TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Sintering and foaming of bioactive glasses JF - Journal of American Ceramic Society N2 - Sintering, crystallization, and foaming of 44.8SiO2–2.5P2O3–36.5CaO–6.6Na2O–6.6K2O–3.0CaF2 (F3) and 54.6SiO2–1.7P2O3–22.1CaO–6.0Na2O–7.9K2O–7.7MgO (13–93) bioactive glass powders milled in isopropanol and CO2 were studied via heating microscopy, differential thermal analysis, vacuum hot extraction (VHE), Infrared spectroscopy, and time-of-flight secondary ion mass spectrometry. Full densification was reached in any case and followed by significant foaming. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750◦C, which hints on a thermally very stable species or mechanical trapping. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. KW - Bioactive Glass KW - Crystallization KW - Foaming KW - Sintering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552454 DO - https://doi.org/10.1111/jace.18626 SN - 0002-7820 SP - 1 EP - 11 PB - Wiley online library AN - OPUS4-55245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tielemann, Christopher A1 - Busch, R. A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Avramov, I. A1 - Müller, Ralf T1 - Oriented surface nucleation in diopside glass JF - Journal of Non-Crystalline Solids N2 - Es wird die Texturbildung in kristallisierendem Diopsidglas im Zusammenhang mit der Oberflächenbeschaffenheit der unbehandelten Probe untersucht. Zudem wird der diskutiert, dass es sich bei der Texturbildung in Gläsern höchstwahrscheinlich um ein Nukleationsphänomen handelt welches auf die richtungsabhängige Grenzflächenenergie der kristallisierenden Phase zurückzuführen ist. N2 - Oriented surface crystallization on polished diopside glass surfaces has been studied with scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and laser scanning microscopy. An orientation preference of [001] parallel to the glass surface was detected for separately growing diopside crystals even as small as 700 nm in size. This finding shows that crystal orientation occurs in the outermost surface layer without crystal-crystal interaction and indicates that the crystal orientation is a result of oriented nucleation. Depending on surface preparation, monomodal crystal orientation distributions with [100] perpendicular to the surface or bimodal distributions with [100] and [010] perpendicular to the glass Surface were detected. It was also shown that the degree of crystal orientation increases with decreasing Surface roughness. The observed orientation of diopside crystals could be explained in terms of the interfacial energies of different crystal faces. KW - Surface energy KW - Glass ceramic KW - Glass KW - EBSD KW - Diopsid PY - 2021 UR - https://www.sciencedirect.com/science/article/pii/S002230932100020X DO - https://doi.org/10.1016/j.jnoncrysol.2021.120661 SN - 0022-3093 VL - 562 PB - Elsevier B.V. AN - OPUS4-53073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Patzig, C. A1 - Krause, M. A1 - Höche, T. T1 - Sample preparation for analytical scanning electron microscopy using initial notch sectioning JF - Micron N2 - A novel method for broad ion beam based sample sectioning using the concept of initial notches is presented. An adapted sample geometry is utilized in order to create terraces with a well-define d step in erosion depth from the surface. The method consists of milling a notch into the surface, followed by glancing-angle ion beam erosion, which leads to preferential erosion at the notch due to increased local surface elevation. The process of terrace formation can be utilized in sample preparation for analytical scanning electron microscopy in order to get efficient access to the depth-dependent microstructure of a material. It is demonstrated that the method can be applied to both conducting and non-conducting specimens. Furthermore, experimental parameters influencing the preparation success are determined. Finally, as a proof-of-concept, an electron backscatter diffraction study on a surface crystallized diopside glass ceramic is performed, where the method is used to analyze orientation dependent crystal growth phenomena occurring during growth of surface crystals into the bulk. KW - 3D etching KW - Ion beam erosion Sectioning KW - EBSD KW - Sample preparation KW - Analytical scanning electron microscopy KW - SEM KW - Glass Ceramic KW - Glass KW - Diopsid PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103090 SN - 0968-4328 VL - 150 PB - Elsevier B.V. AN - OPUS4-53075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants JF - Advanced Engineering Materials N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531227 DO - https://doi.org/10.1002/adem.202100445 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses JF - Journal of non-crystalline solids N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Silver dissolution and precipitation in an Na2O–ZnO–B2O3 metallization paste glass JF - International Journal of Applied Glass Science N2 - Thermally stimulated interactions between silver and glass, that is, silver dissolution as Ag+ and precipitation as Ag0 were studied in two glass series of molar target composition xAg2O–(19 − x)Na2O–28ZnO–53B2O3 with x = 0, 0.1, 0.5, 5 and (19Na2O–28ZnO–53B2O3)+yAg2O with y = 0.01, 0.05. These act as model for low-melting borate glasses being part of metallization pastes. The occurrence of metallic silver precipitates in melt-quenched glass ingots demonstrated that silver dissolved only in traces (< 0.01 mol%) in the glasses. The dissolved silver was detected by means of Raman spectroscopy and energy-dispersive X-ray spectroscopy. Increasing x in the batch could not lead to a significant increase of the silver ion fraction in the glass as possible in binary silver borate glasses. In situ observation of heated AgNO3 mixed with the base glass frit in a hot stage microscope showed that Ag0 precipitation occurs already at the solid state. At higher temperatures, small droplets of liquid silver were found to move freely within the melt, whereas coalescence caused a stepwise increase of their size. These results contribute to the understanding of formation of silver precipitates in metallization pastes described in the literature. KW - Silver metallization paste KW - Batch reactions KW - Borate KW - Glass forming melts KW - Glass manufacturing KW - Raman spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559433 DO - https://doi.org/10.1111/ijag.16613 SN - 2041-1286 SP - 1 EP - 11 PB - Wiley Online Library AN - OPUS4-55943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prewitz, M. A1 - Gaber, M. A1 - Müller, Ralf A1 - Marotzke, C. A1 - Holtappels, Kai T1 - Polymer coated glass capillaries and structures for high-pressure hydrogen storage: Permeability and hydrogen tightness JF - International journal of hydrogen energy N2 - The hydrogen tightness of high-pressure hydrogen storage is a Basic criterion for long-term storage. The H2 permeation coefficients of epoxy resin and a glass lacquer were determined to enable the geometric optimization of a glass capillary storage. It was found that the curing conditions have no significant influence on the H2 permeation coefficient of resin. The H2 permeation coefficient of epoxy resin is only about three orders of Magnitude greater than that of borosilicate glass. This suggests that the initial pressure of 700 bar takes about 2.5 years to be halved in capillary array storage. Therefore, a high-pressure hydrogen storage tank based on glass capillaries is ideally suited for long-term storage in mobile applications. KW - Permeability KW - Glass capillaries KW - Coating KW - Hydrogen storage KW - Long-term calculation KW - Epoxy resin PY - 2018 DO - https://doi.org/10.1016/j.ijhydene.2017.12.092 SN - 0360-3199 VL - 43 IS - 11 SP - 5637 EP - 5644 PB - Elsevier AN - OPUS4-44327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Master curve for viscous crack healing JF - Materials Letters N2 - A novel method to generalize kinetic data of viscous crack healing in glasses is proposed. The method assumes that crack healing progress is proportional to the healing time, t, and indirect proportional to viscosity, n. This way, crack length and crack width data, normalized to the initial crack length and plotted versus t/n, allow to compare crack healing progress for different cracks and healing temperatures in a master curve. Crack healing experiments conducted in this study demonstrate the applicability of this method for a commercial microscope slide glass. KW - Crack healing KW - Glass KW - Master curve KW - Vickers indentation PY - 2018 DO - https://doi.org/10.1016/j.matlet.2017.12.082 SN - 0167-577X SN - 1873-4979 VL - 216 SP - 110 EP - 112 PB - Elsevier AN - OPUS4-44300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wisniewski, W. A1 - Thieme, C. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Groß-Barsnick, S.-M. A1 - Rüssel, C. T1 - Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO2 mol% glass used for SOFC seals JF - CrystEngComm N2 - A glass of the composition 37BaO·16CaO·47SiO2 wt% produced on an industrial scale is crystallized at 970 °C for times ranging from 15 min to 2 h. The crystallization at the immediate surface as well as the crystal growth into the bulk are analyzed using scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) as well as X-ray diffraction in the Θ–2Θ setup (XRD). The immediate surface shows the oriented nucleation of walstromite as well as the formation of wollastonite and an unknown phase of the composition BaCaSi3O8. All three phases also grow into the bulk where walstromite ultimately dominates the kinetic selection and grows throughout the bulk due to a lack of bulk nucleation. Walstromite shows systematic orientation changes as well as twinning during growth. A critical analysis of the XRD-patterns acquired from various crystallized samples indicates that their evaluation is problematic and that phases detected by XRD in this system should be verified by another method such as EDXS. KW - Glass KW - Surface nucleation KW - Orientation KW - EBSD PY - 2018 DO - https://doi.org/10.1039/c7ce02008b VL - 20 IS - 6 SP - 787 EP - 795 PB - Royal Society of Chemistry AN - OPUS4-44405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Meyer, Christian A1 - Müller, Ralf A1 - Günster, Jens T1 - Sand erosion of solar glass: Specific energy uptake, total transmittance, and module efficiency JF - International Journal of Energy Research N2 - Surface roughness, R Z , normal transmittance, Τ N , total transmittance, Τ T , and photovoltaic (PV) module efficiency, η S , were measured for commercial solar glass plates and PV test modules identically sandblasted with different loads of quartz sand (200 – 400 μ m), impact inclination angles, and sand particle speed. Measured data are presented versus the specific energy uptake during sand blasting, E (J/m2). Cracks, adhering particles, and scratch ‐ like textures probably caused by plastic flow phenomena could be observed after sand blasting. Their characteristic size was much smaller than that of sand particles. After blasting and subsequent cleaning, the glass surface was still covered with adhering glass particles. These particles, cracks, and scratch ‐ like textures could not be removed by cleaning. For sand blasting with α = 30° inclination angle and E = 30 000 J/m2, normal transmittance, total transmittance, and relative module efficiency decreased by 29%, 2% and ∽ 2%, respectively. This finding indicates that diffusive transmission of light substantially contributes to PV module efficiency and that the module efficiency decrease caused by sand erosion can be better estimated from total than by normal transmittance measurements. KW - Transmittance KW - Efficiency KW - Photovoltaic modules KW - Roughness KW - Sand blasting PY - 2018 DO - https://doi.org/10.1002/er.3930 SN - 1099-114X SN - 0363-907X VL - 42 IS - 3 SP - 1298 EP - 1307 PB - Wiley & Sons, Ltd. AN - OPUS4-44157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -