TY - JOUR A1 - Riechers, Birte A1 - Roed, L. A1 - Mehri, S. A1 - Ingebrigtsen, T. A1 - Hecksher, T. A1 - Dyre, J. A1 - Niss, K. T1 - Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time JF - Science advances N2 - The noncrystalline glassy state of matter plays a role in virtually all fields of materials science and offers complementary properties to those of the crystalline counterpart. The caveat of the glassy state is that it is out of equilibrium and therefore exhibits physical aging, i.e., material properties change over time. For half a century, the physical aging of glasses has been known to be described well by the material-time concept, although the existence of a material time has never been directly validated. We do this here by successfully predicting the aging of the molecular glass 4-vinyl-1,3-dioxolan-2-one from its linear relaxation behavior. This establishes the defining property of the material time. Via the fluctuation-dissipation theorem, our results imply that physical aging can be predicted from thermal-equilibrium fluctuation data, which is confirmed by computer simulations of a binary liquid mixture. KW - Physical aging KW - Equilibrium relaxation KW - Glass PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546015 DO - https://doi.org/10.1126/sciadv.abl9809 SN - 2375-2548 VL - 8 IS - 11 SP - 1 EP - 8 PB - American Association for the Advancement of Science CY - Washington, DC AN - OPUS4-54601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lunkenheimer, P. A1 - Loidl, A. A1 - Riechers, Birte A1 - Zaccone, A. A1 - Samwer, K. T1 - Thermal expansion and the glass transition JF - Nature Physics N2 - Melting is well understood in terms of the Lindemann criterion, which essentially states that crystalline materials melt when the thermal vibrationsof their atoms become so vigorous that they shake themselves free of the binding forces. This picture does not necessarily have to hold for glasses, where the nature of the solid–liquid cross-over is highly debated. The Lindemann criterion implies that the thermal expansion coefficients of crystals are inversely proportional to their melting temperatures. Here we find that, in contrast, the thermal expansion coefficient of glasses decreases more strongly with increasing glass temperature, which marks the liquid–solid cross-over in this material class. However, this proportionality returns when the thermal expansion coefficient is scaled by the fragility, a measure of particle cooperativity. Therefore, for a glass to become liquid, it is not sufficient to simply overcome the interparticle binding energies. Instead, more energy must be invested to break up the typical cooperative particle network that is common to glassy materials. The thermal expansion coefficient of the liquid phase reveals similar anomalous behaviour and is universally enhanced by a constant factor of approximately 3. These universalities allow the estimation of glass temperatures from thermal expansion and vice versa. KW - Glass transition KW - Lindemann criterion KW - Thermal expansion KW - Glass PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570267 DO - https://doi.org/10.1038/s41567-022-01920-5 SN - 1745-2473 SP - 1 EP - 7 PB - Nature Publishing Group CY - London AN - OPUS4-57026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -