TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Umgebungsinduzierte Spannungsrissbildung (ESC) von PE-HD induziert durch äußerliche Einwirkung organischer Flüssigkeiten N2 - Polyethylen hoher Dichte (PE-HD) wird als Werkstoff für Rohre und Behälter für den Transport und zur Lagerung von Gefahrgütern verwendet. Für die Beurteilung und technische Freigabe dieser Materialien ist insbesondere das Verständnis des Schädigungsmechanismus des langsamen, umgebungsbedingten Spannungsrisses (engl.: „environmental stress cracking“, ESC) essentiell. ESC tritt bei relativ geringen auf einen Werkstoff einwirkenden mechanischen Spannungen auf. An lokalen Fehlstellen (z.B. Defekte, Inhomogenitäten, Kerben) beginnend wächst ein Riss langsam durch das Material und führt nach gewisser Zeit zu einem charakteristischen, pseudo-spröden Bruch. Dabei wird das Risswachstum durch äußere Medieneinwirkung zusätzlich entscheidend beeinflusst. Dieses langsame Risswachstum wird als Hauptursache für das plötzliche und unerwartete Versagen von Polymerwerkstoffen angesehen. Eine etablierte Prüfmethode zur Bewertung des Materialverhaltens gegenüber dieses Schädigungsmechanismus ist der Full-Notch Creep Test (FNCT), der für PE-HD Behältermaterialien üblicherweise unter Verwendung von wässrigen Netzmittellösungen (Arkopal N 100) durchgeführt wird. Die aus dem FNCT erhaltene Standzeit dient dabei als Bewertungskriterium für verschiedene PE-HD-Werkstoffe. In einer Studie wurden neben einer typischen Arkopal-N-100-Netzmittellösung praktisch relevante, organische Flüssigkeiten wie Biodiesel und Diesel als Testmedien verwendet, um deren Einfluss auf das ESC-Verhalten von PE-HD-Behältermaterialien zu charakterisieren. Neben der klassischen Standzeit-Auswertung erfolgte eine erweiterte Bruchflächenanalyse mittels Licht- (LM), Laserscanning- (LSM) und Rasterelektronenmikroskopie (REM). Insbesondere die LSM erlaubt eine schnelle und einfache Unterscheidung pseudo-spröder und duktiler Bruchbilder, die zur Beurteilung der Repräsentativität des FNCT für das dem Spannungsriss zugrundeliegenden langsamen Risswachstum von Bedeutung ist. T2 - Polymer Service GmbH Merseburg - "Lebensdauerabschätzung von Polymerwerkstoffen - Möglichkeiten und Grenzen" CY - Merseburg, Germany DA - 27.03.2019 KW - Environmental Stress Cracking (ESC) KW - Slow Crack Growth (SCG) KW - Spannungsriss KW - Polyethylen hoher Dichte KW - Full-Notch Creep Test (FNCT) KW - Bruchflächenanalyse KW - Laserscanningmikroskopie (LSM) PY - 2019 AN - OPUS4-52947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Reinsch, Stefan A1 - Fechtelkord, M. T1 - Structural investigation of hydrous phosphate glasses N2 - Dissolved water has major impact on the physical and chemical properties of phosphate glasses. In the present study we have investigated the structural response to water incorporation for glasses in the system Li2O–MgO–Al2O3–P2O5. Glasses containing 0–8 wt% H2O were synthesised at 500 MPa confining pressure in internally heated gas pressure vessels at 1323 K (LMP, Al-poor glass) and 1423 K (LMAP, Al-enriched glass). Water contents of glasses were determined by pyrolysis and subsequent Karl-Fischer titration (KFT) and/or by infrared spectroscopy. Density varies nonlinearly with water content implying large structural changes when adding up to 2 wt% H2O to the dry glass. Glass Transition temperatures measured by differential thermal analysis (DTA) continuously decrease with water content. The trend can be explained by depolymerisation of the phosphate network. Near-infrared spectroscopy shows that even in Al poor glasses only a minority of dissolved water is present as H2O molecules, but the largest amount is present as OH Groups formed by hydrolysis of P–O–P bonds. The network is stabilised by aluminium which is predominantly six-coordinated in these glasses as shown by 27Al MAS NMR spectroscopy. With increase of Al in the glasses, breaking up of the Phosphate network through hydrolysis is depressed, i.e. much lower OH Contents are formed at same total water content. Network depolymerisation upon addition of H2O is evident also from 31P MAS NMR spectroscopy. While Phosphate tetraheda are crosslinked by two to three bridging oxygen in dry glasses, diphosphate Groups are dominant in glasses containing 8 wt% H2O. T2 - 2. INT. CONF. ON PHOSPHATE GLASSES CY - Oxford, UK DA - 26.07.2017 KW - water speciation KW - phosphate glasses KW - infrared spectroscopy KW - NMR spectroscopy KW - high pressure PY - 2019 U6 - https://doi.org/10.13036/17533562.60.2.041 SN - 1753-3562 VL - 60 IS - 2 SP - 49 EP - 61 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-48122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for a yield function description of additively manufactured parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. From virtual experiments, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - Workshop on Additive Manufacturing, BAM CY - Berlin, Germany DA - 13.05.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-48064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 03.06.2019 KW - Nanomaterial KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2019 AN - OPUS4-48286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geyler, Paul A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Léonard, Fabien T1 - Machine learning assisted evaluation of the shape of VIAs in a LTCC multilayer N2 - The introduction of the 5G technology and automotive radar applications moving into higher frequency ranges trigger further miniaturization of LTCC technology (low temperature co-fired ceramics). To assess dimensional tolerances of inner metal structures of an industrially produced LTCC multilayer, computer tomography (CT) scans were evaluated by machine learning segmentation. The tested multilayer consists of several layers of a glass ceramic substrate with low resistance silver-based vertical interconnect access (VIA). The VIAs are punched into the LTCC green tape and then filled with silver-based pastes before stacking and sintering. These geometries must abide by strict tolerance requirements to ensure the high frequency properties. This poster presents a method to extract shape and size specific data from these VIAs. For this purpose, 4 measurements, each containing 3 to 4 samples, were segmented using the trainable WEKA segmentation, a non-commercial machine learning tool. The dimensional stability of the VIA can be evaluated regarding the edge-displacement as well as the cross-sectional area. Deviation from the ideal tubular shape is best measured by aspect ratio of each individual layer. The herein described method allows for a fast and semi-automatic analysis of considerable amount of structural data. This data can then be quantified by shape descriptors to illustrate 3-dimensional information in a concise manner. Inter alia, a 45 % periodical change of cross-sectional area is demonstrated. T2 - DKG Jahrestagung 2019 CY - Leoben, Austria DA - 06.05.2019 KW - Machine Learning KW - LTCC multilayer KW - 5G PY - 2019 AN - OPUS4-48289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Rabe, Torsten T1 - Superior granule properties by spray drying controlled destabilized slurries with ultrasound N2 - Homogeneous introduction of organic additives is a key of ceramic powder processing. Addition of organics to ceramic slurries holds advantages compared to dry processing like organic content reduction and a more homogeneous additive distribution on the particle surface. Investigations of the alumina slurries were primarily based on zeta potential measurements and sedimentation analysis by optical centrifugation. Both methods were combined to determine a suitable additive type, amount and composition, whereas the spray drying suitability has been ensured by viscosity measurements. Granules, yielded by spray drying of such ideally dispersed alumina slurries, are mostly hollow and possess a hard shell. Those granules cannot easily be processed and can only hardly be destroyed in the following shaping step, leading to sinter bodies with many defects and poor strength and density. The precise slurry destabilization, carried out after ideally dispersing the ceramic powder, shows a strong influence on the drying behavior of the granules and hence on the granule properties. A promising degree of destabilization and partial flocculation was quantified by optical centrifugation and resulted in improved granule properties. Spray drying the destabilized alumina slurries yielded homogeneous “non-hollow” granules without the above mentioned hard shell. Sample bodies produced of these granules exhibited a reduction of defect size and number, leading to better results for sinter body density and strength. The positive effect of the slurry destabilization has been further improved, by exchanging the atomizing unit from a two-fluid one to an ultrasound atomizer with only minor slurry adjustments necessary. The controlled destabilization and ultrasound atomization of the ceramic slurry show excellent transferability for zirconia and even ZTA (zirconia toughened alumina) composite materials. T2 - Partec 2019 CY - Nuremberg, Germany DA - 09.04.2019 KW - Destabilization KW - Slurry KW - Ultrasound KW - Atomization PY - 2019 AN - OPUS4-48291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Small batch preparation of ready-to-press powder for systematic studies N2 - Efficient studies of scarce or expensive materials require material saving processes. Therefore, a high yield concept for small batch preparation of ready-to-press powder is exemplarily presented for yttria stabilized nano-zirconia (d50 < 50 nm). The concept involves small batch preparation in an ultrasound resonator, dispersant selection based on zeta potential measurements, evaluation of slurry stability using an analytical centrifuge, and preparation of ready-to-press powder by freeze drying. Freeze drying offers key advantages. Process efficiency and high yield above 95 % are independent of sample size. The dried product does not require further mechanical treatment like milling or grinding. Side effects like migration of additives are avoided. An optimized freeze drying process tolerates slurries with moderate stability. Thus, efforts for slurry development can be reduced. Generally, identifying a suitable dispersing agent requires only 3-5 zeta potential measurements. Slurry stability is rechecked using an analytical centrifuge, which also accounts for steric stabilization. An ultrasound resonator is used to disperse the powder without contamination, which becomes critical for small batches. The described route is exemplarily presented for the development of an additive recipe for nano-sized zirconia powder, targeting for good pressing behavior and high green density. Therefore, a variety of binding and lubricating agents were tested. Following the presented route, 80 g zirconia powder were sufficient to conduct a study including slurry development and five sample sets with varying composition, each set comprising five discs (d = 20 mm and h = 2 mm). T2 - 94. DKG Jahrestagung CY - Leoben, Austria DA - 05.05.2019 KW - Fine Powder KW - Slurry KW - Freeze Drying PY - 2019 AN - OPUS4-48293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Restoration of structural integrity – a comparison of various repair concepts for wind turbine rotor blade shells N2 - Localized patches are a cost- and time-effective method for repairing fiber-reinforced polymer (FRP) sandwich wind turbine rotor blade shells. To increase the understanding of their effect on the fatigue of the blades, this study examines the effect of various layup methods of localized repair patches on the structural integrity of composite sandwich structures. Manufactured with the vacuum-assisted resin infusion (VARI) process, the shell test specimens are produced as a curved structure with glass fiber reinforced polymer (GFRP) sandwiching a polyvinyl chloride (PVC) foam core. Patch repairs are then introduced with varying layup techniques, and material properties are examined with cyclic fatigue tests. The transition region between patch and parent material is studied in greater detail with finite element method (FEM) simulations, with a focus on the effect of fiber orientation mismatch. Damage onset, crack development, and eventual failure are monitored with in-situ non-destructive testing methods to develop a robust understanding of the effects of repair concepts on material stiffness and strength. T2 - SMAR 2019 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Lightweight materials KW - Glass fiber reinforced polymers KW - Sandwich KW - Wind turbine blades PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-482170 SP - 1 EP - 8 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina T1 - Sintering and foaming of silicate glass powders N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites, glass bonded ceramics or pastes. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - IMAPS/ACerS 15th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT 2019) CY - Shanghai, China DA - 16.04.2019 KW - Glass powder KW - Sintering KW - Foaming PY - 2019 AN - OPUS4-48196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -