TY - CONF A1 - Skrotzki, Birgit T1 - Verknüpfung von Datenrepositorien: Die Plattform MaterialDigital (PMD) N2 - Vorstellung der Plattform MaterialDigital. Darstellung der Bedürfnisse und Herausforderungen in der Materialwissenschaft und Werkstofftechnik. T2 - Vision Keramik CY - Dresden, Germany DA - 07.06.2022 KW - Digitalisierung KW - Ontologie KW - Standardisierung PY - 2022 AN - OPUS4-54979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Oxidkeramische Werkstoffe und Folien für thermoelektrische Multilayergeneratoren N2 - Thermoelektrische Effekte beschreiben die direkte Verknüpfung von thermischer Energie und elektrischer Energie in Festkörpern. Durch Thermodiffusionsströme entsteht direkt, ohne beweg¬liche Teile, ein elektrisches Feld als Folge einer Temperaturdifferenz. Diese Material-eigenschaft wird durch den Seebeckkoeffizienten beschrieben. Je nach Art der Ladungs¬träger sind die indu¬zierte Spannung und der Seebeckkoeffizient positiv (p-Typ) oder negativ (n-Typ). Thermo¬elek¬trische Effekte lassen sich beispielsweise in Thermo¬elementen zur Temperatur-messung, in Pel¬tierelementen zum Kühlen oder Heizen und in thermo¬elektrischen Generatoren zur Umwandlung von thermischer Energie in elektrische Energie nutzen. In thermoelektrischen Generatoren werden Schenkel aus p-Typ- und n-Typ-Materialien elek-trisch in Reihe und thermisch parallel verschaltet. Konventionell werden einzelne Schenkel aus Bismut¬tellurid auf ein metallisiertes Substrat gelötet. Man spricht vom π-Typ-Design. Aufgrund auf¬wendiger Fertigung und nicht optimaler Flächennutzung stellt dieses Design nicht die best-mög¬liche Lösung dar. Neben Telluriden gibt es noch andere vielversprechende thermoelektrische Material¬systeme wie die oxidischen Thermoelektrika. Im Temperatur¬bereich oberhalb von 700 °C können oxidische thermoelektrische Materialien mit nichtoxidischen konkurrieren. Zudem sind sie oxidationsbeständig und können aus weniger toxischen und besser verfügbaren Rohstoffen her¬ge¬stellt werden. Da es sich um keramische Materialien handelt, können unter Nutzung der Multi¬layer¬technologie (auch Vielschicht- oder Mehrlagentechnik) Generatoren im Multilayer¬design hergestellt werden. Keramische Multi¬layer¬generatoren sind aufgrund der höheren Leis¬tungs¬dichte, der Möglichkeit der gezielten Texturierung und des hohen möglichen Auto¬mati¬sierungs¬grades des Herstellungs¬prozesses eine viel¬versprechende Alternative zu konven¬tionellen π-Typ-Generatoren. Alle Lagen werden in einem Schritt co-gesintert. Die beiden zum jetzigen Zeit¬punkt wohl viel¬versprechendsten oxi¬dischen Thermoelektrika sind Calcium-cobaltit Ca3Co4O9 als p-Typ und Calciummanganat CaMnO3 als n-Typ. Die Sinter¬tem¬peratur von Ca3Co4O9 ist durch eine Phasenumwandlung bei 926 °C beschränkt. Texturiertes, dichtes Ca3Co4O9 mit einer hohen Festigkeit kann nur über Hei߬pressen hergestellt werden. Das Co-Sintern von Ca3Co4O9 und CaMnO3 war wegen der Tem¬pera¬tur¬differenz von 350 K zwischen den jeweiligen Sinterintervallen bisher nicht möglich. Ziel dieser Arbeit war deshalb die Ent¬wick¬lung von kompatiblen oxidkeramischen Werkstoffen und Folien für thermoelektrische Multilayer-generatoren auf der Basis von Ca3Co4O9 und CaMnO3. Daraus resultieren vier wesentliche Arbeitspakete. Zunächst die Materialentwicklungen von Ca3Co4O9 (p-Typ) und CaMnO3 (n-Typ) für ein Co-Sintern bei 900 °C mit akzeptablen thermoelek¬trischen Eigenschaften, dann die Entwicklung der weiteren im Generator benötigten Kompo¬nenten wie der Isolationsschicht und abschließend die Fertigung und Bewertung von Demonstra¬toren im Multi¬layer¬design. Foliengießen und druckunterstütztes Sintern ermöglichen die Herstellung von dichtem, tex-turier¬tem Ca3Co4O9 mit hoher Festigkeit und hohem Leistungsfaktor. Letzterer ist das Produkt der elek¬trischen Leitfähigkeit und dem Quadrat des Seebeckkoeffizienten. Für die elektrische Leit¬fähigkeit zeigte sich in dieser Arbeit ein kombinierter Einfluss von Sinterdichte und Textur. Die thermo¬elektrischen Eigen¬schaften lassen sich somit über die Einstellung der Mikrostruktur gezielt steuern. Durch die Optimierung der Pulversynthese, die Einführung des Sinteradditives CuO und die Kombi¬nation mit dem druckunterstützten Sintern (7,5 MPa) konnte die Sintertemperatur des CaMnO3 bei gleichbleibendem Leistungsfaktor von 1250 °C auf 950 °C gesenkt werden. Druck-unter¬stütztes Sintern von CaMnO3 ist bei 900 °C möglich, führt aber zu einem Werkstoff mit geringerem Leistungsfaktor, geringerer Dichte und ungenügender Festigkeit. Zur elektrischen Isolation der beiden thermoelektrischen Materialien wurde ein Glas-Keramik-Kompo¬sit mit hohem Volumenwiderstand und angepasstem Wärmeausdehnungs¬koef¬fizienten ent¬wickelt. Aus den zu Folien vergossenen thermoelektrischen Materialien, der siebgedruckten Iso¬lations-schicht und der siebgedruckten Metallisierung wurden mittels Multilayertech¬nologie De¬mons-tratoren hergestellt. Neben dem pn-Generator aus Ca3Co4O9 und CaMnO3 wurden auch Unileg-generatoren aus Ca3Co4O9 gefertigt. Bei Unileggeneratoren wird die Komplexität des Aufbaus durch die Verwendung von nur einem thermoelektrischen Material verringert. Die Simulation der Demonstratoren zeigte, dass der pn-Generator aus Ca3Co4O9 und CaMnO3 keine höheren Leis-tungsdichten erbringt als der aus nur Ca3Co4O9 bestehende Unileg¬generator. Auf¬grund des ge-ringen Leistungsfaktors und der geringen Festigkeit des bei 900 °C gesinterten CaMnO3 er¬scheint die Fertigung von pn-Multilayer¬generatoren aus Ca3Co4O9 und CaMnO3 derzeit nicht sinn¬voll. Die Unileg¬generatoren aus Ca3Co4O9 erreichen mit sehr hoher Reproduzier¬barkeit 2 mW/cm² bei einer Temperaturdifferenz von 230 K, dies entspricht 80 % der simulierten elektrischen Leistung. Es handelt sich hierbei um den ersten Machbarkeits¬nachweis zur Herstellung von Multilayer-generatoren auf Basis von texturiertem Ca3Co4O9 mit hohem thermoelektrischem Leistungsfaktor, hoher Dichte und hoher Festigkeit. Solch thermoelektrische Multilayergeneratoren könnten zukünftig Systeme mit geringen elek-trischen Leistungsanforderungen wie Sensoren autark und nachhaltig mit elektrischer Energie ver¬sorgen. T2 - Promotionskolloquium CY - Bayreuth, Germany DA - 25.04.2022 KW - Calciumcobaltit KW - Calciummanganat KW - Foliengießen KW - Sintertemperatur PY - 2022 AN - OPUS4-54726 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kraus, David T1 - Ermüdungsverhalten von Glasfaser-Kunststoff-Verbunden unter thermomechanischer Beanspruchung N2 - Die Werkstoffgruppe der Faser-Kunststoff-Verbunde (FKV) hat sich aufgrund ihrer hervorragenden Leichtbaueigenschaften unter anderem im Sportgerätebau, in der Luft- und Raumfahrt und in der Windenergieindustrie etabliert. Die so hergestellten Strukturen sind in der Regel nicht nur mechanischen Belastungen, sondern auch thermischen Lasten in einem breiten Temperaturspektrum ausgesetzt. Dennoch ist die Auswirkung des Temperatureinflusses bei einer Kombination von thermischer und mechanischer Last auf die Lebensdauer von Strukturen aus FKV bisher nur wenig untersucht. Im Rahmen dieser Arbeit wird der Einfluss von Temperaturen zwischen 213 K und 343 K auf einen Glasfaser-Epoxidharz-Verbund experimentell untersucht. Das Material wird in diesem Temperaturbereich eingehend charakterisiert: Es werden sowohl die thermomechanischen Eigenschaften von Faser- und Matrixwerkstoff als auch die des Verbundes ermittelt. In einem weiteren Schritt wird dann der Einfluss der Temperatur auf die Schädigungsentwicklung im quasi-statischen Lastfall sowie unter schwingender Ermüdungsbeanspruchung bei verschiedenen FKV-Mehrschichtverbunden analysiert. Basierend auf den experimentellen Daten wird ein Zusammenhang zwischen der Schädigung und der Anstrengung der Matrix innerhalb der Einzelschicht demonstriert. Die Matrixanstrengung wird mithilfe eines mikromechanischen Modells unter Berücksichtigung der thermomechanischen Eigenspannungen analytisch berechnet. Bei Querzugbeanspruchung kann gezeigt werden, dass eine Vorhersage der Schädigung in Abhängigkeit der Volumenänderungsenergie innerhalb der Matrix getroffen werden kann. Mithilfe des Konzepts der Matrixanstrengung ist eine Vorhersage der Lebensdauer des Werkstoffs unter schwingender Ermüdungsbeanspruchung in Abhängigkeit der Einsatztemperatur möglich. N2 - Due to their superior lightweight properties, fiber reinforced polymer (FRP) materials are well established in various fields, such as sports equipment, aerospace or wind energy structures. These structures are not only subjected to mechanical loads, but also to a broad spectrum of thermal environments. However, the impact of temperature on the fatigue life of thermomechanically loaded FRP structures is barely investigated to-date. In the scope of this work, the influence of temperatures in a range of 213 K to 343 K on a glass fiber reinforced epoxy polymer is experimentally examined. An extensive thermo-mechanical characterization of the static properties of the material is performed. The neat resin and Fiber material are investigated, as well as the composite. In addition, the impact of thermal loads on the damage evolution under quasi-static as well as cyclic fatigue loading is investigated for different multi-angle laminates. Based on the experimental data, a correlation is shown between damage and matrix effort of the unidirectional layer. The matrix effort is calculated according to a micromechanical model considering thermal residual stresses. Particularly under transverse loading, the damage Evolution can be predicted as a function of the dilatational strain energy of the matrix. Using the concept of the matrix effort presented in this work, a prediction of the fatigue life of the investigated material at different ambient temperature conditions can be performed. T3 - BAM Dissertationsreihe - 169 KW - Ermüdung KW - Faser-Kunststoff-Verbund KW - GFK KW - Schädigung KW - Thermomechanik KW - Fatigue KW - Composite KW - Glas fibre reinforced polymer KW - Damage KW - Thermomechanics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530253 SN - 1613-4249 VL - 169 SP - 1 EP - 164 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lindemann, Franziska T1 - Bestimmung der spezifischen Oberfläche mittels Gasadsorption (BET-Verfahren) N2 - Im Rahmen des 2. BAM-Akademie Info-Tages "Nano or not Nano" wurde die OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" vorgestellt. Der Vortrag beschreibt die Bestimmung der spezifischen Oberfläche von dispersen und/oder porösen Pulvern mittels Gasadsorption nach dem BET-Verfahren. Es wird auf die Anwendbarkeit der Methode eingegangen und es werden praktische Hinweise zur Probenvorbereitung und Messung von Nanomaterialien gegeben. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - OECD TG 124 KW - Nanopulver KW - VSSA KW - Nano powder KW - BET KW - Spezifische Oberfläche PY - 2024 AN - OPUS4-59623 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Crack identification by data fusion in fatigued flat specimens with through-holes - A feasibility study N2 - A numerical pre-study has shown that cracks in a flat sample featuring a drilled hole can be classified into one of three crack shape classes based on the combined evaluation of various types of test data. T2 - Fatigue 2018 CY - Poitiers, France DA - 27.05.2018 KW - LCF KW - Crack KW - Data Fusion PY - 2018 AN - OPUS4-45936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Ermüdungsverhalten und Versagensmechanismen von additiv mittels LPA hergestelltem TiAl6V4 N2 - Die Untersuchung und Charakterisierung der Entwicklung/Änderung der Mikrostruktur, der mechanischen Eigenschaften sowie der Lebensdauer additiv gefertigter metallischer Werkstoffe hat bisher, vor allem im Hinblick auf die komplexe Belastungsfälle bei sicherheitsrelevanten Anwendungen, mit der rasanten Entwicklung der Fertigungstechniken nicht Schritt gehalten. Im Rahmen dieser Arbeit wurde eine Charakterisierung des Ermüdungsverhaltens von additiv gefertigten TiAl6V4 im Low-Cycle-Fatigue Bereich (niederzyklische Ermüdung) nach Norm ISO 12206 mit Dehnungsamplituden von 0.3 bis zu 1.0 % und bei Raumtemperatur, 250°C und 400°C durchgeführt. Die TiAl6V4 Proben wurden aus zylindrischen Halbzeugen gefertigt, welche durch Laser-Pulver-Auftragsschweißen mit einer optimierten Aufbaustrategie hergestellt wurden. Die optimierte Aufbaustrategie beinhaltet variierende Spurüberlappungsgraden, die die Fertigung der dünnen zylindrischen Körper ohne weitere Ausgleichslagen ermöglicht. Das Werkstoffverhalten wird anhand von Wechselverformungskurven sowie einer Darstellung der Lebensdauer in einem Wöhler-Diagramm beschrieben. Ein Fitting der Lebensdauer-Daten erfolgt anhand der Manson-Coffin-Basquin Beziehung. Eine Eingangscharakterisierung der mikrostrukturellen Merkmale inklusive Bindefehler aus dem Herstellungsprozess wird durch Lichtmikroskopie und hochauflösende Computertomographie (CT) durchgeführt. Der Versagensmechanismus während der Belastung wird anhand von Zwischenuntersuchungen mit CT und einem unterbrochenen Versuch mit ausgewählten Versuchsparametern beschrieben. Nach dem Versagen wurden die Proben am REM, mit Lichtmikroskopie und mit CT fraktographisch in Längs- und Querrichtung untersucht. Die erfassten Lebensdauern sind ähnlich zu denen aus herkömmlichen Studien und liegen unter derjenigen von dem konventionell hergestellten (geschmiedeten) Werkstoff. In dieser Arbeit wurden für den untersuchten Werkstoff bei anwendungs- und sicherheitsrelevanten Belastungszuständen (hohe Temperaturen, zyklische Plastizität) neue experimentelle Daten und Kennwerte ermittelt und Verständnis über das mechanische Verhalten und die Entwicklung der Mikrostruktur aufgebaut. Darüber hinaus wurde Verständnis über die Rolle von Bindefehlern und anderen typisch für AM auftretenden Gefügemerkmalen auf das Versagensverhalten von DED-L TiAl6V4 gewonnen. T2 - DGM Fachausschuss Titan CY - Liebherr-Aerospace Lindenberg GmbH, Germany DA - 12.11.2019 KW - LCF KW - Titan KW - Ti-6Al-4V KW - Ti64 KW - TiAl5V4 KW - Additive Fertigung KW - CT KW - Mikrostruktur KW - Zugeigenschaften KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49758 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Häusler, I. A1 - Schwarze, C. A1 - Umer Bilal, M. A1 - Hetaba, W. A1 - Darvishi Kamachali, Reza T1 - Age hardening of a high purity Al‐4Cu‐1Li‐0.25Mn alloy: Microstructural investigation and phase‐field simulation N2 - Research results considering the "Age Hardening of a High Purity Al‐4Cu‐1Li‐0.25Mn Alloy: Microstructural Investigation and Phase‐Field Simulation" were presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Age hardening KW - Aluminium KW - Phase-field simulation KW - Precipitates KW - Transmission electron microscopy PY - 2018 AN - OPUS4-45286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Gesell, Stephan A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Uhlemann, Patrick A1 - Skrotzki, Birgit A1 - Ganesh, R. A1 - Dude, D. P. A1 - Kuna, M. A1 - Kiefer, B. T1 - TMF-Rissverlaufsberechnung für ATL-Heißteile N2 - Die Steigerung der Leistung und des thermodynamischen Wirkungsgrades von Verbrennungsmotoren führt zu erhöhten Anforderungen an die Festigkeit abgasführender Komponenten wie z. Bsp. Abgasturbolader. Als Folge erhöhter thermomechanischer Wechselbeanspruchungen (TMF) im Betrieb kommt es an den mechanisch und/oder thermisch höchst beanspruchten Stellen der Bauteile zur Bildung von Rissen, wodurch die Lebensdauer der Komponenten begrenzt wird. Derzeit werden bei Turboladern heißgehende Bauteile mit detektierten Rissen zumeist prophylaktisch ersetzt, da die weitere Ausbreitung der Risse während des Betriebs nicht vorhergesagt werden kann. Um diese aufwändige und un- ökonomische Praxis zu vermeiden, wurde im vorliegenden Forschungsvorhaben eine rechnerische Bewertungsmethode auf Basis der experimentellen und numerischen Bruchmechanik erarbeitet, mit deren Hilfe bereits in der Auslegungsphase oder während des Betriebs die (restliche) Lebensdauer der abgasführenden Komponenten vorhergesagt werden kann. Damit wird erstmalig die quantitative Vorhersage der Rissentwicklung bei TMF-Beanspruchungsbedingungen unter Berücksichtigung großer zyklischer viskoplastischer Verformungen ermöglicht. Zentrales Ergebnis des Vorhabens ist eine automatisierte Berechnungsprozedur auf der Basis spezieller Finite-Elemente-Techniken (FEM), womit sowohl der Pfad als auch die Größe eines Risses als Funktion der Anzahl der Lastwechsel in Bauteilen unter TMF-Bedingungen berechnet werden kann. Als geeigneter Beanspruchungsparameter zur Bewertung des Rissfortschritts unter TMF wurde die zyklische Rissöffnungsverschiebung ΔCTOD verwendet. Das Werkstoffverhalten des betrachteten austenitischen Gusseisens Ni-Resist D-5S wurde mit einem validierten viskoplastischen, temperaturabhängigen Materialmodell modelliert, das zur Berücksichtigung große Verzerrungen und Rotationen am Riss erweitert wurde. Für die genaue Berechnung des ΔCTOD bei TMF wurden effiziente FEM-Techniken erarbeitet. Zur Simulation der Rissausbreitung wurde ein automatischer FEM-Algorithmus mit inkrementeller adaptiver Neuvernetzung entwickelt, bei dem die Verformungen und inelastischen Zustandsvariablen jeweils vom alten auf das neue Netz übertragen werden. Dieser Algorithmus wurde im Software-Paket ProCrackPlast implementiert, das in Verbindung mit dem kommerziellen FEM-Code Abaqus zur Lösung dreidimensionaler Rissprobleme zur Verfügung steht. Ziel der umfangreichen experimentellen Arbeiten war es, an isothermen LCF und anisothermen TMF-Versuchen mit gekerbten Flachzugproben (SENT) das Risswachstum im Temperaturbereich von 20 °C bis 700 °C zu ermitteln. Mit Hilfe begleitender 2D FEM Simulationen wurden anhand dieser Datenbasis die Rissfortschrittskurven des Werkstoffs unter Anwendung des ΔCTOD-Konzepts bestimmt und in geeigneter, parametrisierter Form den Nutzern zur Verfügung gestellt. Die Versuche an SENT-Proben wurden mit der entwickelten Software ProCrackPlast als 3D Modell simuliert. Der Vergleich der 2D und 3D Simulationen ergab einen systematischen Unterschied im CTOD und CTOD, der mit Hilfe eines Übertragungsfaktors korrigiert wurde. Der Vergleich der 3D Berechnungen mit den Experimenten zeigte eine zufriedenstellende Übereinstimmung der er- reichten Risslänge mit der Zahl der Lastzyklen im gesamten Temperaturbereich, wobei die numerische Prognose meist auf der konservativen / sicheren Seite lag. Die Übertragbarkeit der Ergebnisse der 2D Parameteridentifikation auf 3D Risskonfigurationen mit Mixed-Mode Beanspruchung ist mit zusätzlichen Versagenshypothesen verbunden, die aufgrund fehlender Versuchsdaten im Vorhaben nicht endgültig geklärt werden konnten. Zur Validierung des Gesamtkonzeptes wurden LCF-Proben mit einem bauteil- typischen Oberflächenriss experimentell und numerisch untersucht. In der Simulation konnte die komplexe Form und Größe der Rissentwicklung zufriedenstellend (richtig) vorhergesagt werden. Die Leis- tungsfähigkeit der erarbeiteten rechnerische Bewertungsmethode wurde an weiteren TMF-Beispielen vorgestellt und diskutiert. Die Software ProCrackPlast und die viskoplastische Materialroutine wurden dem Anwenderkreis des Vorhabens zusammen mit einem Nutzer-Handbuch und Verifikationsbeispielen zur Verfügung gestellt. Das Ziel des Forschungsvorhabens ist erreicht worden. KW - Abgasturbolader Heißteile KW - Numerische Simulation KW - Rissverlauf PY - 2023 VL - 1320 SP - 1 EP - 137 PB - Forschungsvereinigung Verbrennungskraftmaschinen (FVV) CY - Frankfurt am Main AN - OPUS4-56960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Uckert, Danilo A1 - Kühn, H.-J. A1 - Matzak, Kathrin A1 - Rehmer, Birgit T1 - Ermüdungsverhalten des warmfesten austenitischen Gusseisens EN-GJSA-XNiSiCr35-5-2 bei hoher Temperatur N2 - Die warmfeste austenitische Gusseisenlegierung EN-GJSA-XNiSiCr35-5-2 (häufig auch als Ni-Resist D-5S bezeichnet) wurde hinsichtlich ihres mechanischen Verhal-tens bei hoher Temperatur charakterisiert. Dazu wurden (isotherme) niederzyklische (LCF-) und (nicht-isotherme) thermomechanische Ermüdungsversuche (TMF) zwischen Raumtemperatur und 900 °C durchgeführt. Diese Ergebnisse dienten (zu-sammen mit weiteren Versuchsdaten) der Kalibrierung werkstoffmechanischer Modelle. Bei den höchsten Prüftemperaturen wurde Schädigung in Form von Kriechen beobachtet und metallographisch dokumentiert. T2 - 21. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 06.03.2019 KW - Kriechen KW - LCF KW - TMF KW - Lebensdauer KW - Ni-Resist PY - 2019 AN - OPUS4-47548 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Ermüdungsverhalten und Versagensmechanismen von additiv mittels LPA hergestelltem TiAl6V4 N2 - Die Untersuchung und Charakterisierung der Entwicklung/Änderung der Mikrostruktur, der mechanischen Eigenschaften sowie der Lebensdauer additiv gefertigter metallischer Werkstoffe hat bisher, vor allem im Hinblick auf die komplexe Belastungsfälle bei sicherheitsrelevanten Anwendungen, mit der rasanten Entwicklung der Fertigungstechniken nicht Schritt gehalten. Im Rahmen dieser Arbeit wurde eine Charakterisierung des Ermüdungsverhaltens von additiv gefertigten TiAl6V4 im Low-Cycle-Fatigue Bereich (niederzyklische Ermüdung) nach Norm ISO 12206 mit Dehnungsamplituden von 0.3 bis zu 1.0 % und bei Raumtemperatur, 250°C und 400°C durchgeführt. Die TiAl6V4 Proben wurden aus zylindrischen Halbzeugen gefertigt, welche durch Laser-Pulver-Auftragsschweißen mit einer optimierten Aufbaustrategie hergestellt wurden. Die optimierte Aufbaustrategie beinhaltet variierende Spurüberlappungsgraden, die die Fertigung der dünnen zylindrischen Körper ohne weitere Ausgleichslagen ermöglicht. Das Werkstoffverhalten wird anhand von Wechselverformungskurven sowie einer Darstellung der Lebensdauer in einem Wöhler-Diagramm beschrieben. Ein Fitting der Lebensdauer-Daten erfolgt anhand der Manson-Coffin-Basquin Beziehung. Eine Eingangscharakterisierung der mikrostrukturellen Merkmale inklusive Bindefehler aus dem Herstellungsprozess wird durch Lichtmikroskopie und hochauflösende Computertomographie (CT) durchgeführt. Der Versagensmechanismus während der Belastung wird anhand von Zwischenuntersuchungen mit CT und einem unterbrochenen Versuch mit ausgewählten Versuchsparametern beschrieben. Nach dem Versagen wurden die Proben am REM, mit Lichtmikroskopie und mit CT fraktographisch in Längs- und Querrichtung untersucht. Die erfassten Lebensdauern sind ähnlich zu denen aus herkömmlichen Studien und liegen unter derjenigen von dem konventionell hergestellten (geschmiedeten) Werkstoff. In dieser Arbeit wurden für den untersuchten Werkstoff bei anwendungs- und sicherheitsrelevanten Belastungszuständen (hohe Temperaturen, zyklische Plastizität) neue experimentelle Daten und Kennwerte ermittelt und Verständnis über das mechanische Verhalten und die Entwicklung der Mikrostruktur aufgebaut. Darüber hinaus wurde Verständnis über die Rolle von Bindefehlern und anderen typisch für AM auftretenden Gefügemerkmalen auf das Versagensverhalten von DED-L TiAl6V4 gewonnen. T2 - Werkstoffwoche 2019 CY - Dresden, Germany DA - 18.09.2019 KW - Titan KW - TiAl5V4 KW - Ti-6Al-4V KW - Ti64 KW - Additive Fertigung KW - CT KW - Mikrostruktur KW - Zugeigenschaften KW - Low Cycle Fatigue KW - LCF PY - 2019 AN - OPUS4-49755 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -