TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Knauer, S. T1 - Factors Influencing Droplet Corrosion in Dense Phase CO2 T2 - Proceedings NACE International Corrosion Conference 2019 N2 - Recent studies have shown that even at a very low concentration of impurities (less than 100 ppmv of SO2, NO2, O2 and H2O) the droplet formation and condensation of sulfuric and nitric acids in dense phase CO2 are possible and observable. To reveal the mechanism of droplet corrosion in dense phase CO2 at high pressure and low temperature, further studies on factors that affect wettability and resulting corrosion behaviors of transport pipeline steels are needed. In this study, effects of surface morphology were investigated by varying surface roughness of carbon steel coupons exposed to CO2 stream containing impurities to measure the wettability by contact angle and to observe the condensation as well as possible droplet corrosion that followed. Other considered factors were: pH of the droplet, temperature, droplet volume, and exposure time. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - CCUS KW - Dense phase KW - CO2 KW - Droplet KW - Corrosion KW - Condensation KW - Carbon steel PY - 2019 SP - 13017-1 EP - 13017-13 PB - NACE International CY - Houston AN - OPUS4-47915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. L. A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Pöllmann, H. A1 - Lempp, C. A1 - Menezes, F. F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – Impacts of variable CO2 stream compositions on transport, injection and storage JF - International journal of greenhouse gas control N2 - To set up recommendations on how to define “reasonable minimum composition thresholds” for CO2 streams to access CO2 pipeline networks, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the CCS chain. All investigations were based on a generic “CCS cluster scenario” in which CO2 streams captured from a spatial cluster of eleven emitters (seven fossil-fired power plants, two cement plants, one refinery and one steel mill) are collected in a regional pipeline network. The resulting CO2 stream (19.78 Mio t impure CO2 per year) is transported in a trunk line (onshore and offshore) and injected into five generic replicate storage structures (Buntsandstein saline aquifers) offshore. Experimental investigations and modeling of selected impacts revealed beneficial as well as adverse impacts of different impurities and their combinations. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the considered variable compositions and mass flow rates were observed. We recommend to define minimum composition thresholds for each specific CCS project through limiting i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of concentrations of critical impurities, and defining impurity combinations to be avoided. KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543004 DO - https://doi.org/10.1016/j.ijggc.2022.103589 SN - 1750-5836 VL - 114 SP - 1 EP - 14 PB - Elsevier CY - New York, NY AN - OPUS4-54300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Bäßler, Ralph T1 - Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C JF - Coatings N2 - Al2O3 has been widely used as a coating in industrial applications due to its excellent chemical and thermal resistance. Considering high temperatures and aggressive mediums exist in geothermal systems, Al2O3 can be a potential coating candidate to protect steels in geothermal applications. In this study, γ-Al2O3 was used as a coating on martensitic steels by applying AlOOH sol followed by a heat treatment at 600 °C. To evaluate the coating application process, one-, two-, and three-layer coatings were tested in the artificial North German Basin (NGB), containing 166 g/L Cl−, at 150 °C and 1 MPa for 168 h. To reveal the stability of the Al2O3 coating in NGB solution, three-layer coatings were used in exposure tests for 24, 168, 672, and 1296 h, followed by surface and cross-section characterization. SEM images show that the Al2O3 coating was stable up to 1296 h of exposure, where the outer layer mostly transformed into boehmite AlOOH with needle-like crystals dominating the surface. Closer analysis of cross-sections showed that the interface between each layer was affected in long-term exposure tests, which caused local delamination after 168 h of exposure. In separate experiments, electrochemical impedance spectroscopy (EIS) was performed at 150 °C to evaluate the changes of coatings within the first 24 h. Results showed that the most significant decrease in the impedance is within 6 h, which can be associated with the electrolyte penetration through the coating, followed by the formation of AlOOH. Here, results of both short-term EIS measurements (up to 24 h) and long-term exposure tests (up to 1296 h) are discussed. KW - Al2O3 KW - Geothermal KW - Martensitic steels KW - Behmite KW - Corrosion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525551 DO - https://doi.org/10.3390/coatings11050526 SN - 2079-6412 VL - 11 IS - 5 SP - 526 PB - MDPI CY - Basel AN - OPUS4-52555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels T2 - CORROSION 2018 N2 - This work examined the droplet corrosion of CO2 pipeline steels caused by impurities in CO2 supercritical/dense phase at 278 K, simulating the underground transport condition. The wetting properties of carbon steels (X52 and X70) as well as martensitic steel UNS S41500, and superaustenite UNS N08031 were studied by contact angle measurement, revealing reactive wetting behavior of carbon steels. Exposure tests with CO2 saturated water droplet on steel surface showed that the impurities (220 ppmv SO2 and 6700 ppmv O2) diffused into the droplet and then reacted with metal coupons in supercritical/dense phase condition, forming the corrosion product instantly during pumping process. Due to the active wetting behavior, the carbon steels suffered from heavily attack, while negligible corrosion product was observed in cases of martensitic steel UNS S41500 and superaustenite UNS 08031 coupons. Condensation experiments that were carried out on fresh polished coupons in CO2 with 1200 ppmv H2O showed that the formation and aggregation of droplet is dependent on the presence of impurities. Without SO2 and O2, the same concentration of H2O did not cause observable corrosion process after a week of exposure. With 220 ppmv SO2 and 6700 ppmv O2 even low water concentration (5-30 ppmv) still resulted in heterogeneous nucleation and subsequent growth of droplets, leading to corrosive process on carbon steel surface albeit to a lesser extent. T2 - CORROSION 2018 CY - Phoenix, AZ, USA DA - 15.04.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 SP - Paper 10845, 1 EP - 11 PB - NACE International Publications Division CY - Houston, Texas, USA AN - OPUS4-44798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S. A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS 08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 µL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE 2018 CY - Phoenix, Arizona, USA DA - 15.04.2018 KW - Droplet corrosion KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel PY - 2018 AN - OPUS4-44767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of CO2 injection pipe steels: Role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Corrosion KW - Carbon steel KW - Mortel KW - Crevice corrosion PY - 2019 AN - OPUS4-49105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Knauer, S. A1 - Yevtushenko, O. T1 - CO2-stream impurities and their effects on corrosion susceptibility of materials to be used in CCUS systems N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions. Crucial points for a sustainable and future-proof CCUS system are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Recent studies have shown that even at a very low concentration of impurities, condensation of sulfuric and nitric acids in dense phase CO2 are possible and observable. Thus, impact of impure CO2 stream toward corrosion susceptibility of materials to be used in CCUS system need to be considered. In this talk, basing on results achieved from two German long-term projects (COORAL and CLUSTER), the dominating impurities of the CO2 stream and corrosion mechanisms are addressed. Investigations cover the whole CCUS process chain and provide a material recommendation for certain parts. T2 - Corrosion in Low-Carbon Energies - IFPEN-Lyon CY - Online meeting DA - 03.11.2020 KW - Corrosion KW - CCUS KW - Carbon dioxide PY - 2020 AN - OPUS4-51509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kratzig, A. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Menneken, M. A1 - Bäßler, Ralph T1 - Early Stage of Corrosion Formation on Pipeline Steel X70 Under Oxyfuel Atmosphere at Low Temperature JF - Processes N2 - The early stage of corrosion formation on X70 pipeline steel under oxyfuel atmosphere was investigated by applying a simulated gas mixture (CO2 containing 6700 ppmv O2, 100 ppmv NO2, 70 ppmv SO2 and 50 ppmv H2O) for 15 h at 278 K and ambient pressure. Short-term tests (6 h) revealed that the corrosion starts as local spots related to grinding marks progressing by time and moisture until a closed layer was formed. Acid droplets (pH 1.5), generated in the gas atmosphere, containing a mixture of H2SO4 and HNO3, were identified as corrosion starters. After 15 h of exposure, corrosion products were mainly X-ray amorphous and only partially crystalline. In-situ energy-dispersive X-ray diffraction (EDXRD) results showed that the crystalline fractions consist primarily of water-bearing iron sulfates. Applying Raman spectroscopy, water-bearing iron nitrates were detected as subordinated phases. Supplementary long-term tests exhibited a significant increase in the crystalline fraction and formation of additional water-bearing iron sulfates. All phases of the corrosion layer were intergrown in a nanocrystalline network. In addition, numerous globular structures have been detected above the corrosion layer, which were identified as hydrated iron sulphate and hematite. As a type of corrosion, shallow pit formation was identified, and the corrosion rate was about 0.1 mma−1. In addition to in-situ EDXRD, SEM/EDS, TEM, Raman spectroscopy and interferometry were used to chemically and microstructurally analyze the corrosion products. KW - Corrosion KW - CCUS KW - In-situ ED-XRD KW - CO2 pipeline transport KW - Oxyfuel KW - Carbon steel KW - Impurities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506303 DO - https://doi.org/10.3390/pr8040421 SN - 2227-9717 VL - 8 IS - 4 SP - 421-1 EP - 421-19 PB - MDPI CY - Basel AN - OPUS4-50630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Knauer, S. T1 - Droplet corrosion of CO2 transport pipeline steels T2 - Conference Proceedings NACE International Corrosion Conference 2018 N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS N08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 μL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2 ), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO2 KW - Polyaniline KW - Corrosion PY - 2018 SP - 10845, 1 EP - 11 PB - Omnipress CY - Houston AN - OPUS4-44917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Effect of CO2 gas on carbon steel corrosion in an acidic-saline based geothermal fluid T2 - Electronic Proceedings Eurocorr 2019 N2 - Geothermal energy is one of the most promising energy resources to replace fossil fuel. To extract this energy, hot fluids of various salts and gases are pumped up from a geothermal well having a certain depth and location. Geothermal wells in volcanic regions often contain highly corrosive CO2 and H2S gases that can be corrosive to the geothermal power-plants, which are commonly constructed of different steels, such as carbon steel. This research focuses on the corrosion behaviour of carbon steel exposed to an artificial geothermal fluid containing CO2 gas, using an artificial acidic-saline geothermal brine as found in Sibayak, Indonesia. This medium has a pH of 4 and a chloride content of 1,500 mg/L. Exposure tests were conducted for seven days at 70 °C and 150 °C to simulate the operating temperatures for low and medium enthalpy geothermal sources. Surface morphology and cross-section of the specimens from the above experiments were analysed using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical tests via open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were performed to understand the corrosion processes of carbon steel in CO2-containing solution both at 70 °C and 150 °C. Localized corrosion was observed to a greater extent at 70 °C due to the less protectiveness of corrosion product layer compared to that at 150 °C, where FeCO3 has a high corrosion resistance. However, a longer exposure test for 28 days revealed the occurrence of localized corrosion with deeper pits compared to the seven-day exposed carbon steel. In addition, corrosion product transformation was observed after 28 days, indicating that more Ca2+ cations incorporate into the FeCO3 structure. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon steel KW - CO2 KW - EIS KW - Geothermal KW - Corrosion PY - 2019 SP - Paper 200245, 1 EP - 5 CY - Madrid, Spain AN - OPUS4-49099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -