TY - GEN A1 - Thuy, Maximilian A1 - Brauch, N. A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Böhning, Martin T1 - Environmental Stress Cracking of PE-HD Induced by Liquid Test Media Representing Crop Protection Formulations N2 - Packaging containers for dangerous goods that include aggressive liquids require that any packaging material that is based on high-density polyethylene has a high degree of stability and durability. This work is focused on testing the environmental stress cracking of the high-density polyethylenes used for such containers in contact with crop protection formulations, in particular, two model liquids established in Germany as standardized test media representatives for crop protection formulations containing the various admixtures typical for such products. One of the liquids is water-based and contains mostly surface-active ingredients, while the other is solvent-based and includes some emulsifiers. Originally established for pin impression tests, these model liquids and their individual components were here used for the first time as environmental media in the Full Notch Creep Test, which addresses the resistance against environmental stress cracking. The Full Notch Creep Test was carried out on five high-density polyethylene types with both model liquids, and also on one selected material with its components. The evaluation was focused on the fracture surface structures, which were visualized by a scanning electron microscope and by optical in situ imaging of the notch opening. While the water-based model liquid and its surface-active individual components induced environmental stress cracking with the characteristic pattern for a craze-crack mechanism and so-called brittle fracture on the surface, the solvent-based model liquid and its soluble ingredients exhibited rather ductile failure behavior, caused by the plasticizing effect on the polymer that reduced the yield stress of the high-density polyethylene. For both cases, fracture surface analysis, together with side views of the crack opening, showed a clear relation between surface pattern, notch deformation (e.g., by blunting), or crack opening due to crack growth with time to failure and the solubility of the liquids in high-density polyethylene. KW - Environmental stress cracking KW - Fracture surface KW - Full Notch Creep Test KW - Crop protection formulations KW - High-density polyethylene PY - 2023 DO - https://doi.org/10.1520/STP164320210095 SP - 317 EP - 341 PB - ASTM International CY - West Conshohocken, PA (USA) AN - OPUS4-57459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian T1 - Umgebungsbedingter Spannungsriss: Gefahr für Kunststoffbauteile unter Medieneinfluss N2 - Polyethylen hoher Dichte (PE-HD) ist ein weit verbreitetes Material für Transportbehälter, die oft für eine längere Nutzungsdauer vorgesehen sind. Insbesondere in diesem Fall können mikroskopische Schäden im Material auch weit unterhalb der Streckgrenze auftreten, die durch eine Spannungskonzentration verursacht werden, deren Ursprung in intrinsischen Materialfehlern oder äußeren Kratzern liegt. Mit fortschreitender Schädigung bilden sich Rissstrukturen, die von verstreckten Fibrillen aufgespannt werden, bis es zum Versagen dieser Fibrillen kommt und sich der Riss ausbreitet. Dieser Schadensmechanismus des langsamen Risswachstums kann durch eine Vielzahl von Umgebungsmedien beschleunigt werden und wird dann als "environmental stress cracking" (ESC) bezeichnet. Eine international normierte Methode zur Validierung der Spannungsrissbeständigkeit von PE-HD Materialien ist der „Full Notch Creep Test“ (FNCT). Anhand von Bruchflächenauswertungen mittels Rasterelektronenmikroskopie und Laser-Scanning-Mikroskopie, werden die typischen Schädigungsstrukturen des ESC sichtbar. Die fibrillierten Strukturen des ESC auf der Bruchfläche von PE-HD ergeben sich besonders bei oberflächenaktiven wässrigen Umgebungsmedien. In Lösungsmittel-Umgebungsmedien, im Zusammenspiel mit PE-HD, kommt es aufgrund der plastifizierenden Wirkung zur Herabsetzung der Streckspannung und Bruchflächen aus dem FNCT veranschaulichen keine signifikanten Anzeichen des Schädigungsmechanismus ESC. T2 - 47. VDI-Jahrestagung Schadensanalyse 2021- Mediale und klimatische Beanspruchung von polymeren Produkten CY - Würzburg, Germany DA - 06.10.2021 KW - Umgebungsbedingter Spannungsriss KW - Polyethylen hoher Dichte KW - Full Notch Creep Test KW - Lösungsmittel KW - Oberflächenaktive wässrige Medien KW - Bruchflächenauswertung PY - 2021 AN - OPUS4-53665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Alig, I. T1 - Charakterisierung von Behälterwerkstoffen aus Polyethylen N2 - Das langsame Risswachstum (slow crack growth, SCG) sowie der umgebungsbedingte Spannungsriss (environmental stress cracking, ESC) sind relevante Schädigungsmechanismen für teilkristalline Werkstoffe auf Basis von Polyethylen hoher Dichte (PE-HD). Der Vortrag gibt einerseits einen Überblick über die grundlegenden Struktur-Eigenschafts-Beziehungen in diesem Kontext, andererseits werden auch verschiedene praxisorientierte Prüfverfahren vorgestellt. Letztere wurden in gemeinsamen Forschungsprojekten von BAM und LBF mit dem Schwerpunkt Gefahrgutbehälter bzw. Pflanzenschutzmittel vergleichend untersucht und durch weitergehende Analytik ergänzt. T2 - 16. Tagung des Arbeitskreises Polymeranalytik Webkonferenz, Fraunhofer LBF und FGK CY - Online meeting DA - 22.03.2022 KW - Polyethylen KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Spannungsriss PY - 2022 AN - OPUS4-54547 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian T1 - Damage progression of environmental stress cracking affected by manufacturing process-induced microstructural orientation N2 - Currently, the Full Notch Creep Test (FNCT) [1] method is used by material suppliers and end users in industry for the approval of container and pipe materials based on high-density polyethylene (PE-HD). The resistance to environmental stress cracking (ESC) of the material is evaluated using the time to failure of the specimen in an aqueous solution of a detergent [2, 3]. Usually specimens made of sheets with isotropic material properties, manufactured by hot pressing, are employed in order to obtain intrinsic properties of the material in terms of ESC failure. In contrast, the processes used in manufacturing to form containers and pipes, such as extrusion blow molding or extrusion, impose anisotropic properties to the material. These are mostly due to a microstructural orientation (polymer chains or crystallites) [4]. Furthermore, the different cooling conditions significantly affect the size distribution of crystallites as well as the overall morphology. It is therefore essential to understand the influence of process-induced material characteristics on failure due to ESC. A large number of studies on material properties as a function of microstructural preferential orientation have already been conducted [5-7]. However, effects on ESC as the major failure mechanism of containers and pipes are still rather unexplored [8, 9]. The most important factor is whether primarily intramolecular high-strength covalent bonds or the substantially weaker intermolecular van der Waals forces are predominantly loaded. In addition to the widely established classification by time to failure, the strain or crack opening displacement (COD) provides valuable information about the evolution and progression of damage as a function of time [10, 11]. Optical strain measurement using digital image correlation allows the differences in COD for isotropic and different angles of orientation of anisotropic specimens to be discussed. Also, a post-fracture surface analysis provides clarification on the craze-crack mechanism of the ESC. These different ESC-related properties of extruded and hot-pressed specimens have been investigated at different environmental medium temperatures and different initial stresses to provide a broad characterization of the fracture behavior of PE-HD. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - High-density polyethylene KW - Fracture behavior KW - Microstructural orientation PY - 2021 AN - OPUS4-53400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Modernizing FNCT data handling in polymer labs: Towards efficient management N2 - A streamlined Python-based workflow for transforming Full-Notch Creep Test (FNCT) data into organized, machine-actionable formats is presented. The workflow automates the conversion of raw FNCT data from classic CSV and Excel files into structured outputs that facilitate future semantic integration. Emphasizing practical data handling, the approach includes automation scripts for efficient data extraction, transformation, and storage, which culminate in well-ordered files. This transformation paves the way for potential semantic data integration and facilitates access for users with varying levels of digital experience to enhanced data management in polymer research and testing. KW - PE-HD KW - Full-Notch Creep Test (FNCT) KW - Environmental Stress Cracking (ESC) KW - Data Interoperability KW - FAIR Data KW - Semantic Data PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637826 DO - https://doi.org/10.1016/j.commatsci.2025.114085 SN - 0927-0256 VL - 259 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-63782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Semantic Technologies for Digital Transformation in Materials Science: From PMDco to Prototypical Applications N2 - The digital transformation of Materials Science and Engineering (MSE) is accelerating the adoption of structured, interoperable, and FAIR data practices, in particular with respect to an advanced research data management. Semantic technologies play a pivotal role in this transformation, as the enable the integration, contextualization, and automation of diverse data sources across experimental, computational, and simulation domains. Central to these efforts is the Platform MaterialDigital Core Ontology (PMDco), now in version 3.0, which provides a robust mid-level semantic framework tailored for MSE. PMDco bridges abstract high-level ontologies, such as the Basic Formal Ontology (BFO) standardized in ISO/IEC 21838-2, with domain-specific terminologies to ensure consistency and interoperability across applications. This presentation explores the application of PMDco and its integration into workflows within the Platform MaterialDigital (PMD) initiative. Through its deployment in electronic laboratory notebooks (ELNs), PMDco enables semantic representation of experimental data, such as tensile test results compliant with ISO 6892-1:2019-11, transforming them into machine-actionable knowledge graphs. Prototypical implementations demonstrate how semantic technologies enhance laboratory processes, improve data reuse, and streamline documentation which offers opportunities for automation and education. Further extending its versatility, PMDco serves as a linking point for semantically representing simulation data, enabling comprehensive integration of experimental and computational datasets. This creates structured data spaces that support advanced digital workflows. Beyond PMDco, the presentation highlights the design of graph patterns and semantic shapes, showcasing generalizable methods for managing diverse data in MSE being based on data structuring and formatting. By presenting best practices in ontology development, data acquisition, and knowledge graph generation, this talk underscores the transformative potential of semantic technologies in MSE. It offers a forward-looking perspective on the role of structured data spaces as a driver for innovation, ensuring that materials science continues to advance through rigorous, interoperable, and automated digital methodologies. T2 - FEMS Euromat 2025 CY - Granada, Spanien DA - 14.09.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology KW - Graph Patterns PY - 2025 AN - OPUS4-64165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan T1 - Robot-assisted compositional screening in the System Na2O-Al2O3-B2O3-SiO2 N2 - The system Na2OB2O3SiO2 (NBS) is the basis of many industrial glass applications and therefore one of the most studied systems at all. Glass formation is possible over a wide compositional range, but the system also contains ranges of pronounced phase separation and crystallization tendency. Even small addition of Al2O3can change this behavior essentially. As the Na2OAl2O3B2O3SiO2 (NABS) system is also known as the basis for glasses in strength-relevant applications, the behavior during the transition from the NBS system to the NABS system is of interest. Therefore, some small step melt series in these systems were studied using the robotic glass melting system at the Federal Institute for Materials Research and Testing (BAM, Division Glasses). For these series the small step changes of glass transition temperature, crystallization behavior as well as glass density were studied. Additionally, experimental data were compared with their modeled counterparts. T2 - 98. Glastechnische Tagung CY - Goslar, Germany DA - 26.05.2025 KW - Sodium alumino boro silicate glasses KW - Glass transition temperature KW - Density KW - Robotic melting PY - 2025 AN - OPUS4-64076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linden, Anna T1 - AMVAD - Additive manufacturing for ventricular assist devices N2 - Some children are born with a univentricular heart, meaning their heart has only one pumping chamber instead of two. To improve circulation, patients often undergo the Fontan procedure, which reroutes blood flow — but this can put stress on other organs. In some cases, ventricular assist devices, or VADs, are used to support the heart’s pumping function. This involves an artificial pump connected directly to the patient's heart via silicone-based cannulas. Unique anatomical conditions introduce special challenges for cannula geometry. Additive manufacturing offers innovative solutions by enabling the production of personalized medical devices. The aim of the project is to develop the manufacturing workflow for the individualized cannula from digital imaging of the patient and customized design to additive manufacturing. Besides technical feasibility, validating the entire process is crucial for regulatory approval. The selection and testing of suitable additive manufacturing processes and biocompatible materials for individualized silicone cannulas, ensuring compliance with quality standards for high-risk medical products, will be presented. T2 - AMBER Spotlight On: 3D Printing meets Health & Biotech CY - Berlin, Germany DA - 16.09.2025 KW - Additive manufacturing KW - Medical device KW - Liquid silicone rubber PY - 2025 AN - OPUS4-64101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clozel, Melanie A1 - Neumann, Christian A1 - Thore, Johannes A1 - Kolbe, Matthias A1 - Yang, Fan A1 - Gutowski, Olof A1 - Dippel, Ann-Christin A1 - Ruschel, Lucas M. A1 - Busch, Ralf A1 - Altenbach, Christoph A1 - Akuata, Chijioke Kenneth A1 - Zander, Daniela A1 - Wilbig, Janka A1 - Meyer, Andreas T1 - Microstructure formation during gas flow-assisted additive manufacturing of a metallic glass powder on ground and in microgravity N2 - We studied bulk metallic glasses produced from gas flow-assisted laser-based powder bed fusion process, which is capable of additive manufacturing metallic parts in microgravity. A Zr-based bulk metallic glass composition Zr₅₉ˏ₃Cu₂₈ˏ₈Al₁₀ˏ₄Nb₁ˏ₅ has been processed on ground and in microgravity in a compact sounding rocket payload MARS-M. Microstructure characterization was performed using electron microscopy and X-ray diffraction computed tomography, which cope with small amounts of sample materials, especially for those fabricated under microgravity conditions. Very similar microstructures and crystalline fractions are observed in sample manufactured on ground and in microgravity, which shows that process parameters of conventional laser powder bed fusion for manufacturing metallic glasses can be transferred to the processes in microgravity. Two different origins of crystallization have been identified in the Zr₅₉ˏ₃Cu₂₈ˏ₈Al₁₀ˏ₄Nb₁ˏ₅ sample. The preferred occurrence of CuZr₂ at the interlayer boundaries is likely a result of recrystallization from the undercooled melt and hence associated with laser scanning strategy. In contrast, the more uniformly distributed Al₃Zr₄ phase is considered to be triggered by the formation of Cu₂Zr₄O. Thus, for the fabrication of fully amorphous builds both on ground and in space, our findings point to higher scanning speeds and lower oxygen contents, while the latter can also be used to tune the crystalline fractions in the sample. KW - Gas flow-assisted laser-based powder bed fusion KW - Microgravity KW - Glass-forming alloys KW - X-ray diffraction tomography PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641253 DO - https://doi.org/10.1007/s40964-025-01275-2 SN - 2363-9512 SP - 1 EP - 14 PB - Springer Science and Business Media LLC CY - Cham, Switzerland AN - OPUS4-64125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paskin, Alice A1 - Couasnon, Thaïs A1 - Blukis, Roberts A1 - Perez, Jeffrey Paulo H. A1 - Reinsch, Stefan A1 - Roddatis, Vladimir A1 - Syczewski, Marcin A1 - Benning, Liane G. T1 - Temperature-Induced Phase Transitions of Vivianite: In Situ Analysis of a Redox-Driven Crystallization N2 - We document a solid-state, temperature-dependent (25−700 °C), multistage redox transformation of crystalline ferrous iron phosphate, vivianite (Fe3(PO4)2·8H2O). Under anoxic conditions, vivianite breaks down at T > 250 °C into an anhydrous, amorphous intermediate Fe3(PO4)2 phase, yet the bulk shape and morphology of the starting vivianite crystals were retained. This amorphous intermediate phase remained stable until T > 500 °C, after which a redox-dependent crystallization into two different minerals was observed. Under anoxic conditions, the amorphous ferrous intermediate (Fe3(PO4)2) transformed into the crystalline ferrous phosphate (graftonite, (Fe2+)3(PO4)2), while under oxic conditions it crystallized into a ferric phosphate (rodolicoite, Fe3+PO4). Graftonite formation occurs via an exothermic molar enthalpy (ΔHcryst) of −16.7 ± 0.2 kJ mol−1. Rietveld refinements of the two crystalline endmembers (vivianite and graftonite) revealed a unit cell volume decrease of ∼3.1% during the transformation, which was observed by in situ electron microscopic observations as an overall shrinking of the initial vivianite crystals. Despite volume loss and bubble-like features, the original vivianite shape was preserved, indicating a solid-state pseudomorphic transformation. Ex situ XRD and TEM-EELS analyses confirmed the ferrous-to-ferric oxidation, forming rodolicoite, through changes in the Fe geometry and oxidation state. KW - Vivianite KW - Graftonite KW - Crystallization enthalpy KW - Ferrous phosphates PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640782 DO - https://doi.org/10.1021/acs.inorgchem.5c02399 SN - 0020-1669 VL - 46 IS - 36 SP - 18227 EP - 18236 PB - American Chemical Society (ACS) AN - OPUS4-64078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -