TY - JOUR A1 - Tokarski, T. A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Rychlowski, L. A1 - Bala, P. A1 - Cios, G. T1 - Transmission Kikuchi diffraction: The impact of the signal-to-noise ratio N2 - Signal optimization for transmission Kikuchi diffraction (TKD) measurements in the scanning electron microscope is investigated by a comparison of different sample holder designs. An optimized design is presented, which uses a metal shield to efficiently trap the electron beam after transmission through the sample. For comparison, a second holder configuration allows a significant number of the transmitted electrons to scatter back from the surface of the sample holder onto the diffraction camera screen. It is shown that the secondary interaction with the sample holder leads to a significant increase in the background level, as well as to additional noise in the final Kikuchi diffraction signal. The clean TKD signal of the optimized holder design with reduced background scattering makes it possible to use small signal changes in the range of 2% of the camera full dynamic range. As is shown by an analysis of the power spectrum, the signal-to-noise ratio in the processed Kikuchi diffraction patterns is improved by an order of magnitude. As a result, the optimized design allows an increase in pattern signal to noise ratio which may lead to increase in measurement speed and indexing reliability. KW - EBSD KW - SEM KW - Transmission Kikuchi diffraction KW - Sample holder PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531743 SN - 0304-3991 SN - 1879-2723 VL - 230 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Cios, G. A1 - Tokarski, T. T1 - Tetragonality mapping of martensite in high-carbon steel by EBSD N2 - The locally varying tetragonality in martensite grains of a high-carbon steel (1.2 mass percent C) was resolved by electron backscatter diffraction (EBSD) with a spatial resolution in the order of 100 nm. Compared to spatially integrating X-ray diffraction, which yielded an average tetragonality fo c/a=1.05, the EBSD measurements in the scanning electron microscope allowed to image a local variation of the lattice papameter ration c/a in the range of 1.02 ≀ c/a ≀ 1.07. The local variation of tetragonality is confirmed by two different EBSD data analysis approaches based on the fitting of simulated to experimental EBSD patterns. The resulting EBSD-based tetragonality maps are pointing to a complex interaction of carbon concentration and local lattice distortions during the formation process of martensitic structures. KW - EBSD KW - Martensite KW - Tetragonal distortion KW - Pattern matching PY - 2021 U6 - https://doi.org/10.1016/j.matchar.2021.111040 VL - 175 SP - 111040 PB - Elsevier Inc. AN - OPUS4-52343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. T1 - Mapping of local lattice parameter ratios by projective Kikuchi pattern matching N2 - We describe a lattice-based crystallographic approximation for the analysis of distorted crystal structures via Electron Backscatter Diffraction (EBSD) in the scanning electron microscope. EBSD patterns are closely linked to local lattice parameter ratios via Kikuchi bands that indicate geometrical lattice plane projections. Based on the transformation properties of points and lines in the real projective plane, we can obtain continuous estimations of the local lattice distortion based on projectively transformed Kikuchi diffraction simulations for a reference structure. By quantitative image matching to a projective transformation model of the lattice distortion in the full solid angle of possible scattering directions, we enforce a crystallographically consistent approximation in the fitting procedure of distorted simulations to the experimentally observed diffraction patterns. As an application example, we map the locally varying tetragonality in martensite grains of steel. KW - EBSD KW - Scanning electron microscopy KW - Orientation refinement PY - 2018 U6 - https://doi.org/10.1103/PhysRevMaterials.2.123803 SN - 2475-9953 VL - 2 IS - 12 SP - 123803, 1 EP - 15 PB - American Physical Society CY - College Park, MD AN - OPUS4-47296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cios, G. A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. A1 - Dan, L. A1 - Bala, P. T1 - Mapping of lattice distortion in martensitic steelβ€”Comparison of different evaluation methods of EBSD patterns N2 - To visualize the varying tetragonal distortions in high carbon martensitic steels by EBSD, two different approaches have been applied on backscattered Kikuchi diffraction (BKD) patterns. A band-edge refinement technique called Refined Accuracy (RA) (Oxford Instruments) is compared with a technique called Pattern Matching (PM), which optimizes the fit to a simulated BKD signal. RA distinguishes between hypothetical phases of different fixed π‘βˆ•π‘Ž, while PM determines a best fitting continuous π‘βˆ•π‘Ž by projective transformation of a master pattern. Both techniques require stored BKD patterns. The sensitivity of the π‘βˆ•π‘Ž-determination was tested by investigating the microstructure of a ferritic steel with an expected π‘βˆ•π‘Ž = 1. The influence of the Kikuchi pattern noise on π‘βˆ•π‘Ž was compared for a single or 40 averaged frames per measuring point, and turned out to be not significant. The application of RA and PM on the martensitic microstructure delivered qualitatively similar maps of π‘βˆ•π‘Ž. The comparison of RA and PM shows that RA is suitably fast and precise during mapping the martensite π‘βˆ•π‘Ž ratio in analyses of high carbon martensite, especially for fast initial surveys. As RA leads quantitatively to higher noise in π‘βˆ•π‘Ž, the PM analysis can be used for higher precision results. KW - EBSD KW - Steel KW - Martensite KW - Tetragonality KW - Strain PY - 2023 U6 - https://doi.org/10.1016/j.ultramic.2023.113824 VL - 253 SP - 1 EP - 11 AN - OPUS4-58158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Cios, G. A1 - Winkelmann, A. T1 - Manual measurement of angles in backscattered and transmission Kikuchi diffraction patterns N2 - A historical tool for crystallographic analysis is provided by the Hilton net, which can be used for manually surveying the crystal lattice as it is manifested by the Kikuchi bands in a gnomonic projection. For a quantitative analysis using the Hilton net, the projection centre as the relative position of the signal source with respect to the detector plane needs to be known. Interplanar angles are accessible with a precision and accuracy which is estimated to be ≀0.3o. Angles between any directions, e.g. zone axes, are directly readable. Finally, for the rare case of an unknown projection-centre position, its determination is demonstrated by adapting an old approach developed for photogrammetric applications. It requires the indexing of four zone axes [uvw]i in a backscattered Kikuchi diffraction pattern of a known phase collected under comparable geometric conditions. KW - Electron backscatter diffraction KW - EBSD KW - Angle measurement KW - Gnomonic projections KW - Kikuchi patterns PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507625 VL - 53 SP - 435 EP - 443 AN - OPUS4-50762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Tokarski, T. T1 - Lattice parameter determination with EBSD. Is that possible? N2 - CALM is software for determining the Bravais lattice type and the resulting lattice parameters from a single Kikuchi pattern. It requires the definition of 4 bands and a single bandwidth from which all other band positions as well as bandwidths are derived. For band detection, it uses the Funk transform, which allows detection of twice as many bands as usual. CALM works for any symmetry and requires low-noise patterns of at least 320x240 pixels. The resulting errors are <2% even for such small patterns, assuming good quality. The relative errors are <0.5%. However, this requires a projection centre position best derived from a sample of a cubic phase in CALM. However, this must have been recorded under identical conditions. Hundreds of Kikuchi patterns of phases with different symmetries were examined. T2 - Institutskolloquium Kassel CY - Online meeting DA - 30.10.2020 KW - Phasenidentifikation KW - EBSD KW - Gitterkonstanten PY - 2020 AN - OPUS4-51813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10βˆ’3–10-2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 U6 - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10βˆ’3–10βˆ’2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 U6 - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Cios, G. A1 - Tokarski, T. A1 - Nolze, Gert A1 - Hielscher, R. A1 - Koziel, T. T1 - EBSD orientation analysis based on experimental Kikuchi reference patterns N2 - Orientation determination does not necessarily require complete knowledge of the local atomic arrangement in a crystalline phase. We present a method for microstructural phase discrimination and orientation analysis of phases for which there is only limited crystallographic information available. In this method, experimental Kikuchi diffraction patterns are utilized to generate a self-consistent master reference for use in the technique of Electron Backscatter Diffraction (EBSD). The experimentally derived master data serves as an application-specific reference in EBSD pattern matching approaches. As application examples, we map the locally varying orientations in samples of icosahedral quasicrystals observed in a Ti40Zr40Ni20 alloy, and we analyse AlNiCo decagonal quasicrystals. KW - EBSD KW - Quasicrystal KW - Crystal orientation KW - Pattern matching PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507611 VL - 188 SP - 376 EP - 385 PB - Elsevier Ltd. AN - OPUS4-50761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Winkelmann, A. A1 - Britton, T. B. A1 - Nolze, Gert T1 - EBSD Kikuchi Pattern Analysis, Silicon 15kV N2 - Supplementary data and images for Si EBSD pattern analysis as presented in: A. Winkelmann, T.B. Britton, G. Nolze "Constraints on the effective electron energy spectrum in backscatter Kikuchi diffraction", Physical Review B (2019). KW - EBSD KW - Electron energy KW - Energy distribution KW - Kikuchi pattern KW - Simulation PY - 2019 U6 - https://doi.org/10.5281/zenodo.2565061 PB - Zenodo CY - Geneva AN - OPUS4-51907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -