TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521517 DO - https://doi.org/10.1371/journal.pone.0246511 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prošek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Terryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - Corrosion challenges towards a sustainable society N2 - A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate‐resilient energy systems and infrastructures brings with it a long‐term direction, so as a result the long‐term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind “Corrosion Challenges Towards a Sustainable Society” presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics. KW - Corrosion KW - Corrosion costs KW - Corrosion protection KW - Preventive strategies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554801 DO - https://doi.org/10.1002/maco.202213140 SN - 1521-4176 VL - 73 IS - 11 SP - 1730 EP - 1751 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, Juan-Carlos A1 - Facchini, Leonardo A1 - Wilbig, Janka A1 - Zocca, Andrea A1 - Stoll, Enrico A1 - Günster, Jens T1 - Melt Pool Stability during Local Laser Melting of Lunar Regolith with Large Laser Spots and Varying Gravity N2 - In order to increase the sustainability of future lunar missions, techniques for in-situ resource utilization (ISRU) must be developed. In this context, the local melting of lunar dust (regolith) by laser radiation for the production of parts and larger structures was investigated in detail. With different experimental setups in normal and microgravity, laser spots with diameters from 5 mm to 100 mm were realized to melt the regolith simulant EAC-1A and an 80%/20% mixture of TUBS-T and TUBS-M, which are used as a substitute for the actual lunar soil. In the experiments performed, the critical parameters are the size of the laser spot, the velocity of the laser spot on the surface of the powder bed, the gravity and the wettability of the powder bed by the melt. The stability of the melt pool as a function of these parameters was investigated and it was found that the formation of a stable melt pool is determined by gravity for large melt pool sizes in the range of 50 mm and by surface tension for small melt pool sizes in the range of a few mm. KW - Additive Manufacturing KW - Regolith KW - Laser melting KW - ISRU PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639621 DO - https://doi.org/10.1016/j.amf.2025.200227 SN - 2950-4317 VL - 4 IS - 3 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-63962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orlov, Nikolai A1 - Kiseleva, A. K. A1 - Milkini, P. A. A1 - Evdokimov, P. V. A1 - Putlayev, V. I. A1 - Günster, Jens T1 - Potentialities of Reaction Sintering in the Fabrication of High-Strength Macroporous Ceramics Based on Substituted Calcium Phosphate N2 - Calcium alkali metal (potassium and sodium) double and triple phosphates have been synthesized in different ways. Was for the first time used reaction sintering to produce ceramics based on calcium alkali metal mixed phosphates and investigated the densification behavior of mixed phosphate-based multiphase materials during sintering by this method. Was presented the microstructure of polished surfaces of sintered samples differing in phase composition and determined the density of ceramics prepared using reaction mixtures differing in composition. The effect of reaction sintering on the porosity of the ceramics has been assessed. Using stereolithographic printing and reaction sintering, was produced macroporous mixed Calcium phosphate-based ceramic implants. Their compressive strength has been determined to be 0.78 ± 0.21 MPa for two-phase samples and 1.02 ± 0.13 MPa for three-phase samples. KW - Reaction Sintering KW - Bio Ceramics PY - 2020 DO - https://doi.org/10.1134/s0020168520120146 VL - 56 IS - 12 SP - 1298 EP - 1306 PB - Pleiades Publishing LTD AN - OPUS4-52004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing N2 - In additive manufacturing the powder bed based processes binder jetting and powder bed fusion are increasingly used also for the production of ceramics. Final part properties depend to a high percentage on the powder bed density. Therefore, the aim is to use the best combination of powder deposition method and powder which leads to a high packing of the particles. The influence of flowability, powder properties and deposition process on the powder bed density is discussed and the different deposition processes including slurry-based ones are reviewed. It turns out that powder bed density reached by slurry-based layer deposition exceeds conventional powder deposition, however, layer drying and depowdering are extra steps or more time-consuming for the slurry route. Depending on the material properties needed the most suitable process for the part has to be selected. KW - Additive Manufacturing KW - Powder-based processes KW - Powder bed density PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534992 DO - https://doi.org/10.1016/j.oceram.2021.100191 VL - 8 SP - 100191 PB - Elsevier Ltd. AN - OPUS4-53499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cestari, F. A1 - Yang, Y. A1 - Wilbig, Janka A1 - Günster, Jens A1 - Motta, A. A1 - Sglavo, V. T1 - Powder 3D printing of bone scaffolds with uniform and gradient pore sizes using cuttlebone-derived calcium phosphate and glass-ceramic N2 - The pore geometry of bone scaffolds has a major impact on their cellular response; for this reason, 3D printing is an attractive technology for bone tissue engineering, as it allows for the full control and design of the porosity. Calcium phosphate materials synthesized from natural sources have recently attracted a certain interest because of their similarity to natural bone, and they were found to show better bioactivity than synthetic compounds. Nevertheless, these materials are very challenging to be processed by 3D printing due to technological issues related to their nanometric size. In this work, bone scaffolds with different pore geometries, with a uniform size or with a size gradient, were fabricated by binder jetting 3D printing using a biphasic calcium phosphate (BCP) nanopowder derived from cuttlebones. To do so, the nanopowder was mixed with a glass-ceramic powder with a larger particle size (45–100 µm) in 1:10 weight proportions. Pure AP40mod scaffolds were also printed. The sintered scaffolds were shown to be composed mainly by hydroxyapatite (HA) and wollastonite, with the amount of HA being larger when the nanopowder was added because BCP transforms into HA during sintering at 1150 ◦C. The addition of bio-derived powder increases the porosity from 60% to 70%, with this indicating that the nanoparticles slow down the glass-ceramic densification. Human mesenchymal stem cells were seeded on the scaffolds to test the bioactivity in vitro. The cells’ number and metabolic activity were analyzed after 3, 5 and 10 days of culturing. The cellular behavior was found to be very similar for samples with different pore geometries and compositions. However, while the cell number was constantly increasing, the metabolic activity on the scaffolds with gradient pores and cuttlebone-derived powder decreased over time, which might be a sign of cell differentiation. Generally, all scaffolds promoted fast cell adhesion and proliferation, which were found to penetrate and colonize the 3D porous structure. KW - Bioactivity KW - Cuttlefish KW - Biphasic calcium phosphate KW - Binder jetting KW - Scaffold geometry KW - Hausner ratio PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553627 DO - https://doi.org/10.3390/ma15155139 SN - 1996-1944 VL - 15 IS - 15 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, J. A1 - Agea Blanco, B. A1 - Bruno, Giovanni A1 - Günster, Jens A1 - Zocca, Andrea T1 - Self-Organization Postprocess for Additive Manufacturingin Producing Advanced Functional Structure and Material N2 - Additive manufacturing (AM) is developing rapidly due to itsflexibility in producing complex geometries and tailored material compositions. However, AM processes are characterized by intrinsic limitations concerning their resolution and surface finish, which are related to the layer-by-layer stacking process. Herein, a self-organization process is promoted as an approach to improve surface quality and achieve optimization of 3D minimal surface lightweight structures. The self-organization is activated after the powder bed 3D printing process via local melting, thereby allowing surface tension-driven viscous flow.The surface roughness Ra (arithmetic average of the roughness profile) could bedecreased by a factor of 1000 and transparent lenses and complex gyroid structures could be produced for demonstration. The concept of self-organization is further elaborated by incorporating external magnetic fields to intentionally manipulate magnetic particles, which are mixed with the polymer before printing and self-organization. This concept can be applied to develop programmable materials with specific microtextures responding to the external physical conditions. KW - Additive Manufacturing KW - Self-organization KW - Triply Periodical Minimal Surface PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540588 DO - https://doi.org/10.1002/adem.202101262 VL - 24 IS - 6 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-54058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stinville, J.C. A1 - Charpagne, M.A. A1 - Maaß, Robert A1 - Proudhon, H. A1 - Ludwig, W. A1 - Callahan, P.G. A1 - Wang, F. A1 - Beyerlein, I.J. A1 - Echlin, M.P. A1 - Pollock, T.M. T1 - Insights into Plastic Localization by Crystallographic Slip from Emerging Experimental and Numerical Approaches N2 - Advanced experimental and numerical approaches are being developed to capture the localization of plasticity at the nanometer scale as a function of the multiscale and heterogeneous microstructure present in metallic materials. These innovative approaches promise new avenues to understand microstructural effects on mechanical properties, accelerate alloy design, and enable more accurate mechanical property prediction. This article provides an overview of emerging approaches with a focus on the localization of plasticity by crystallographic slip. New insights into the mechanisms and mechanics of strain localization are addressed. The consequences of the localization of plasticity by deformation slip for mechanical properties of metallic materials are also detailed. KW - Slip localization KW - Metallic materials KW - Experimental and numerical techniques KW - Mechanical properties KW - Plasticity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578398 DO - https://doi.org/10.1146/annurev-matsci-080921-102621 SN - 1531-7331 VL - 53 SP - 275 EP - 317 AN - OPUS4-57839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Ni, H.C. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J.M. A1 - Darvishi Kamachali, Reza A1 - Maaß, Robert T1 - Segregation-induced grain-boundary precipitation during early stages of liquid-metal embrittlement of an advanced high-strength steel N2 - Liquid-metal embrittlement (LME) of galvanized (Zn-coated) advanced high-strength steels is a long-known problem in materials science. Here we reveal the initial microstructural processes underneath the Zn-coating that lead to LME-microcrack initiation in the steel substrate. We track the microstructural evolution during the first tens of milliseconds and find pronounced signatures of Fe-Zn intermetallic precipitation in both ferrite grain boundaries and at internal ferrite-oxide phase boundaries. In concert with novel CALPHAD-integrated density-based thermodynamic modelling, we demonstrate that Zn-rich intermetallic phase-nucleation can occur at markedly low processing temperatures due to a segregation transition. We show that a small Znenrichment caused by Zn bulk-diffusion during the initial temperature rise in a joining process is sufficient to induce the segregation transition and subsequent nucleation of Fe-Zn intermetallic grain-boundary phases, which the experiments link to crack initiation sites. These findings direct focus onto LME-controlling microstructural and thermodynamic phenomena at temperatures below the ductility trough and the austenite formation temperature. KW - Resistance spot welding KW - Liquid-metal embrittlement KW - Steels KW - Grain boundaries PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581067 DO - https://doi.org/10.1016/j.actamat.2023.119243 VL - 259 SP - 1 EP - 12 PB - Elsevier Ltd AN - OPUS4-58106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - McElfresh, C. A1 - Sparks, G. A1 - Stauffer, D. A1 - Marian, J. A1 - Maaß, Robert T1 - Mild-to-wild plastic transition is governed by athermal screw dislocation slip in bcc Nb N2 - Plastic deformation in crystals is mediated by the motion of line defects known as dislocations. For decades, dislocation activity has been treated as a homogeneous, smooth continuous process. However, it is now recognized that plasticity can be determined by longrange correlated and intermittent collective dislocation processes, known as avalanches. Here we demonstrate in body-centered cubic Nb how the long-range and scale-free dynamics at room temperature are progressively quenched out with decreasing temperature, eventually revealing intermittency with a characteristic length scale that approaches the Burgers Vector itself. Plasticity is shown to be bimodal across the studied temperature regime, with conventional thermally-activated smooth plastic flow (‘mild’) coexisting with sporadic Bursts (‘wild’) controlled by athermal screw dislocation activity, thereby violating the classical Notion of temperature-dependent screw dislocation motion at low temperatures. An abrupt increase of the athermal avalanche component is identified at the critical temperature of the material. Our results indicate that plasticity at any scale can be understood in terms of the coexistence of these mild and wild modes of deformation, which could help design better alloys by suppressing one of the two modes in desired temperature Windows. KW - Plastic deformation KW - Microplastic stress KW - Intermittent microplasticity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543927 DO - https://doi.org/10.1038/s41467-022-28477-4 VL - 13 IS - 1 SP - 1 EP - 9 PB - Nature AN - OPUS4-54392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -