TY - CONF A1 - Baesso, Ilaria A1 - Altenburg, Simon A1 - Günster, Jens T1 - Co-axial online monitoring of Laser Beam Melting (LBM) N2 - Within the perspective of increasing reliability of AM processes, real-time monitoring allows part inspection while it is built and simultaneous defect detection. Further developments of real-time monitoring can also bring to self-regulating process controls. Key points to reach such a goal are the extensive research and knowledge of correlations between sensor signals and their causes in the process. T2 - BAM workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Laser Beam Melting KW - Process Monitoring KW - Co-axial monitoring KW - 3D imaging PY - 2019 AN - OPUS4-48517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sonntag, Nadja T1 - Untersuchung magnetischer Streufelder in einem inhomogen verformten Baustahl mittels passiv-magnetischer Prüfverfahren N2 - Die Metal Magnetic Memory (MMM) Methode ist ein standardisiertes, zerstörungsfreies Prüfverfahren, das für die Detektion von lokal geschädigten Materialbereichen in ferromagnetischen Bauteilen oder Proben verwendet wird. Es basiert auf der Annahme lokaler magnetoelastischer Wechselwirkungen an Spannungskonzentrationsstellen, die schwache magnetische Streufelder an den geschädigten Prüfkörperoberflächen hervorrufen. Die MMM-Methode überträgt dabei die für einachsige und elastische Verformungen entwickelten magnetoelastischen Modellvorstellungen ohne weitere Anpassungen in den Schädigungskontext, der jedoch mehrachsige Beanspruchungen und elastisch-plastische Deformationsprozesse erwarten lässt. Das Ziel der Arbeit ist es daher, die gängigen MMM-Hypothesen zur Signalentstehung fach- und skalenübergreifend und unter stärkerer Berücksichtigung mechanischer und mikrostruktureller Aspekte zu überprüfen. Zu diesem Zweck wurden zum einen gekerbte Flachzugproben aus einem unlegierten Baustahl inhomogen elastisch-plastisch verformt und die entstehenden magnetischen Streufelder an deren Oberflächen mit einem Drei-Achsen-GMR-Magnetometer detektiert. Die so ermittelten Magnetfeld-verteilungen wurden für unterschiedliche Verformungszustände ortsaufgelöst und richtungsabhängig mit gemessenen Dehnungsverteilungen (digitale Bildkorrelation) und mit simulierten Lastspannungs-verteilungen korreliert. Die eingeschnürten Probenbereiche wurden zusätzlich topographisch mittels Streifenlichtprojektion und Weißlichtinterferenzmikroskopie vermessen, um den Magnetisierungs-prozess ebenfalls vor dem Hintergrund geometrischer Effekte diskutieren zu können. Um systematische, verformungsinduzierte Veränderungen der magnetischen Mikrostruktur (magnetischer Domänen) im polykristallinen, quasi-isotropen Material nachzuweisen, wurde zum anderen ein in dieser Arbeit entwickelter statistischer Ansatz der Domänenanalyse angewandt. Hierfür wurde das Material zunächst durch Härteeindrücke mehrachsig elastisch-plastisch verformt, und die verformten Probenbereiche wurden anschließend mit Hilfe der Bitterstreifentechnik hauptsächlich bei niedriger Vergrößerung lichtmikroskopisch untersucht. Die beobachteten makroskopischen Domänen-kontraste wurden über ein analytisches, kontaktmechanisches (ECM-) Modell und über Makro-Eigen-spannungsmessungen (energiedispersive Synchrotron-Beugungsuntersuchungen) charakteristischen Verformungszonen unter den Härteeindrücken zugeordnet. Die Ergebnisse dieser Untersuchungen belegen, dass die Entstehung der Streufelder – entgegen bisheriger Annahmen – nicht allein auf mechanische Spannungs- und Verformungsgradienten im Material zurückzuführen, sondern auch topographisch bedingt ist. Die Vernachlässigung überlagerter geometrischer Effekte kann zu sicherheitsrelevanten Fehlinterpretationen der magnetischen Signale führen. Einachsige magnetoelastische Modellvorstellungen sollten zudem nicht ohne Anpassungen auf komplexe Beanspruchungen übertragen werden, da u. a. sowohl mechanische Größen (wie Spannungen oder Dehnungen) als auch mikrostrukturelle Parameter (wie z. B. Versetzungsdichten) bei komplexen Belastungen als ortsabhängige Variablen behandelt werden müssen. Die in dieser Arbeit beobachteten Domänenkontraste lassen sich zweifelsfrei charakteristischen Verformungszonen zuordnen, mikro-strukturell jedoch nicht allein mit anzunehmenden Gradienten der Versetzungsdichte erklären. Statt-dessen entstehen beispielsweise lokale Verformungstexturen, die zusätzliche magnetische Anisotropien bewirken könnten. Da bisher weder die makroskopischen noch die mikrostrukturellen Ursachen der Streufeldentstehung hinreichend verstanden sind, scheint die MMM-Methode für die quantitative Bewertung des Schädigungszustands derzeit ungeeignet. N2 - The Metal Magnetic Memory (MMM) method is a standardized, nondestructive testing method used for the detection of locally damaged material areas in ferromagnetic components or samples. It assumes local magnetoelastic interactions in stress concentration zones, causing weak magnetic stray fields on the damaged specimen surfaces. The MMM method transfers magnetoelastic model conceptions developed for uniaxial and elastic deformations without further adjustments into the damage context, which is, however, associated with multiaxial stresses and elastic-plastic deformations. The objective of this thesis is therefore to verify prevalent MMM hypotheses concerning the signal generation, putting emphasis on complex mechanical and microstructural aspects of damage while using interdisciplinary and multi-scale approaches. To this end, on the one hand, notched tensile specimens made of an unalloyed structural steel were inhomogeneously (elastically and plastically) deformed and deformation-induced magnetic stray fields were then detected by a three-axis GMR magnetometer. The obtained surface magnetic field distributions were correlated with measured strain distributions (digital image correlation) and with numerically simulated mechanical stress distributions (finite element analysis). To enable discussions on the magnetization process against the background of geometrical effects, the necked specimen regions were additionally investigated using optical profilometry methods (fringe projection and white light interference microscopy). On the other hand, a newly developed meso-scale approach to magnetic domain analysis was applied to prove systematic, deformation-induced changes of the magnetic microstructure within the polycrystalline, quasi-isotropic material: After multiaxial elastic-plastic deformation of coupon specimens by hardness indentation, the deformed sample regions were studied by Bitter technique in optical microscopy, preferably at low magnification. The observed macroscopic domain contrasts were related to characteristic deformation zones below the indents by using an analytical model from the field of contact mechanics (ECM) and macro-residual stress measurements (obtained from energy-dispersive synchrotron diffraction experiments). It is demonstrated that the formation of magnetic stray fields, quite contrary to previous assumptions, results not only from mechanical (e.g. stress) gradients within the material, but is also topographically induced. The neglect of such superimposed geometric effects may also lead to safety-relevant misinterpretations of the magnetic signals. Furthermore, uniaxial magnetoelastic model concepts should not be applied to complex stress/strain conditions without adaptation since both mechanical quantities (such as stresses or strains) and microstructural parameters (such as dislocation densities) must be treated as location-dependent variables. The observed magnetic domain contrasts could clearly be assigned to characteristic deformation zones but cannot be explained solely by hypothesized gradients of the dislocation density. Instead, for example, local deformation textures emerge, which may cause additional magnetic anisotropies. The MMM method currently seems unsuitable for quantitative damage assessments of components or specimens since neither the macroscopic nor the microstructural origins of the stray field formation have yet been sufficiently understood. KW - Magnetoelastischer Effekt KW - Magnetische Domänen KW - Mehrachsige Verformung KW - Schädigung KW - Unlegierter Baustahl KW - Magnetoelastic effect KW - Magnetic domains KW - Multiaxial deformation KW - Damage KW - Structural steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484302 DO - https://doi.org/10.14279/depositonce-8524 SP - 1 EP - 117 CY - Berlin AN - OPUS4-48430 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Skrotzki, Birgit A1 - Simon, Franz-Georg A1 - Czichos, Horst ED - Hennecke, Manfred ED - Skrotzki, Birgit T1 - Grundlagen der Werkstoffkunde N2 - Der Aufbau der Werkstoffe wird durch Merkmale wie Bindungsart, atomare Strukturen, Kristallstrukturen einschließlich ihrer Gitterbaufehler, Körner und Phasen bestimmt. Die Mikrostruktur (Gefüge) stellt den Verbund der Kristalle, Phasen und Gitterbaufehler auf mikroskopischer und nanoskopischer Skala dar. Die Grundlagen der Phasenumwandlungen werden behandelt und die Bedeutung von Diffusionsprozessen erläutert. Werkstoffe sind bedeutend für Kultur, Wirtschaft, Technik und Umwelt. Ihre Herstellung benötigt Ressourcen und Energie. Recycling ist eine Möglichkeit zur Erhöhung der Ressourcenproduktivität. KW - Materialkreislauf KW - Aufbau von Festkörpern KW - Kristallsystem KW - Gleichgewicht KW - Ungleichgewicht KW - Kreislaufwirtschaft PY - 2019 SN - 978-3-662-57492-8 DO - https://doi.org/10.1007/978-3-662-57492-8_27-1 SP - 1 EP - 31 PB - Springer-Verlag GmbH Deutschland CY - Berlin, Heidelberg ET - 35. AN - OPUS4-48476 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Corrosion of Carbon Steel in Artificial Geothermal Brine: Influence of Carbon Dioxide at 70 °C and 150 °C N2 - This study focuses on the corrosion mechanism of carbon steel exposed to an artificial geothermal brine influenced by carbon dioxide (CO2) gas. The tested brine simulates a geothermal source in Sibayak, Indonesia, containing 1500 mg/L of Cl-, 20 mg/L of SO4 2-, and 15 mg/L of HCO3-with pH 4. To reveal the temperature effect on the corrosion behavior of carbon steel, exposure and electrochemical tests were carried out at 70 °C and 150 °C. Surface analysis of corroded specimens showed localized corrosion at both temperatures, despite the formation of corrosion products on the surface. After 7 days at 150 °C, SEM images showed the formation of an adherent, dense, and crystalline FeCO3 layer. Whereas at 70 °C, the corrosion products consisted of chukanovite (Fe2(OH)2CO3) and siderite (FeCO3), which are less dense and less protective than that at 150 °C. Control experiments under Ar-environment were used to investigate the corrosive effect of CO2. Free corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) confirm that at both temperatures, the corrosive effect of CO2 was more significant compared to that measured in the Ar-containing solution. In terms of temperature effect, carbon steel remained active at 70 °C, while at 150 °C, it became passive due to the FeCO3 formation. These results suggest that carbon steel is more susceptible to corrosion at the near ground surface of a geothermal well, whereas at a deeper well with a higher temperature, there is a possible risk of scaling (FeCO3 layer). A longer exposure test at 150 °C with a stagnant solution for 28 days, however, showed the unstable FeCO3 layer and therefore a deeper localized corrosion compared to that of seven-day exposed specimens. KW - Carbon steel KW - CO2 KW - Corrosion KW - Electrochemical impedance spectroscopy KW - Geothermal PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498168 DO - https://doi.org/10.3390/ma12223801 SN - 1996-1944 VL - 12 IS - 22 SP - 3801-1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-49816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Kranzmann, Axel T1 - Abschlussbericht des Projektteils CLUSTER - BAM: Werkstoffauswahl und Festlegung von Obergrenzen für Verunreinigungen in variierenden CO2-Strömen auf Grund von realitätsnahen Korrosionsexperimenten - FKZ 03ET7031C - im Projektverbund CLUSTER: Auswirkungen der Begleitstoffe in den abgeschiedenen CO2‐Strömen unterschiedlicher Emittenten eines regionalen Clusters auf Transport, Injektion und Speicherung N2 - Nachdem im Verbundprojekt COORAL das Hauptaugenmerk auf überkritisches CO2 gelegt wurde, d. h. Transport über kurze Strecken bei erhöhter Temperatur, wurde in CLUSTER ein größeres lokales Transport-Netzwerk betrachtet, bei dem CO2 bei geringeren Temperaturen, also vorwiegend im flüssigen Zustand transportiert wird. Wurden in COORAL die CO2-Ströme von Kohlekraftwerken untersucht, ging es in CLUSTER zusätzlich um die Emissionen von relevanten Industrien, deren CO2-Emissionen nicht ohne Weiteres vermieden werden können. Aufgrund der Erfahrungen in COORAL konnte eine Auswahl von kommerziellen Werkstoffen getroffen werden, die für einen konkreten Einsatz für CCS zur Verfügung stünden. Die gemischten und fluktuierenden CO2-Zusammensetzungen sind bei geeigneten Begrenzungen der Begleit¬stoffe im CO2 bezüglich Korrosionsvorgänge beherrschbar. Die Machbarkeit eines lokalen CCS-Clusters erscheint daher gegeben, soweit dies die Anlagen für Kompression, Transport und Injektion betrifft. KW - CCS KW - Korrosion KW - CO2-Speicherung KW - Pipelines PY - 2019 SP - 1 EP - 67 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-50249 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steel caused by condensate: Synergistic effects of NO2 and SO2 N2 - To study the effects of condensed acid liquid, hereafter referred to as condensate, on the CO2 transport pipeline steels, gas mixtures containing a varying concentration of H2O, O2, NO2, and SO2, were proposed and resulted in the condensate containing H2SO4 and HNO3 with the pH ranging from 0.5 to 2.5. By exposing the pipeline steel to the synthetic condensate with different concentration of acidic components, the corrosion kinetic is significantly changed. Reaction kinetic was studied using electrochemical methods coupled with water analysis and compared with surface analysis (scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffractometry (XRD)) of corroded coupons. The results showed that, although the condensation of NO2 in the form of HNO3 causes faster general corrosion rate, it is the condensation of SO2 in the form of H2SO4 or the combination of SO2 and NO2 that may cause much more severe problems in the form of localized and pitting corrosions. The resulting corrosion forms were depended on the chemical nature of acids and their concentration at the same investigated pH. The effects of changing CO2 flow rate and renewing condensate on pitting corrosion were further studied. KW - Carbon capture, utilization and storage technology KW - CCUS KW - Corrosion KW - Condensate KW - Electrochemical characterisation KW - Pitting corrosion KW - Impurities KW - Carbon steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473685 UR - https://www.mdpi.com/1996-1944/12/3/364 DO - https://doi.org/10.3390/ma12030364 SN - 1996-1944 VL - 12 IS - 3 SP - 364, 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 1: Cyclic mechanical behavior under fatigue and creep-fatigue loading N2 - The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach, both of which are presented in “Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based Micromechanical Model“. T2 - 45. MPA-Seminar CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - P92 KW - Low Cycle Fatigue KW - Thermo-Mechanical Fatigue KW - Creep-Fatigue PY - 2019 SP - 75 EP - 79 PB - MPA (Materialprüfungsanstalt Universität Stuttgart) CY - Stuttgart AN - OPUS4-50051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -