TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Silver dissolution and precipitation in an Na2O–ZnO–B2O3 metallization paste glass N2 - Thermally stimulated interactions between silver and glass, that is, silver dissolution as Ag+ and precipitation as Ag0 were studied in two glass series of molar target composition xAg2O–(19 − x)Na2O–28ZnO–53B2O3 with x = 0, 0.1, 0.5, 5 and (19Na2O–28ZnO–53B2O3)+yAg2O with y = 0.01, 0.05. These act as model for low-melting borate glasses being part of metallization pastes. The occurrence of metallic silver precipitates in melt-quenched glass ingots demonstrated that silver dissolved only in traces (< 0.01 mol%) in the glasses. The dissolved silver was detected by means of Raman spectroscopy and energy-dispersive X-ray spectroscopy. Increasing x in the batch could not lead to a significant increase of the silver ion fraction in the glass as possible in binary silver borate glasses. In situ observation of heated AgNO3 mixed with the base glass frit in a hot stage microscope showed that Ag0 precipitation occurs already at the solid state. At higher temperatures, small droplets of liquid silver were found to move freely within the melt, whereas coalescence caused a stepwise increase of their size. These results contribute to the understanding of formation of silver precipitates in metallization pastes described in the literature. KW - Silver metallization paste KW - Batch reactions KW - Borate KW - Glass forming melts KW - Glass manufacturing KW - Raman spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559433 DO - https://doi.org/10.1111/ijag.16613 SN - 2041-1286 SP - 1 EP - 11 PB - Wiley Online Library AN - OPUS4-55943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf T1 - Alkali and alkaline earth zinc and lead borate glasses: Sintering and crystallization N2 - Glasses in the systems Me2O-ZnO-B2O3 with Me = Li, Na, K, Rb (MeZB), Na2O-ZnO-CuO-B2O3 (NZCuB), CaO-ZnO-B2O3 (CaZB), and Li2O-PbO-B2O3 (LPbB) as a reference, were studied by differential thermal analysis, dilatometry, rotational viscometry, and heating microscopy. A decrease of viscosity and sintering range was found with decreasing number of fourfold coordinated boron. The viscosity of the alkali zinc borate glasses varies only slightly. LPbB and CaZB stand out by their reduced and increased viscosities, respectively. Sodium, potassium, and calcium zinc borate glasses possess a fragility above 76. All glasses were sintered to full density before crystallization. Mostly binary zinc borate phases govern crystallization. A ternary crystalline phase was detected only in the potassium containing sample. The Weinberg glass stability parameter ranges between 0.07 and 0.12. This is caused by the presence of several crystalline phases and varying melting points of even the same crystalline phase in different glass matrices. KW - Alkali zinc borate glasses KW - Lead borate glasses KW - Viscosity KW - Sintering KW - Crystallization KW - Fragility PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556128 DO - https://doi.org/10.1016/j.nocx.2022.100116 SN - 2590-1591 VL - 15 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-55612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne T1 - Alkali and alkaline earth zinc and lead borate glasses: Structure and properties N2 - Low melting Li2O-PbO-B2O3, Me2O-ZnO-B2O3, Me = Li, Na, K, Rb and CaO-ZnO-B2O3 glasses were studied with Raman and infrared spectroscopies to advance the structural understanding of zinc borate glasses as potential candidates for substitution of lead containing glasses. Although the effect of type of alkali ions on the number (N4) of fourfold coordinated boron (B4) in the glasses is small, the alkali ions direct the type of borate groups, i.e., pentaborate in lithium, sodium, and calcium zinc borate glasses, as well as diborate in potassium and rubidium containing ones. Both groups were simultaneously found in Li2O-PbO-B2O3. Alkali ions are mainly responsible for the formation of B4-units and metaborate. Zinc ions favorably compensate non-bridging oxygen and partially form ZnO4. With decreasing N4 and field strength of the alkali ions the atomic packing density, glass transition temper ature and Young’s Modulus also decrease. The coefficient of thermal expansion increases with decreasing N4. KW - Raman spectroscopy KW - IR spectroscopy KW - Alkali zinc borate glasses KW - Lead borate glasses KW - Physical properties KW - Young’s Modulus PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556109 DO - https://doi.org/10.1016/j.nocx.2022.100109 SN - 2590-1591 VL - 15 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-55610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -