TY - JOUR A1 - Nadammal, Naresh A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Haberland, C. A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing N2 - Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies. KW - Additive manufacturing KW - Laser powder bed fusion KW - Nickel-based superalloys KW - Scan strategies KW - Residual stresses KW - Microstructure and texture PY - 2021 U6 - https://doi.org/10.1016/j.addma.2020.101792 VL - 38 SP - 1792 PB - Elsevier B.V. AN - OPUS4-51944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treninkov, I. A. A1 - Petrushin, N. V. A1 - Epishin, A. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - Experimental Determination of Temperature Dependence of Structural–Phase Parameters of Nickel-Based Superalloy N2 - The temperature dependences of the periods of the crystal lattices of the γ and γ' phases, their dimensional mismatch (misfit), and volume fraction of the γ' phase of an experimental single-crystal hightemperature nickel-based alloy have been determined by X-ray diffraction analysis in the temperature range of 18–1150°C. The temperature ranges in which intense changes in the structural and phase characteristics of the alloy under study take place have been determined. KW - X-ray diffraction analysis KW - High temperatures KW - Nickel-based superalloys KW - Single crystal KW - Crystal lattice period PY - 2022 U6 - https://doi.org/10.1134/s2075113322010373 SN - 2075-1133 VL - 13 IS - 1 SP - 171 EP - 178 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-54466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrushin, N. V. A1 - Epishin, A. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. A1 - Solov'ev, A. E. T1 - Influence of the Sign of the γ/γ' Misfit on the Structure and Creep Strength of Single Crystals of Nickel-Based Superalloys N2 - Using the method of directional solidification, single crystals of experimental nickel-based superalloys with negative, zero, and positive γ/γ' misfits are obtained. The γ' solvus, solidus, and liquidus temperatures of the alloys are determined, and the microstructures of the alloys after directional solidification, heat treatment, and creep tests are investigated. Creep tests are performed at temperatures of 800 and 1000°C. It is found that single crystals of the alloy with a negative γ/γ' misfit have the highest creep resistance and lifetime (the crystal lattice period of the γ' phase is smaller than that of the γ matrix). KW - Nickel-based superalloys KW - Single crystal KW - Creep KW - Creep strength KW - Microstructure, γ/γ' misfit PY - 2023 U6 - https://doi.org/10.1134/s207511332301029x SN - 2075-1133 VL - 14 IS - 1 SP - 13 EP - 22 AN - OPUS4-59505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -