TY - JOUR A1 - Epishin, A.I. A1 - Nolze, Gert A1 - Alymov, M.I. T1 - Pore Morphology in Single Crystals of a Nickel-Based Superalloy After Hot Isostatic Pressing N2 - The morphology of pores partially shrunk during a half-hour HIP at temperature of 1288 °C and pressure of 103 MPa has been investigated in nickel-based superalloy CMSX-4. The investigation resulted in the following findings: surrounding the shrinking pores by a c¢-shell (Ni3Al), faceting of the pores surface by {023} and {011} planes, and formation the submicroscopic satellite pores connected by channels with the neighboring larger pores. It is assumed that the formation of the c¢-shell around the pores and the faceting of the pore surface is due to diffusion processes occurring during pore shrinkage, and therefore these findings can be considered as arguments supporting the vacancy model of pore annihilation. The submicroscopic satellite pores are expected to be the result of dividing the casting pores of a complex initial shape during their shrinking. The connecting channels are probably required for the gas to escape from the rapidly shrinking small satellite pores into the slowly shrinking large pore. Thus, it is reasonable to assume that the casting pores may contain some amount of gas. KW - HIP KW - Superalloy KW - Porosity KW - Faceting KW - negative crystal growth PY - 2022 U6 - https://doi.org/10.1007/s11661-022-06893-x SN - 1073-5623 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-56409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Cheng, J. A1 - Liang, S. B. A1 - Ke, C. B. A1 - Cao, S. S. A1 - Zhang, X. P. A1 - Zizak, I. A1 - Manzoni, Anna Maria A1 - Yu, J. M. A1 - Wanderka, N. A1 - Li, W. T1 - Formation and evolution of hierarchical microstructures in a Ni-based superalloy investigated by in situ high-temperature synchrotron X-ray diffraction N2 - Hierarchical microstructures are created when additional γ particles form in γ’ precipitates and they are linked to improved strength and creep properties in high-temperature alloys. Here, we follow the formation and evolution of a hierarchical microstructure in Ni86.1Al8.5Ti5.4 by in situ synchrotron X-ray diffraction at 1023 K up to 48 h to derive the lattice parameters of the γ matrix, γ’ precipitates and γ particles and misfits between phases. Finite element method-based computer simulations of hierarchical microstructures allow obtaining each phase's lattice parameter, thereby aiding peak identification in the in situ X-ray diffraction data. The simulations further give insight into the heterogeneous strain distribution between γ’ precipitates and γ particles, which gives rise to an anisotropic diffusion potential that drives the directional growth of γ particles. We rationalize a schematic model for the growth of γ particles, based on the Gibbs-Thomson effect of capillary and strain-induced anisotropic diffusion potentials. Our results highlight the importance of elastic properties, elastic anisotropy, lattice parameters, and diffusion potentials in controlling the behavior and stability of hierarchical microstructures. KW - XRD KW - Superalloy KW - Finite element method KW - Transmission electron microscopy PY - 2022 U6 - https://doi.org/10.1016/j.jallcom.2022.165845 SN - 0925-8388 VL - 919 SP - 1 EP - 17 PB - Elsevier CY - Lausanne AN - OPUS4-55394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -