- standing of fracture mechanics, and are attributed to a transition from toughness-controlled to strength- controlled fracture below a critical sample size. KW - Metallic glass KW - Fracture toughness KW - Size effect KW - Small-scale PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117219 VL - 218 PB - Elsevier Ltd. AN - OPUS4-53097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Structural dynamics in metallic glasses due to Thermal and Mechanical Stress N2 - This talk addresses aging induced property changes of metallic glasses. Priority is given thermally and mechanically induced structural changes, of which the time-dependent dynamics is tracked using coherent scattering. Strong intermittency is observed and accelerated transport is seen at the smallest applied stresses. These findings have significant implications for how metallic glass components respond in realistic service conditions. T2 - Seminar Universität Münster 2020 CY - Münster, Germany DA - 01.12.2020 KW - Metallic glasses KW - Structure PY - 2020 AN - OPUS4-60714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, C. A1 - Ikeda, Yuki A1 - Maaß, Robert T1 - Strain-dependent shear-band structure in a Zr-based bulk metallic glass N2 - This work presents strong evidence for structural damage accumulation as a function of shear strain admitted by shear bands in a Zr-based bulk metallic glass. Analyzing the shear-band structure of shear- band segments that experienced shear strains covering four orders of magnitude with high-angle annular dark field transmission electron microscopy (HAADF-STEM) reveals strongly scattered data with on overall trend of increasing local volume dilatation with increasing shear strain. Locally, however, a variety of trends is observed, which underlines the strong heterogeneity of structural damage in shear bands in metallic glasses. KW - Transmission electron microscopy KW - Metallic glass KW - Shear bands KW - Shear-band structure KW - Shear strain PY - 2021 DO - https://doi.org/10.1016/j.scriptamat.2020.08.030 VL - 190 SP - 75 EP - 79 PB - Elsevier Ltd. AN - OPUS4-52454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -