TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Bauer, Felix A1 - Uhlemann, Patrick A1 - Thärig, Steffen A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Mechanical testing dataset of cast copper alloys for the purpose of digitalization N2 - This data article presents a set of primary, analyzed, and digitalized mechanical testing datasets for nine copper alloys. The mechanical testing methods including the Brinell and Vickers hardness, tensile, stress relaxation, and low-cycle fatigue (LCF) testing were performed according to the DIN/ISO standards. The obtained primary testing data (84 files) mainly contain the raw measured data along with the testing metadata of the processes, materials, and testing machines. Five secondary datasets were also provided for each testing method by collecting the main meta- and measurement data from the primary data and the outputs of data analyses. These datasets give materials scientists beneficial data for comparative material selection analyses by clarifying the wide range of mechanical properties of copper alloys, including Brinell and Vickers hardness, yield and tensile strengths, elongation, reduction of area, relaxed and residual stresses, and LCF fatigue life. Furthermore, both the primary and secondary datasets were digitalized by the approach introduced in the research article entitled “Toward a digital materials mechanical testing lab” [1]. The resulting open-linked data are the machine-processable semantic descriptions of data and their generation processes and can be easily queried by semantic searches to enable advanced data-driven materials research. KW - FAIR principles KW - Hardness KW - Low-Cycle Fatigue (LCF) KW - Tensile testing KW - Stress relaxation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605005 DO - https://doi.org/10.1016/j.dib.2024.110687 SN - 2352-3409 SP - 1 EP - 15 PB - Elsevier BV AN - OPUS4-60500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Hanke, T. A1 - Weber, M. A1 - Eisenbart, M. A1 - Bauer, F. A1 - Meissner, R. A1 - Dziwis, G. A1 - Tikana, L. A1 - Chen, Yue A1 - Skrotzki, Birgit T1 - Toward a digital materials mechanical testing lab N2 - To accelerate the growth of Industry 4.0 technologies, the digitalization of mechanical testing laboratories as one of the main data-driven units of materials processing industries is introduced in this paper. The digital lab infrastructure consists of highly detailed and standard-compliant materials testing knowledge graphs for a wide range of mechanical testing processes, as well as some tools that enable the efficient ontology development and conversion of heterogeneous materials’ mechanical testing data to the machine-readable data of uniform and standardized structures. As a basis for designing such a digital lab, the mechanical testing ontology (MTO) was developed based on the ISO 23718 and ISO/IEC 21838-2 standards for the semantic representation of the mechanical testing experiments, quantities, artifacts, and report data. The trial digitalization of materials mechanical testing lab was successfully performed by utilizing the developed tools and knowledge graph of processes for converting the various experimental test data of heterogeneous structures, languages, and formats to standardized Resource Description Framework (RDF) data formats. The concepts of data storage and data sharing in data spaces were also introduced and SPARQL queries were utilized to evaluate how the introduced approach can result in the data retrieval and response to the competency questions. The proposed digital materials mechanical testing lab approach allows the industries to access lots of trustworthy and traceable mechanical testing data of other academic and industrial organizations, and subsequently organize various data-driven research for their faster and cheaper product development leading to a higher performance of products in engineering and ecological aspects. KW - General Engineering KW - General Computer Science PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582698 DO - https://doi.org/10.1016/j.compind.2023.104016 SN - 0166-3615 VL - 153 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-58269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belli, R. A1 - Hurle, K. A1 - Schürrlein, J. A1 - Petschelt, A. A1 - Werbach, K. A1 - Peterlik, H. A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Lohbauer, U. T1 - Relationships between fracture toughness, Y2O3 fraction and phase content in modern dental Yttria-doped zirconias N2 - The relationship between fracture toughness and Yttria content in modern zirconia ceramics was revised. For that purpose, we evaluated here 10 modern Y2O3-stabilized zirconia (YSZ) materials currently used in biomedical applications, namely prosthetic and implant dentistry. The most relevant range between 2-5 mol% Y2O3 was addressed by selecting from conventional opaque 3 mol% YSZ up to more translucent compositions (4-5 mol% YSZs). A technical 2YSZ was used to extend the range of our evaluation. The bulk mol% Y2O3 concentration was measured by X-Ray Fluorescence Spectroscopy. Phase quantification by Rietveld refinement considered two tetragonal phases or an additional cubic phase. A first-account of the fracture toughness (KIc) of the pre-sintered blocks is given, which amounted to 0.4 – 0.7 MPa√m. In the fully-densified state, an inverse power-law behavior was obtained between KIc and bulk mol% Y2O3 content, whether using only our measurements or including literature data, challenging some established relationships. A linear relationship between KIc and the fraction of the transformable t-phase was established within the range of 30–70 vol%. KW - Ceramics KW - Dental KW - Zirconia KW - Fracture toughness KW - X-ray-diffraction KW - Power law PY - 2021 DO - https://doi.org/10.1016/j.jeurceramsoc.2021.08.003 VL - 41 IS - 15 SP - 7771 EP - 7782 PB - Elsevier Ltd. AN - OPUS4-53107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Ontology-Oriented Modeling of the Vickers Hardness Knowledge Graph N2 - This research deals with the development of the Vickers hardness knowledge graph, mapping the example dataset in them, and exporting the data-mapped knowledge graph as a machine-readable Resource Description Framework (RDF). Modeling the knowledge graph according to the standardized test procedure and using the appropriate upper-level ontologies were taken into consideration to develop the highly standardized, incorporable, and industrial applicable models. Furthermore, the Ontopanel approach was utilized for mapping the real experimental data in the developed knowledge graphs and the resulting RDF files were successfully evaluated through the SPARQL queries. KW - Data Mapping KW - FAIR Data KW - Ontology KW - Knowledge Graph KW - Vickers Hardness PY - 2024 DO - https://doi.org/10.4028/p-k8Gj2L VL - 149 SP - 33 EP - 38 PB - Trans Tech Publications Ltd CY - Switzerland AN - OPUS4-59981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Eddah, Mustapha A1 - Bajer, Evgenia A1 - Markötter, Henning A1 - Kranzmann, Axel T1 - Destructive and non-destructive 3D-characterization of inner metal structures in ceramic packages N2 - Ceramic multilayer packages provide successful solutions for manifold applications in telecommunication, microsystem, and sensor technology. In such packages, three-dimensional circuitry is generated by combination of structured and metallized ceramic layers by means of tape casting and multilayer technology. During development and for quality assurance in manufacturing, characterization of integrity, deformation, and positioning of the inner metal features is necessary. Visualization with high resolution and material contrast is needed. Robot-assisted 3D-materialography is a useful technique to characterize such multimaterial structures. In that, many sections of the specimen are polished and imaged automatically. A three-dimensional representation of the structure is created by digital combination of the image stack. A quasi non-destructive approach is to perform X-ray computer tomography (CT) with different beam energies. The energies are chosen to achieve a good imaging of either the metal features, or the ceramic matrix of the structure. The combination of the respective tomograms results in a high contrast representation of the entire structure. Both methods were tested to characterize Ag and Ag/Pd conductors in a ceramic multilayer package. The results were compared in terms of information content, effort, and applicability of the methods. T2 - 98th DKG Annual Meeting - CERAMICS 2023 CY - Jena, Germany DA - 27.03.2023 KW - Ceramics KW - Synchrotron CT KW - 3D materialography PY - 2023 AN - OPUS4-57268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - LPBF KW - AISI 316L KW - Online Process Monitoring KW - Thermography KW - Residual Stress KW - Neutron Diffraction KW - X-ray Diffraction KW - Computed Tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512903 DO - https://doi.org/10.3390/met10091234 VL - 10 IS - 9 PB - MDPI CY - Basel AN - OPUS4-51290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 DO - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Skrotzki, Birgit A1 - Simon, Franz-Georg A1 - Czichos, Horst ED - Hennecke, Manfred ED - Skrotzki, Birgit T1 - Grundlagen der Werkstoffkunde N2 - Der Aufbau der Werkstoffe wird durch Merkmale wie Bindungsart, atomare Strukturen, Kristallstrukturen einschließlich ihrer Gitterbaufehler, Körner und Phasen bestimmt. Die Mikrostruktur (Gefüge) stellt den Verbund der Kristalle, Phasen und Gitterbaufehler auf mikroskopischer und nanoskopischer Skala dar. Die Grundlagen der Phasenumwandlungen werden behandelt und die Bedeutung von Diffusionsprozessen erläutert. Werkstoffe sind bedeutend für Kultur, Wirtschaft, Technik und Umwelt. Ihre Herstellung benötigt Ressourcen und Energie. Recycling ist eine Möglichkeit zur Erhöhung der Ressourcenproduktivität. KW - Materialkreislauf KW - Aufbau von Festkörpern KW - Kristallsystem KW - Gleichgewicht KW - Ungleichgewicht KW - Kreislaufwirtschaft PY - 2019 SN - 978-3-662-57492-8 DO - https://doi.org/10.1007/978-3-662-57492-8_27-1 SP - 1 EP - 31 PB - Springer-Verlag GmbH Deutschland CY - Berlin, Heidelberg ET - 35. AN - OPUS4-48476 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Einfluss von Haltezeiten auf die TMF-Lebensdauer von P92 bei mittleren und geringen Dehnungsamplituden N2 - Results of an extended TMF test program on grade P92 steel in the temperature range of 620 ◦C–300 ◦C, comprising in-phase (IP) and out-of-phase (OP) tests, partly performed with symmetric dwells at Tmax/Tmin, are presented. In contrast to previous studies, the low-strain regime is also illuminated, which approaches flexible operation in a power plant with start/stop cycles. At all strain amplitudes, the material performance is characterized by continuous cyclic softening, which is retarded in tests at lower strains but reaches similar magnitudes in the course of testing. In the investigated temperature range, the phase angle does not affect fatigue life in continuous experiments, whereas the IP condition is more detrimental in tests with dwells. Fractographic analyses indicate creep-dominated and fatigue-dominated damage for IP and OP, respectively. Analyses of the (micro)hardness distribution in the tested specimens suggest an enhanced microstructural softening in tests with dwell times for the low- but not for the high-strain regime. To rationalize the obtained fatigue data, the fracturemechanics-based DTMF concept, which was developed for TMF life assessment of ductile alloys, was applied. It is found that the DTMF parameter correlates well with the measured fatigue lives, suggesting that subcritical growth of cracks (with sizes from a few microns to a few millimeters) governs failure in the investigated range of strain amplitudes. T2 - DVM-Arbeitskreis Bauteilverhalten bei thermomechanischer Ermüdung - Workshop 2023 CY - Berlin, Germany DA - 20.09.2023 KW - 9–12%Cr steel KW - Thermomechanical fatigue KW - Symmetric dwell periods KW - Parametric modeling PY - 2023 AN - OPUS4-58431 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -